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Chapter 1
Planecurves

§1.1. Curves

A curve is a function γ ∶ (a, b) → R2 defined on a non-empty open interval of R. We say such a
curve is smooth if it is a function of type C2. Unless we say otherwise, we will assume throughout
in all that follows that all the curves with which we deal are smooth.

It is important to keep in mind that a curve γ ∶ (a, b) → R2 is a function. Its image

{γ(t) ∶ t ∈ (a, b)}

is, on the other hand, a subset of the plane — we call it the trace of γ. There is more information in
the function γ than in it its trace, but we usually depict graphically a curve by drawing its trace.
For example, the curve

t ∈ R↦ (cos t, sin t) ∈ R2 (1.1) {eq:ex-circle}{eq:ex-circle}

has as trace the unit circle

-1 1
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The trace of a curve does not determine it. For example, the curve t ∈ R ↦ (cos t2, sin t2) ∈ R2

has the same trace as that in (1.1).

If γ ∶ (a, b) → R2 is a curve, then for each t ∈ (a, b) the point γ(t) ∈ R2 can be written in
the form (x(t), y(t)) for a well-determined pair of real numbers x(t) and y(t), and in this way
we obtain two real-valued functions x, y ∶ (a, b) → R, which we call the componentscomponents of γ. If γ is
smooth, then the two functions x and y are themselves smooth. Conversely, if x, y ∶ (a, b) → R
are two functions defined on a non-empty open interval of R, then the function

t ∈ (a, b) ↦ (x(t), y(t)) ∈ R2

is a curve in R2 that has as components the functions x and y, and this curve is smooth if both
functions x and y are. Using this we can easily construct curves, of course. For example, the
functions

t ∈ R↦ (2 cos 3t, 3 sin 2t) ∈ R2, a Lissajous curve

t ∈ R↦ (t, t
2) ∈ R2, a parabola

t ∈ R↦ (t2 − 1, t(t2 − 1)) ∈ R2, a nodal cubic

t ∈ R↦ ((1 + 2 cos t) sin t, (1 + 2 cos t) sin t) ∈ R2, a limaçon

t ∈ (0,+∞) ↦ (t cos t, t sin t) ∈ R2
a circular spiral

t ∈ R↦ (t3, t
2) ∈ R2

a cuspidal cubic

t ∈ R↦ (cos t + 2
√

2 cos t/2, sin t) ∈ R2, a fish curve

t ∈ R↦ (t,
1

1 + e−4t −
1
2
) ∈ R2, a sigmoid

are all smooth curves. We have drawn their traces in Figure 1.1 on page 3.

Example 1.1.1. If f ∶ (a, b) → R is a real-valued function, then we can construct a curve

γ ∶ t ∈ (a, b) ↦ (t, f (t)) ∈ R,

and this curve is smooth exactly when the function f is smooth. The trace of this curve is the set

C ∶= {(t, f (t)) ∶ t ∈ (a, b)},

which is precisely the graph of the function f . Because of this, we will call the curve γ the the graph

of a function

standard
parametrization of the graph of f .
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Figure 1.1. Some parametrized curves.
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§1.2. Implicit curves

Often we want to study subsets of the plane that are given implicitly by equations and not as the
trace of curves parametrizating them, but that nontheless deserve to be called curves. For example,
the set C of points (x , y) of R2 that satisfy the equation

x
2 + y2 = 1

is well-known to be a circle of radius 1, centered at the origin,

-1 1

-1

1

In this case, it is easy to find a curve whose trace is the set C, namely the function

γ ∶ t ∈ R↦ (cos t, sin t) ∈ R2.

We call a curve whose trace is C a parametrizationparametrization of the implicit curve C. As we observed, there
are in fact many curves that parametrize this implicit curve.

Similarly, the set D of those points (x , y) of R2 that satisfy the equation

2x3 − x2
y + xy2 − y3 − x + y = 0

can be drawn as in the following picture

-2 -1 1 2
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In this example it is much less obvious how to find a parametrization. Indeed, this is an example
of what is called an elliptic curveelliptic curve and it can be shown that such curves cannot be parametrized
using elementary functions.

4



It should be noted that not every equation determines a subset of the plane that deserves to
be called a curve. For example, the equation x2 + y2 = 0 determines a subset of R2 consisting of
exactly one point, the origin (0, 0), and we probably do not want to call this a curve. Similarly,
the set determined by the equation sin2 x + y2 = 0 determines in R2 the subset {(πk, 0) ∶ k ∈ Z},
which is countable and discrete — again, not something that we usually call a curve. It can also
happen that an equation has no solutions at all, as it happens with the equation x2 + y2 + 1 = 0, so
that the subset of R2 determined by it is empty. These examples show that some care is needed
when studying implicitly defined curves to ensure that what we have is actually something that we
want to call a curve. Similarly, we should care about ensuring some form of smoothness.

For us, the following result will be enough to deal with implicitly defined curves. It gives
sufficient conditions on an equation in the plane that guarantee that the set it defines can be
parametrized by a smooth curve — at least locally. Let us recall that the gradient of a function
f ∶ U → R defined on an open subset U of R2 at a point p of U is the vector

∇ f (p) = (∂ f
∂x
(p), ∂ f

∂y
(p)) .

{prop:implicit}

Proposition 1.2.1. Let k be a positive integer, let U be an open subset of R2 and let F ∶ U → R be a

function that has k continuous derivatives at each point of its domain. If p0 is a point of U such that

F(p0) = 0 and ∇F(p0) ≠ 0, then there exists an open set V of R2 and a function γ ∶ (−1, 1) → V

such that

• p0 ∈ V ⊆ U,

• γ has k continuous derivatives,

• γ′(t) ≠ 0 and F(γ(t)) = 0 for all t ∈ (−1, 1), and
• the trace of γ is exactly the set V ∩ {p ∈ R2 ∶ F(p) = 0}.

We will not prove this proposition here. It is essentially the so called Implicit Function Theo-

rem from calculus. We refer the reader to the book [Mun91] where Munkres proves this as his
Theorem 9.1. The following schematic drawing describes the situation of the proposition.

p0

−1 0 1

γ

U

V

R

F = 0

F

It should be noted that there is no uniqueness claim in the proposition. It is the case, in fact, that
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once we find an open set V and a function γ ∶ (−1, 1) → V satisfying the conditions listed there we
can change both V and γ in many ways while preserving those conditions.

