κ-DENSE TOTAL ORDERS

MARIANO SUÁREZ-ALVAREZ

Abstract

We show that for all cardinals κ there exist totally ordered sets S with the property that whenever $X, Y \subset S$ are non-empty subsets of cardinal at most κ such that $x<y$ for all $x \in X$ and all $y \in Y$ there exists an element $z \in S$ such that $x<z<y$ for all $x \in X$ and all $y \in Y$.

The construction is based on idea of starting with an arbitrary total order S and filling its gaps repeatedly, until we obtain a total order with the desired property.

1. Let S be a totally ordered set and let κ be a cardinal. We say that a pair (X, Y) of non-empty subsets $X, Y \subset S$ is a κ-gap the following conditions are satisfied:

- both X and Y are of cardinal at most κ;
- we have $x<y$ for all $x \in X$ and all $y \in Y$;
- there does not exist an element $z \in S$ such that $x<z<y$ for all $x \in X$ and all $y \in Y$.
If S does not admit any κ-gap, we say that S is κ-dense.

2. It is obvious that a totally ordered set of at most one element is κ-dense for all cardinals κ. We call these examples trivial.
3. If κ is a finite cardinal, it is clear that a set is κ-dense iff it is dense in the usual sense.
4. We want to show that more interesting examples exist:

Theorem. Let κ be a cardinal. Then there exist non-trivial κ-dense total orders.
The problem was suggested in a post [2] on the sci.math newsgroup by 'Marc'.
5. Let us fix a cardinal κ and a totally ordered set S. Let $G(S)$ be the set of all κ-gaps of S. Notice that $G(S)$ is empty iff S is κ-dense.
6. We put $S^{+}=S \cup G(S)$ and consider the relation \ll on the set S^{+}which extends the relation $<$ and such that, given $z \in S$ and $(X, Y),(U, V) \in G(S)$,

- $z \ll(X, Y)$ iff for all $y \in Y$ we have $z<y$;
- $(X, Y) \ll z$ iff for all $x \in X$ we have $x<z$; and
- $(X, Y) \ll(U, V)$ iff there exist $y \in Y$ and $u \in U$ such that $y \leq u$.

7. Notice that whenever $z \in S$ and $(X, Y) \in G(S)$ are such that $z \ll(X, Y)$, there exists $y \in Y$ such that $y \leq z$, for otherwise z would separate X and Y, contradicting the third condition in definition 5 . There is, of course, a symmetric statement.
8. It is evident that $(X, Y) \in G(S)$ implies that we have $x \ll(X, Y) \ll y$ for all $x \in X$ and all $y \in Y$.
9. The relation \ll on S^{+}is anti-symmetric. To see this-since the restriction of \ll to S is $<$, which is known to be anti-symmetric-we have to only consider the following two cases.

- First, suppose there exist $z \in S$ and $(X, Y) \in G(S)$ such that $z \ll(X, Y)$ and $(X, Y) \ll z$. Then for all $y \in Y$ and all $x \in X$ we have $x<z<y$, contradicting the fact that $(X, Y) \in G(S)$.
- Second, suppose that $(X, Y),(U, V) \in G(S)$ are such that $(X, Y) \ll(U, V)$ and $(U, V) \ll(X, Y)$. Then there exist $y \in Y, u \in U, v \in V$ and $x \in X$ such that $y \leq u$ and $v \leq x$. Since $u<v$, this implies that $y<x$, which is impossible.

10. The relation \ll is also transitive:

- If $x, y, z \in S$ are such that $x \ll y \ll z$, then clearly $x \ll y$.
- Let now $z, t \in S$ and $(X, Y) \in G(S)$. Assume first that $z \ll t \ll(X, Y)$. Then $z<t$ and for all $y \in Y$ we have $t<y$, so $z<y$ for all $y \in Y$, that is, $z \ll(X, Y)$. The case in which $(X, Y) \ll z \ll t$ is handled similarly.

Assume now that $z \ll(X, Y) \ll t$. This second inequality implies that there exists $y \in Y$ such that $y \geq t$, and the first one implies that $z<y$ so, in fact, $z \ll t$.

- Let next $z \in S$ and $(X, Y),(U, V) \in G(S)$. Suppose $z \ll(X, Y) \ll(U, V)$. Let $v \in V$. The second inequality implies that there exist $y \in Y$ and $u \in U$ such that $y \leq u$, and the first inequality implies, in turn, that $z<y$, so that in fact we have $z<y \leq u<v$. We see thus that $z \ll(U, V)$. If we had $(X, Y) \ll(U, V) \ll z$ instead we would reason in a similar way to show that $(X, Y) \ll z$.