In practice, when we have a curve defined implicitly and the conditions of the proposition are
satisfied, so that we know that in principle we can find parametrizations for it, doing so is often
impracticable. This notwithstanding, we can generally do almost everything we want with such
a curve. In particular, for our purposes — we are doing differential geometry, after all! — it is
important that we obtain information about the derivatives of the curve, and this can be done.

The following are simple examples of curves given implicitly:

x
3 + y3 = 3xy, Descartes’ folium

x
2/3 + y2/3 = 1, astroid

(x2 + y2 − 2x)2 = 4(x2 + y2), cardioid

x
4 = (x2 − y2), eight curve

x
6 + y6 = x2, butterfly curve

(x2 + y2)2 = x2 − y2, Bernoulli’s lemniscate

x
2
y + 1

2 y = x , serpentine curve

We have drawn them in Figure 1.2 on page 7.

Sometimes the following different version of Proposition 1.2.1, which is actually closer to the
Implicit Function Theorem, is more useful:

{prop:implicit:graph}

Proposition 1.2.2. Let k be a positive integer, let U be an open subset of R2 and let F ∶ U → R be a

function that has k continuous derivatives at each point of its domain. If p0 is a point of U such that

F(p0) = 0 and ∂F
∂x (p) ≠ 0, then there exist

• open non-empty intervals (a, b) and (c, d) and
• a function f ∶ (a, b) → (c, d)

such that

• p0 ∈ (a, b) × (c, d) ⊆ U,

• f has k continuous derivatives,

• F(t, f (t)) = 0 for all t ∈ (a, b),
• the graph of f is exactly the set {q ∈ (a, b) × (c, d) ∶ F(q) = 0}, and
• the derivative

∂F
∂x does not vanish on (a, b) × (c, d).

Here what we find is a function f ∶ (a, b) → (c, d) such that the standard parametrization
of its graph, γ ∶ t ∈ (a, b) ↦ (t, f (t)) ∈ R2, is a parametrization of a piece of the implicit curve
determined by the equation F(x , y) = 0. Notice that in the situation of the proposition there is an

6
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Figure 1.2. Some implicit curves.
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element t0 in (a, b) such that p = (t0, f (t0)). The situation is now as follows:

p0

a b

c

d

U

V

R
F = 0

F

f

An advantage of this proposition over the previous one is that it is easier to obtain information
about the derivatives of the parametrization γ, since they all depend in a simple way on the
derivatives of f .

§1.3. Regular curves and their tangent lines

Let γ ∶ (a, b) → R be a smooth curve in the plane, and let x, y ∶ (a, b) → R be its component
functions. We say that γ is regular at a point t0 of its domain (a, b) if γ′(t0) ≠ 0, and in that case
the tangent vector to γ at t0 is the unit vector

t(t0) ∶=
γ′(t0)
∥γ′(t0∥

.

If the curve is regular at each point of its domain we say that it is regular and call the function

t ∶ t ∈ (a, b) ↦ t(t) ∈ R2

the tangent vector field of γ. Notice that in this situation the function t is of class C1.

It is important to keep in mind that regularity is a property of smooth curves that is not
determined by their traces. For example, the two curves

t ∈ R↦ (t, 0) ∈ R, t ∈ R↦ (t3, 0) ∈ R

have the same trace — namely, the horizontal axis of the plane — but the first one is regular while
the second one is not, as its derivative at 0 vanishes.
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Example 1.3.1. If f ∶ (a, b) → R is a smooth function, then the standard parametrization

γ ∶ t ∈ (a, b) ↦ (t, f (t)) ∈ R2

of the graph of f has derivative γ′(t) = (1, f ′(t)) for all t ∈ (a, b) and is therefore regular at each
point of its domain. The corresponding tangent vector field t ∶ (a, b) → R2 has

t(t) =
⎛
⎝

1√
1 + f ′(t)2

,
f ′(t)√

1 + f ′(t)2
⎞
⎠

at each t ∈ (a, b).

Example 1.3.2. In the situation of Proposition 1.2.1 the curve γ ∶ (−1, 1) → V ⊆ R2 whose existence
is asserted there is regular — indeed, this is part of the claim of the proposition. We thus see that
every implicit curve F(x , y) = 0 determined by a smooth function F can be parametrized by a
regular curve near a point p where ∇F(p) ≠ 0.

Some subsets of the plane that look like curves cannot be parametrized by regular curves. Let
us look at two examples of this.

Example 1.3.3. Let us consider the set

C = {(x , y) ∈ R2 ∶ (x ≥ 0 ∧ y = 0) ∨ (x = 0 ∧ x ≥ 0},

which is the union of the positive semi-axes.

C

This set is the trace of smooth curves. For example, the function γ ∶ R→ R2 such that

γ(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(0,−te−1/t
2) if t < 0;

(0, 0) if t = 0;

(te−1/t2
, 0) if t > 0

for all t ∈ R can be shown to be smooth, and its trace is clearly C. We claim that, on the other
hand, there is no regular smooth curve γ ∶ (a, b) → R2 whose trace is contained in C and contains
the origin. To verify this let us suppose that, on the contrary, such a curve does exist, and let t0 be
a point in its domain (a, b) such that γ(t0) = (0, 0).

9



Let x, y ∶ (a, b) → R be the components of γ. If u and v are two positive numbers, then the
function h ∶ t ∈ (a, b) ↦ ux(t) + vy(t) ∈ R is differentiable and, since γ(t) ∈ C for all t ∈ (a, b)
and γ(t0) = (0, 0), has g(t) ≥ 0 for all t ∈ (a, b) and g(t0) = 0. This tells us that g has a local
minimum at t0, and therefore that 0 = g′(t0) = ux′(t0) + vy′(t0). In particular, we have that
x′(t0) + 2y′(t0) = 0 and that 2x′(t0) + y′(t0) = 0, and it follows from these two equalities that in
fact x′(t0) = y′(t0) = 0, that is, that γ′(t0) = 0. This is absurd.

Example 1.3.4. Let C be the set of points (x , y) in the plane such that

x
2 = y3,

which we called above a cuspidal cubic and which looks as follows:

-1 1

1

The function

γ ∶ t ∈ R↦ (t3, t
2) ∈ R2

is a smooth parametrization of C. Indeed, it is immediate that for every t ∈ R the point (t3, t2) is
in C, as (t3)2 = (t2)3. On the other hand, if p = (x , y) is a point in C, then y3 = x2 ≥ 0, so that
y ≥ 0 and there is a unique non-negative real number s such that y = s2. Now x2 = y3 = s6, so
that x is either s3 or −s3, and therefore p is either γ(s) or γ(−s). We thus see that the trace of γ is
precisely the cuspidal cubic C.

Let us show that there is no regular smooth parametrization of C. Let σ ∶ (a, b) → R2 be
a smooth curve whose trace is C, let t0 be a point in (a, b) such that σ(t0) = (0, 0), and let
x, y ∶ (a, b) → R be the components of σ . The function y has a local minimum at t0, since
y(t0) = 0 and y(t) ≥ 0 for all t ∈ (a, b), and is smooth, so we have y′(t0) = 0.

Let us suppose that x′(t0) ≠ 0. There exists then a positive number є such that x(t) ≠ 0 for
all t belonging to the set T ∶= (t0 − є, t0 + є) − {t0}. For all t ∈ T we have that x(t)2 = y(t)3, so
that 2x(t)x′(t) = 3y(t)2y′(t). Squaring we deduce that also 4x(t)2x′(t)2 = 9y(t)4y′(t)2 and,
since x(t) ≠ 0 because t is in T , that

x
′(t)2 = 9y(t)4

4x(t)2 y
′(t) = 9

4
y(t)y′(t).

10



It follows from this that

x
′(t0)2 = lim

t→t0
x
′(t)2 = lim

t→t0

9
4
y(t)y′(t) = 0,

because y is smooth and y′(t0) = 0. Of course, this contradicts our hypothesis that x′(t0) ≠ 0.
We can therefore conclude that no smooth parametrization of C is regular.

These two examples suggest that in general a curve given implicitly does not have a regular
parametrization near a point at which it has «a kink», and that is indeed the case. We will not
enter into details about this.

The reason for which we are particularly interested in curves that are regular is that for them
we can easily1 define tangent lines. Let γ ∶ (a, b) → R2 be a smooth parametrized curve, and
let t0 be an element of (a, b) at which γ is regular. The tangent line to γ at t0 is the line L that
passes through γ(t0) with direction given by the tangent vector t(t0), namely the set

L ∶= {γ(t0) + u ⋅ t(t0) ∶ u ∈ R}.

γ

γ(t0) L

t(t0)

We should notice that this set is indeed a line because the tangent vector t(t0) is non-zero.
As the tangent vector t(t0) is a non-zero scalar multiple of the derivative γ′(t0), we can also

describe the line L using the latter: we have that

L = {γ(t0) + u ⋅ γ′(t0) ∶ u ∈ R}.

If x, y ∶ (a, b) → R are the coordinates of γ, then we have that γ(t0) = (x(t0), y(t0)) and
γ′(t0) = (x′(t0), y′(y0)), and therefore we can write even more explicitly

L = {(x(t0) + ux
′(t0), y(t0) + uy

′(t0)) ∶ u ∈ R}.

We can read off this equality a parametrization of the tangent line: it is the trace of the curve

u ∈ R↦ (x(t0) + ux
′(t0), y(t0) + uy

′(t0)) ∈ R2.

On the other hand, it is easy to check that a point p = (x , y) belongs to this tangent line L exactly
when its components are such that

−y′(t0) ⋅ (x − x(t0)) + x′(t0) ⋅ (y − y(t0)) = 0,

so that this is an implicit equation for that line.

1One can define tangent lines in more general situations, but we will not do this here.
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Example 1.3.5. Let f ∶ (a, b) → R be a smooth function and let γ ∶ t ∈ (a, b) ↦ (t, f (t)) ∈ R2 be
the standard parametrization of its graph. If t0 is a point in (a, b), then γ′(t0) = (1, f ′(t0)), and
therefore the line tangent to γ at t0 is

L = {(x(t0) + u, y(t0) + u f
′(t0)) ∶ u ∈ R

and

− f ′(t0) ⋅ (x − t0) + (y − f (t0)) = 0

is an implicit equation for it. Notice that we can rewrite this equation in the form

y = f
′(t0) ⋅ (x − t0) + f (t0),

which is the familiar equation to the tangent line to the graph of f .

Example 1.3.6. Let U be an open subset of R2, let F ∶ U → R be a smooth function, and let
p = (x0, y0) ∈ U be a point such that F(p) = 0 and ∇F(p) ≠ 0. We know from Proposition 1.2.1
that there exists a regular smooth parametrized curve γ ∶ (−1, 1) → U such that γ(0) = p and
F(γ(t)) = 0 for all t ∈ (−1, 1). If x, y ∶ (−1, 1) → R are the components of γ, then this last equation
means that F(x(t), y(t)) = 0 for all t ∈ (−1, 1) and therefore differentiating with respect to t and
taking t = 0 we see that

Fx(p) ⋅ x′(0) + Fy(p) ⋅ y′(0) = 0.

On the other hand, a point (x , y) ofR2 belongs to the tangent line to the curve γ at 0 exactly when

y
′(0) ⋅ (x − x0) − x′(0) ⋅ (y − y0) = 0.

It follows from this that the point (x , y) is in the tangent line exactly when the system of equations

{ Fx(p) ⋅ X + Fy(p) ⋅ Y = 0
−(y − y0) ⋅ X + (x − x0) ⋅ Y = 0

is compatible, and therefore the determinant of its matrix of coefficients is zero,

Fx(p) ⋅ (x − x0) + Fy(p) ⋅ (y − y0) = ∣
Fx(p) Fy(p)
−(y − y0) (x − x0)

∣ = 0.

We can therefore conclude that the tangent line to the parametrized curve γ at 0 has equation

Fx(p) ⋅ (x − x0) + Fy(p) ⋅ (y − y0) = 0. (1.2) {eq:imptg}{eq:imptg}

12



If we let q be the point (x , y) then we can rewrite this equation in the form

⟨∇F(p), q − p⟩ = 0,

with ⟨−,−⟩ the usual inner product of R2: this tells us that a point q is in the tangent line to γ at 0
exactly when the difference q − p is orthogonal to ∇F(p).

Notice that the equation (1.3.6) does not depend on knowledge about the curve γ, but only
on the function F that defines it implicitly. This is important because, as we observed above, in
general we cannot determine γ explicitly.

§1.4. Reparametrizations

A function u ∶ (c, d) → (a, b) from a non-empty open interval of the lineR to another is a change of parameterchange
of parameter if it is bijective and smooth, and its inverse function is also smooth. When that is the
case the inverse function u−1 ∶ (a, b) → (c, d) is also a change of parameter.

Example 1.4.1. Let (c, d) and (a, b) be two non-empty open intervals of finite length. The function

u ∶ s ∈ (c, d) ↦ b − a
d − c (s − c) + a ∈ (a, b)

is a change of parameter.