Suppose now that $(X, Y) \ll z \ll(U, V)$. The first inequality tells us that there exists $y \in Y$ such that $y \leq z$ and the first one, that there exists $u \in U$ such that $z \leq u$. We see that $y \leq u$, so $(X, Y) \ll(U, V)$.

- Finally, suppose that $(X, Y),(U, V),(S, T) \in G(S)$ are such that we have $(X, Y) \ll(U, V) \ll(W, Z)$. Then there exist $y \in Y, u \in U, v \in V$ and $w \in W$ such that $y \leq u$ and $v \leq w$. Since $u<v$, this implies that $y<w$, so $(X, Y) \ll(W, Z)$.

11. Since \ll is anti-symmetric and transitive, there exists a total order \lll on S^{+} which extends \ll; we remark that, in general, \ll itself is not a total order. From now on, we consider S^{+}endowed with such an order \lll, and we will write it simply $<$ as this should be cause of no confusion. We are interested in S^{+}because $S \subset S^{+}$and
whenever $X, Y \subset S$ are non-empty subsets of cardinal at most κ with $x<y$ for all $x \in X$ and all $y \in Y$, there exists $z \in S^{+}$such that $x<z<y$ for all $x \in X$ and all $y \in Y$.
12. We define a transfinite sequence of totally ordered sets as follows: we put $S_{0}=S$ and, for an ordinal α,

- if α is a successor ordinal, so that there exists an ordinal β such that $\alpha=\beta+1$, we put $S_{\alpha}=\left(S_{\beta}\right)^{+}$, and
- if α is a limit ordinal, we put $S_{\alpha}=\bigcup_{\beta<\alpha} S_{\beta}$, endowed with the unique total order which extends those of the S_{β}.

13. We need two definitions and a result from the theory of ordinals.

- An ordinal η is initial if there exists no ordinal γ which is equipotent to η and such that $\gamma<\eta ; c f$. [1]. Chapter $\left.7, \S_{1}\right]$.
- An infinite initial ordinal η is regular if whenever θ is an ordinal such that $\theta<\eta$ and $\left(\alpha_{v}\right)_{v<\theta}$ is a transfinite increasing sequence of ordinals of length θ such that $\alpha_{v}<\eta$ for all $v<\theta$, we have that $\sup \left\{\alpha_{v}: v<\theta\right\}<\eta$; cf. [1. Chapter 9, §2].

The result we need is that that there exist arbitrarily large regular initial ordinals, cf. [1. Chapter 9, Theorem 2.4].
14. Let us fix a regular initial ordinal η which is strictly larger than κ. We claim that the totally ordered set S_{η} is κ-dense. Indeed, suppose $X, Y \subset S_{\eta}$ are two non-empty subsets of cardinality at most κ such that for all $x \in X$ and all $y \in Y$ we have $x<y$. Since η is a limit ordinal, $S_{\eta}=\bigcup_{\alpha<\eta} S_{\alpha}$. Moreover, since $X \cup Y$ has cardinal at most κ and η is regular, there exists an ordinal ϕ such that $\phi<\eta$ and $X \cup Y \subset S_{\phi}$, and we see that there exists a $z \in\left(S_{\phi}\right)^{+}=S_{\phi+1} \subset S_{\eta}$ such that $x<z<y$ for all $x \in X$ and all $y \in Y$.
15. We can now prove the theorem. If S is an arbitrary total order, we have shown in 14 that there exist an ordinal η such that S_{η} is κ-dense. If S has more than one element, then of course S_{η} does also, so we are done.

References

[1] K. Hrbacek and T. Jech, Introduction to set theory, 3rd ed., Monographs and Textbooks in Pure and Applied Mathematics, vol. 220, Marcel Dekker Inc., New York, 1999. MR1697766 (2000c:03001) $\uparrow \mathbf{2}$, 3
[2] 'Marc', Super densely ordered sets, Usenet post on the sci.math newsgroup (February 15, 2008), available at http://groups.google.com/group/sci.math/msg/7bf3d2f92061d2cd $\uparrow 1$

Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, Buenos Aires (1428) Argentina.

E-mail address: mariano@dm.uba.ar

©2008 Mariano Suárez-Alvarez

Esta obra está licenciada bajo una Licencia Atribución-Compartir Obras Derivadas Igual 2.5 Argentina de Creative Commons. Para ver una copia de esta licencia, visite http://creativecommons.org/ licenses/by-sa/2.5/ar/ o envíenos una carta a Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