Example 1.4.2. The function u ∶ s ∈ R↦ s3 ∈ R is bijective and smooth, but its inverse function,
t ∈ R↦ t1/3 ∈ R, is not smooth: the function u is therefore not a change of parameter.

If u ∶ (c, d) → (a, b) is a change of parameter and v ∶ (a, b) → (c, d) is its inverse function,
we have that v(u(s)) = s for all s ∈ (c, d), and differentiating we see that also v′(u(s)) ⋅ u′(t) = 1
for all s ∈ (c, d): this implies that u′(s) ≠ 0 for all s ∈ (c, d) and, since u′ is a continuous function,
we see that u′ is either strictly positive or strictly negative on the whole interval (c, d). In the first
case we say that u preserves the orientation and in the second case that it reverses the orientation
— it should be observed that in the first case the inverse function v also preserves the orientation
while in the second one it reverses it.

As we see, having a nowhere-zero derivative is a necessary condition for a smooth bijective
map to be a change of parameter. In fact, it is also sufficient:

13



{lemma:inv}
Lemma 1.4.3. A smooth bijective function u ∶ (c, d) → (a, b) is a change of parameter if and only if

its derivative u′ is nowhere zero on (c, d).

This is a special case of the Inverse Function Theorem. We will prove it, as the general theorem
found in calculus textbooks is considerably more complicated to obtain, even though this is really
just a result of calculus.

Proof. We have already noted that the condition of the lemma is necessary for u to be a change of
parameter, so we will only show here that it is also sufficient.

Let u ∶ (c, d) → (a, b) be a smooth bijective function with nowhere-zero derivative, and let
v ∶ (a, b) → (c, d) be its inverse function. As u′ is nowhere-zero and continuous, it is either
everywhere positive or everywhere negative. We will suppose that it is everywhere positive, leaving
the consideration of the other possibility to the responsibility of the reader.

As u′(s) > 0 for all s ∈ (c, d), the function u is strictly increasing, and this implies that
its inverse v is also strictly increasing. Indeed, let t1 and t2 are two elements of (a, b) such
that t1 < t2: if we had that v(t1) ≥ v(t2), then the fact that u is increasing would tell us that
t1 = u(v(t1)) ≥ u(v(t2)) = t2, and this is absurd.

Our first objective is to prove that

the function v is continuous.

Let t0 be an element of (a, b), and let us consider the set L ∶= {v(t) ∶ t ∈ (a, t0)}. This set is
obviously not empty, and since the function v is increasing the number v(t0) is a upper bound
for L: this implies that we can consider the number l ∶= sup L and that l ≤ v(t0). In fact, we have
that l = v(t0). To do this, let us suppose that, on the contrary, l < v(t0) and that therefore we can
choose a number s such that c < l < s < v(t0) < d. As the function v is surjective, there is then an
element t1 of (a, b) such that v(t1) = s and, since v is strictly increasing, we have that a < t1 < t0:
this is absurd, since in that case sup L = l < s = v(t1) ∈ L. This proves that l = v(t0), as we wanted.

We claim now that the limit

lim
t↗t0

v(t) (1.3) {eq:llim}{eq:llim}

exists and is equal to v(t0). To see this, let є be a positive number. As v(t0) is the supremum of the
set L, there exists an element in L strictly greater than v(t0)−є and therefore there is an element t2
in (a, t0) such that v(t0) − є < v(t2). Let δ be the number t0 − t2, which is positive and such that
(t0 − δ, t0) = (t2, t0) ⊆ (a, b). If t is any element of (t0 − δ, t0), then t2 = t0 − δ < t < t0 and, as v
is strictly increasing, also v(t0) − є < v(t2) < v(t) < v(t0): it follows from this that

−є < v(t) − v(t0) < 0 < є,

so that ∣v(t) − v(t0)∣ < є. This shows that the limit (1.4) exists and is equal to l , as we claimed.
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In a similar way we can show that the limit

lim
t↘t0

v(t) {eq:rlim}

exists and that its value is v(t0), so that the function v is continuous at t0. As this is true for
all elements t0 of the domain (a, b) of v, we can conclude, as we wanted, that the function v is
continuous.

Next, we will show that the inverse function v is smooth, so that u is a change of parameter.
Let t0 be an element of (a, b), let us put s0 ∶= v(t0), and let є be a positive number. The function u

is differentiable at s0, so the limit

lim
k→0

u(s0 + k) − u(s0)
k

exists and its value is u′(s0). As this is a non-zero number, this implies that also

lim
k→0

k

u(s0 + k) − u(s0)
= 1

u′(s0)
.

In particular, there is a positive number η such that whenever k is a number such that ∣k∣ < η and
s0 + k ∈ (c, d) we have

∣ k

u(s0 + k) − u(s0)
− 1

u′(s0)
∣ < є.

The function v is continuous at t0, so there is also a positive number δ such that for all h ∈ (−δ, δ)
we have t0 + h ∈ (a, b) and ∣v(t0 + h) − v(t0)∣ < η.

Let now h be any element of (−δ, δ) and let us put k ∶= v(t0 + h) − v(t0). The way we chose δ
implies that ∣k∣ < η, and the way we chose η, in turn, that

∣ k

u(s0 + k) − u(s0)
− 1

u′(s0)
∣ < є. (1.4) {eq:inv:1}{eq:inv:1}

As

u(s0 + k) − u(s0) = u(s0 + v(t0 + h) − v(t0)) − u(s0) = (t0 + h) − t0,

we have that

k

u(s0 + k) − u(s0)
= v(t0 + h) − v(t0)

h
,

and therefore the inequality (1.4) tells us that

∣v(t0 + h) − v(t0)
h

− 1
u′(s0)

∣ < є.
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All this shows that the limit

lim
h→0

v(t0 + h) − v(t0)
h

exists and has value 1/u′(s0), which is equal to 1/u′(v(t0)).
The conclusion of this is that the function v is differentiable on (a, b), and that for all t ∈ (a, b)

it has derivative

v
′(t) = 1

u′(v(t)) . (1.5) {eq:inv:2}{eq:inv:2}

We claim that, in fact, the function v is smooth. As u is smooth, the derivative u′ is continuous,
and we already saw that v is continuous, so the equality (1.4) tells us that v′ is continuous and
therefore that v is of class C1. Suppose now that l is a positive integer and that we know that v
is of class C l : as u is smooth, it follows from the equality (1.4) that v′ is of class C l and this that
v is of class C l+1. The smoothness of v thus follows by induction, and the proof of the lemma is
complete.

This lemma gives us an extremely convenient way to check whether a smooth bijection is a
change of parameter or not.

Example 1.4.4. The functions s ∈ (0, 1) ↦ s2 ∈ (0, 1) and s ∈ (−1, 0) ↦ s2 ∈ (0, 1) are changes of
parameter: the two functions are bijective and have nowhere-zero derivatives. The first of them
preserves the orientation while the second reverses it.

If γ ∶ (a, b) → R2 is a curve and u ∶ (c, d) → (b, d) then the composition

η ∶= γ ○ u ∶ s ∈ (c, d) ↦ γ(u(s)) ∈ R2

is also a curve, and we say that η is obtained from γ by reparametrizationreparametrization using the change of
parameter u. Since the composition of smooth functions is smooth, it is clear that the curve η is
smooth if the curve γ is smooth. On the other hand, if s0 ∈ (c, d) we have that

η
′(s0) = γ′(u(s0)) ⋅ u′(s0).

It follows from this that if γ is regular at u(s0) then η′ is regular at s0, because the number u′(s0) is
not zero, and in turn this implies that the curve η is regular when γ is regular. Putting everything
together, we have proved the following:

Lemma 1.4.5. A reparametrization of a regular smooth curve is a regular smooth curve.

If γ ∶ (a, b) → R2 is a curve in the plane and u ∶ (c, d) → (a, b) is a change of parameter,
then the trace of the reparametrization η ∶= γ ○ η ∶ (c, d) → R2 coincides with that of γ: this is
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a consequence of the bijectivity of the function u. Indeed, if p is a point in the trace of γ, then
there exists an element t of (a, b) such that p = γ(t), and since the function u is surjective there is
also an element s in (c, d) such that u(s) = t: we then have that p = γ(t) = γ(u(s)) = η(s) and
therefore that p belongs to the trace of η. Conversely, if q is a point in the trace of η there is an
element s of (c, d) such that q = η(s), and then q = η(s) = γ(u(s)) is clearly also in the trace of γ.

Exercise 1.4.6. Let us say that that two curves γ ∶ (a, b) → Rn and η ∶ (c, d) → Rn are equivalent
if there is a change of parameter u ∶ (c, d) → (a, b) such that η = γ ○ u and in that case let us write
γ R η. In this we obtain a relationR on the set of all curves in Rn. Show that it is an equivalence

relation on that set.

§1.5. Unit speed curves

We say that a smooth curve γ ∶ (a, b) → R2 has unit speedunit speed if ∥γ′(t)∥ = 1 for all t ∈ (a, b). As
we will see later, working with unit-speed curves is much more convenient than working with
arbitrary curves. Of course, not all curves have unit speed, but it is very useful to know that every
regular curve has a reparametrization which is unit speed.

{lemma:unit-reparam}

Lemma 1.5.1. Let γ ∶ (a, b) → R2 be a smooth curve in the plane that is regular. There is a change

of parameter u ∶ (c, d) → (a, b) such that the reparametrization η ∶= γ ○ u ∶ (c, d) → R2 has unit

speed.

Proof. Let us fix an element t0 in (a, b). The function

t ∈ (a, b) ↦ ∥γ′(t)∥ ∈ R

is continuous and, in fact, actually smooth, since γ is smooth and γ′(t) ≠ 0 for all t ∈ (a, b)
because we are supposing that γ is regular. In particular, we can consider the function

σ ∶ t ∈ (a, b) ↦ ∫
t

t0
∥γ′(ξ)∥dξ,

as the integral makes sense for all t in (a, b). This function σ is, according to the Fundamental

Theorem of Calculus, continuous and differentiable, and its derivative is

σ
′(t) = ∥γ′(t)∥

at all points t of (a, b). Since the curve γ is regular, this tells us that the derivative σ ′ is strictly
positive on (a, b) and therefore that the function σ is strictly increasing on that interval.
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We want to check now that the image of σ , the set

I ∶= {σ(t) ∶ t ∈ (a, b)},

is a (possibly infinite) interval of R. Since the set I is clearly non-empty, we can put c ∶= inf I
and d ∶= sup I, keeping in mind that c is either a real number or −∞, and that d is a real number
or +∞. It is clear that c ≤ d and, since the function σ is not constant, in fact c < d. We will show
that the image of σ is precisely the interval (c, d).

• Let t be an element of (a, b). There are then elements t1 and t2 in (a, b) such that
a < t1 < t < t2 < b, and the fact that σ is strictly increasing implies that

c = inf I ≤ σ(t1) < σ(t) < σ(t2) ≤ sup I = d .

We thus see that σ(t) ∈ (c, d), and therefore that the image of σ is contained in (c, d).
• Let now s be an element of (c, d). Since s > c = inf I, there exists an element x of I such that
x < s, and this means that there is an element t1 of (a, b) such that σ(t1) = x < s. Similarly,
since s < d = sup I, there exists a y ∈ I such that s < y, and thus there is an t2 in (a, b)
such that s < y = σ(t1). Now, since s ∈ [σ(t1), σ(t2)] and the function σ is continuous,
the Intermediate Value Theorem tells us that there is a t ∈ [t1, t2] such that σ(t) = s and,
therefore, that s belongs to the image of s.

Now we know that the image of the function σ is the interval (c, d), so we can view σ as a
function (a, b) → (c, d). We know it is injective, because it is strictly increasing, and with its new
codomain it is surjective, so it is bijective. Finally, since the derivative of σ is non-zero at all points
of (a, b) our Lemma 1.4.3 tells us that σ ∶ (a, b) → (c, d) is a change of parameter. Moreover, if
we let u ∶ (c, d) → (a, b) be the inverse function of σ , then u is also a change of parameter. As
σ(u(s)) = s for all s ∈ (c, d), we have that σ ′(u(s)) ⋅ u′(s) = 1 for all such s, so that

u
′(s) = 1

σ ′(u(s)) =
1

∥γ′(u(s))∥ . (1.6) {eq:rpu}{eq:rpu}

Let us now consider the curve η ∶= γ ○ u ∶ (c, d) → R2, which is a reparametrization of γ. As
we observed above, η is smooth and regular, because γ is. Additionally, if s is an element of (c, d)
we have that

∥η′(s)∥ = ∥γ′(u(s)) ⋅ u′(s)∥ = ∥γ′(u(s))∥ ⋅ ∥u′(s)∥ = ∥γ′(u(s))∥ ⋅ 1
∥γ′(u(s))∥ = 1,

because of the equality (1.5), and thus η is a unit speed curve. This proves the lemma.

Let us give a couple of examples in which we can carry out the procedure that we used to prove
this lemma.
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Example 1.5.2. Let p = (x0, y0) be a point in R2 and let v = (α, β) be a non-zero vector in R2.
The line through p with direction v can be parametrized with the curve

γ ∶ t ∈ R↦ p + tv ∈ R2.

It has speed ∥γ′(t)∥ = ∥v∥ for all t ∈ R: we thus see that γ is a unit-speed curve exactly when the
vector v is a unit vector. Let us follow the procedure we used in the proof of the lemma to find a
unit-speed reparametrization in the general case. Let us choose t0 = 0. The function σ ∶ R→ R is
given in this situation by

σ(t) = ∫
t

t0
∥γ′(τ)∥dτ = ∫

t

0
∥v∥dτ = t ∥v∥

for all t ∈ R. Its image is the whole line R and its inverse function is u ∶ s ∈ R ↦ s/∥v∥ ∈ R. The
unit-speed reparametrization constructed in the proof of the lemma for the curve γ is therefore

η ∶ s ∈ R↦ p + s ⋅ v

∥v∥ ∈ R
2.

Example 1.5.3. Let R be a positive number. The function

γ ∶ t ∈ R↦ (R cos t, R sin t) ∈ R2

is a parametrization of the circle centered at the origin of radius R. For each t ∈ R we have
that γ′(t) = (−R sin t, R cos t) and ∥γ′(t)∥ =

√
R2 sin2 t + R2 cos2 t = R, so it is a unit-speed

curve exactly when R = 1. In the general case the function σ that we constructed in the proof of
Lemma 1.5.1, taking t0 = 0, has

σ(t) = ∫
t

t0
∥γ′(τ)∥dτ = ∫

t

0
R dτ = Rt

for all t ∈ R. The function inverse to σ is thus r ∶ t ∈ R↦ t/R ∈ R and the unit-speed reparametriza-
tion that we obtain is the curve

η ∶ s ∈ R↦ (R cos
s

R
, R sin

s

R
) ∈ R2.

Very often, though, it is not possible to write down explicitly unit-speed reparametrizations of
curves, as the following example shows.

Example 1.5.4. Let a and b be two positive numbers such that b ≥ a. The function

γ ∶ t ∈ R↦ (a cos t, b sin t) ∈ R2

is a parametrization of the ellipse centered at the origin of semi-axes a and b. When the two
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semi-axes are equal this curve is a circle and in general we use the number

k ∶=
√

1 − a2

b2 ,

called the eccentricity of the ellipse, to measure how far the curve is from being a circle; clearly
we always have 0 ≤ k < 1, and k is 0 exactly when the curve is a circle. For each t ∈ R we
have γ′(t) = (−a sin t, b cos t) and ∥γ′(t)∥ =

√
a2 sin2 t + b2 cos2 t. In particular, ∥γ′(t)∥ is not a

constant function if a ≠ b, so γ is certainly not a unit-speed curve in that case. The function σ that
we constructed in the proof of Lemma 1.5.1, when we take t0 = 0, has

σ(t) = ∫
t

0
∥γ′(τ)∥dτ

= ∫
t

0

√
a2 sin2 τ + b2 cos2 τ dτ = ∫

t

0

√
a2 sin2 τ + b2(1 − sin2 τ)dτ

= ∫
t

0

√
b2 − (b2 − a2) sin2 τ dτ = b∫

t

0

√
1 − k2 sin2 τ dτ.

This last integral is called a incomplete elliptic integral of the second kind and cannot be expressed
in terms of elementary functions. The function inverse to σ is also of the same nature, so in practice
we are not able to work with the unit-speed reparametrization of this curve.

The Lemma 1.5.1 tells us that we can reparametrize any regular curve so that the result is a
unit-speed curve, and we can always do this in many ways. Indeed, if γ ∶ (a, b) → R2 is a curve
and u ∶ (c, d) → (a, b) is a change of parameter such that the curve γ ○ u is a unit-speed curve,
then for every real number z the function v ∶ s ∈ (c + z, d + z) ↦ u(s − z) ∈ (a, b) is also a
change of parameter such that the curve γ ○ v has unit speed, as the reader can immediately check.
The following lemma shows that, in fact, all unit-speed reparametrizations of γ that preserve the
orientation can be obtained from u in this way.

{lemma:two-params:1}

Lemma 1.5.5. Let γ ∶ (a, b) → R2 be a regular smooth curve in the plane. If u1 ∶ (c1, d1) → (a, b)
and u2 ∶ (c2, d2) → (a, b) are changes of parameter that preserve orientations such that the curves

η1 ∶= γ ○ u1 ∶ (c1, d1) → R2 and η2 ∶= γ ○ u2 ∶ (c2, d2) → R2 both have unit speed, then there exist a

number δ ∈ R such that

c2 = c1 + δ, d2 = d1 + δ, u1(s) = u2(s + δ) for all s ∈ (c1, d1). (1.7) {eq:rep:1}{eq:rep:1}

If c1 = −∞we have to interpret the first equality in (1.5.6) as saying that also c2 = −∞ and, similarly,
if d1 = +∞ then the second equality there means that also d2 = +∞.
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Proof. Let u1 ∶ (c1, d1) → (a, b) and u2 ∶ (c2, d2) → (a, b) be changes of parameter that preserve
the orientation and such that the curves η1 ∶= γ ○u1 ∶ (c1, d1) → R2 and η2 ∶= γ ○u2 ∶ (c2, d2) → R2

both have unit speed. The function v ∶= u−12 ○ u1 ∶ (c1, d1) → (c2, u2) is also a change of parameter
and we have that η1 = η2 ○ v. If s ∈ (c1, d1), then

1 = ∣η′1(s)∣ = ∣η′2(v(s)) ⋅ v′(s)∣ = ∣η′2(v(s))∣ ⋅ ∣v′(s)∣ = ∣v′(s)∣ (1.8) {eq:spt}{eq:spt}

because both η1 and η2 are unit-speed curves. Since the functions u1 and u2 are strictly increasing,
so is v, and therefore its derivative is non-negative: we can then conclude from (1.5) that v′(s) = 1
for all s ∈ (c1, d1). We see that there is a number δ such that v(s) = s + δ for all s ∈ (c1, d1). Since v
is a bijection (c1, d1) → (c2, d2), clearly we have that c1 + δ = c2 and that d1 + δ = d2. Moreover,
since u−12 (u1(s)) = v(s) = s + δ for all s ∈ (c1, d1), also u1(s) = u2(s + δ) for all such s. This proves
the lemma.

Lemma 1.5.5 describes the relationship there is between any two unit-speed reparametrizations
of a curve when the two preserve orientations. The following exercise describes what happens in
the more general situation in which this last condition is not satisfied.

Exercise 1.5.6. Let γ ∶ (a, b) → R2 be a smooth parametrized curve in the plane that is regular.
If u1 ∶ (c1, d1) → (a, b) and u2 ∶ (c2, d2) → (a, b) are changes of parameter such that the curves
η1 ∶= γ ○ u1 ∶ (c1, d1) → R2 and η2 ∶= γ ○ u2 ∶ (c2, d2) → R2 both have unit speed, then there exist
numbers δ ∈ R and є ∈ {1,−1} such that

c2 = c1 + δ, d2 = d1 + δ, u1(s) = u2(єs + δ) for all s ∈ (c1, d1), (1.9) {eq:rep:1}{eq:rep:1}

and ∣d1 − c1∣ and ∣d2 − c2∣ both coincide with the length of γ.

§1.6. The length of curves

Let γ ∶ (a, b) → R2 be a regular smooth curve in the plane and let t0 be an element of (a, b).
During the proof of Lemma 1.5.1 we showed that there is a smooth function σ ∶ (a, b) → R that
on each t ∈ (a, b) takes the value

σ(t) = ∫
t

t0
∥γ′(τ)∥dτ.
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We call σ the arc-length function of γ. If t1 and t2 are two elements of (a, b) such that t1 < t2, then
we have that

∫
t2

t1
∥γ′(τ)∥dτ = σ(t2) − σ(t1).

The value of this integral is the length of the segment of γ determined by the interval [t1, t2]. In
particular, if the curve γ is a unit-speed curve, then ∥γ′(t)∥ = 1 for all t ∈ (a, b), and then the
length of the segment of γ determined by the interval [t1, t2] is simply

∫
t2

t1
∥γ′(τ)∥dτ = ∫

t2

t1
dτ = t2 − t1.

A key fact is that the length of segments of a curve is invariant under reparametrizations of
the curve, in the following precise sense:

Lemma 1.6.1. Let γ ∶ (a, b) → R2 be a regular smooth curve, and let t1 and t2 be two elements

of (a, b) such that t1 < t2. If u ∶ (c, d) → (a, b) is a change of parameter that preserves the

orientation, η ∶= γ ○ u ∶ (c, d) → R2 is the reparametrization of γ corresponding to u, and s1 and s2
are the elements of (c, d) such that u(s1) = t1 and u(s2) = t1, then

∫
t2

t1
∥γ′(τ)∥dτ = ∫

s2

s1
∥η′(ξ)∥dξ.

In words, this tells us that the length of the segment of γ determined by the interval [t1, t2]
coincides with the length of the segment of η determined by the interval [s1, s2].

Proof. Let u ∶ (c, d) → (a, b) be a change of parameter that preserves the orientation, let η ∶= γ ○u,
and let s1 and s2 be the elements of (c, d) such that u(s1) = t1 and u(s2) = t1. We have that
η′(s) = γ′(u(s)) ⋅u′(s) for all s ∈ (c, d), so that ∥η′(s)∥ = ∥γ′(u(s))∥ ⋅u′(s), since the function u′

is positive on (c, d). Changing variables in the integral, then, we see that

∫
s2

s1
∥η′(ξ)∥dξ = ∫

s2

s1
∥γ′(u(ξ))∥ ⋅ u′(ξ)dξ = ∫

t2

t1
∥γ′(τ)∥dτ,

and this is the claim of the lemma.

A useful consequence of Lemma 1.5.5 is the following:

Corollary 1.6.2. Let γ ∶ (a, b) → R2 be a regular curve in the plane. There is an element L of

the set (0,+∞] such that whenever u ∶ (c, d) → (a, b) is a change of parameter that preserves

orientation such that the curve γ ○ u ∶ (c, d) → R2 has unit speed we have d − c = L.

We call L the length of the parametrized curve γ. When computing the difference d − c that
appears in this statement we follow the usual conventions for dealing with infinities: if d is +∞ or
c is −∞, then the value of the difference is +∞.
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Proof. If u1 ∶ (c1, d1) → (a, b) and u2 ∶ (c2, d2) → (a, b) are changes of parameter that preserve
orientations such that the curves η1 ∶= γ ○ u1 ∶ (c1, d1) → R2 and η2 ∶= γ ○ u2 ∶ (c2, d2) → R2 both
have unit speed, the lemma tells us that there is a number δ such that c2 = c1 + δ and d2 = d1 + δ,
and therefore d1 − c1 = d2 − c2. The claim of the corollary follows immediately from this.

The reader should notice the difference between the definition of the length of a segment
of a curve γ ∶ (a, b) → R2 and the length of the whole curve. This is due to the fact that under
our current definitions we insist that curves be defined on open intervals. The two notions are
connected, though — this is the point of the following exercise.

Exercise 1.6.3. Let γ ∶ (a, b) → R2 be a regular curve. Show that the length of γ coincides with the
value of the possibly improper integral

∫
b

a
∥γ′(τ)∥dτ.

This integral can be improper because either the interval (a, b) is not bounded or because the
function t ∈ (a, b) ↦ ∥γ′(τ)∥ ∈ R is not bounded — in any case, the integral always converges,
because its integrand is a positive function.

§1.7. The curvature of plane curves

Let γ ∶ (a, b) → R2 be a unit-speed curve in the plane. At each t ∈ (a, b) the vector γ′(t)
determines the direction of tangent line to γ at the point γ(t), and therefore the vector γ′′(t) gives
us information about how the direction of that line changes as we move along the curve. We will
define an invariant of the curve, its curvature, that measures this in a very concrete way.

Let x, y ∶ (a, b) → R be the components of γ, so that γ(t) = (x(t), y(t)) for all t ∈ (a, b). Of
course, then γ′(t) = (x′(t), y′(t)) for all t ∈ (a, b) and, since the curve has unit speed, this is a
vector of norm 1. For each t ∈ (a, b) we consider the vector

n(t) ∶= (−y′(t), x′(t))

that is obtained from γ′(t) by rotating it 90○ in the positive direction.

γ

γ(t)
γ′(t)

n(t)
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The function n ∶ (a, b) → R2 that we obtain in this way is the normal field of γ.
The vectors γ′(t) and n(t) are mutually orthogonal, so that (γ′(t),n(t)) is a positive2 ortho-

normal basis of R2 and, in particular, n(t) spans the subspace of R2 orthogonal to γ′(t). For all
t ∈ (a, b) we have that

1 = ⟨γ′(t), γ′(t)⟩

because γ is a unit-speed curve, and therefore we have that

0 = d
dt
⟨γ′(t), γ′(t)⟩ = 2⟨γ′′(t), γ′(t)⟩.

This tells us that the vector γ′′(t) is also orthogonal to γ′(t): there exists, therefore, a unique scalar
κ(t) ∈ R such that

γ
′′(t) = κ(t) ⋅ n(t).

We obtain in this way a function κ ∶ (a, b) → R, uniquely determined by γ, which we call the
signed curvaturesigned curvature of γ. Since n(t) is a unit vector, for all t ∈ (a, b) we have that

⟨γ′′(t),n(t)⟩ = ⟨κ(t) ⋅ n(t),n(t)⟩ = κ(t) ⋅ ⟨n(t),n(t)⟩ = κ(t).

As both γ′′ and n are smooth functions, this implies that the signed curvature κ is also a smooth
function on the interval (a, b). Let us record the above formula for the curvature as a lemma.

Lemma 1.7.1. Let γ ∶ (a, b) → R2 be a unit-speed plane curve and let n ∶ (a, b) → R2 be the

corresponding normal field. For each t ∈ (a, b) the curvature of γ at t is

κ(t) = ⟨γ′′(t),n(t)⟩.

The intention of the definition of the signed curvature of a curve is that it gives us information
about how the curve curves. Let us see a couple of examples of this.

Example 1.7.2. Let p = (x0, y0) ∈ R2 be a point, let v = (α, β) ∈ R2 be a unit vector, and consider
the curve

γ ∶ t ∈ R↦ p + tv ∈ R2,

which is a unit-speed parametrization of the line through p that has direction v. Of course, we
have that γ(t) = (x0 + tα, y0 + tβ) for all t ∈ R, so

γ
′(t) = (α, β), n(t) = (−β, α)

2An orthonormal basis (v ,w) of R2 is positive if the 2 × 2 matrix that has v and w as columns, in that order, has
positive determinant.
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for all t ∈ R. Since γ′′(t) = 0 for all t ∈ R we have that

κ(t) = ⟨γ′′(t),n(t)⟩ = ⟨0,n(t)⟩ = 0.

We thus see that the curvature of our line is identically zero. This does make sense, as a line clearly
does not curve at all.

Example 1.7.3. Let now r be a positive real number and let us consider the curve

γ ∶ t ∈ R↦ (R cos
t

R
, R sin

t

R
) ∈ R2,

which is a unit-speed parametrization of the circle of radius R centered at the origin. For all t ∈ R
we have that

γ
′(t) = (− sin

t

R
, cos

t

R
) , n(t) = (− cos

t

R
,− sin

t

R
) ,

and

γ
′′(t) = (− 1

R
cos

t

R
,− 1

R
sin

t

R
) ,

so that

κ(t) = ⟨γ′′(t),n(t)⟩ = 1
R
cos2 t

R
+ 1

R
sin2 t

R
= 1

R
.

The curvature of the circle is therefore constant — this makes sense, since the circle looks exactly
the same at all its points — and takes the value 1/R. If the circle has a small radius, then the
curvature is large, and conversely: this is consistent with the idea that the curvature measures how
fast the curve changes direction.

The signed curvature of a curve is, by its very definition, a real number that can be positive, zero
or negative. We will now describe a simple interpretation of its sign. Suppose that γ ∶ (a, b) → R2

is a unit-speed plane curve, let x, y ∶ (a, b) → R be its components, let n ∶ (a, b) → R2 be the
corresponding normal field, and let us fix a point t0 in (a, b). As we know, the tangent line L(t0)
to γ at t0 has equation

−y′(t0) ⋅ (x − x(t0)) + x′(t0) ⋅ (y − y(t0)) = 0.

This line determines two closed half-planes: the left closed half-plane H+(t0), which is the one
that contains the point γ(t0) + n(t0), and the right closed half-plane H−(t0), which is the other
one. We have

H+(t0) ∶= {(x , y) ∈ R2 ∶ −y′(t0) ⋅ (x − x(t0)) + x′(t0) ⋅ (y − y(t0)) ≥ 0}
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and

H−(t0) ∶= {(x , y) ∈ R2 ∶ −y′(t0) ⋅ (x − x(t0)) + x′(t0) ⋅ (y − y(t0)) ≤ 0}.

We also consider the corresponding open half-planes,

H
0
+(t0) ∶= {(x , y) ∈ R2 ∶ −y′(t0) ⋅ (x − x(t0)) + x′(t0) ⋅ (y − y(t0)) > 0}

and

H
0
−(t0) ∶= {(x , y) ∈ R2 ∶ −y′(t0) ⋅ (x − x(t0)) + x′(t0) ⋅ (y − y(t0)) < 0}.

The following picture hopefully helps in visualizing these two half-planes.

L(t0)

γ′(t0)
n(t0)

γ(t0)

H+(t0)

H−(t0)

The sign of the signed curvature tells us the position of the curve with respect to these half-planes,
at least when it is non-zero:

Proposition 1.7.4. Let γ ∶ (a, b) → R2 be a unit-speed curve in the plane and let t0 be a point

in (a, b).
(i) If κ(t0) > 0, then there exists a positive number є such that (t0 − є, t0 + є) ⊆ (a, b) and

γ(t) ∈ H0
+(t0) for all t ∈ (t0 − є, t0 + є) ∖ {t0}.

(ii) If instead κ(t0) < 0, then there exists a positive number є such that (t0 − є, t0 + є) ⊆ (a, b)
and γ(t) ∈ H0

−(t0) for all t ∈ (t0 − є, t0 + є) ∖ {t0}.

This proposition tells us that if the curvature of γ at a point t0 is positive, then a little segment
of the curve around t0 is completely contained in the left open half-plane H+(t0), for example.
We have illustrated the claim of this proposition in Figure 1.3 on page 28.

Proof. Let x, y ∶ (a, b) → R be the components of γ and let n ∶ (a, b) → R2 be the normal field
of γ. We consider the function

h ∶ p ∈ R2 ↦ ⟨n(t0), p − γ(t0)⟩ ∈ R,

which is such that H+(t0) = {p ∈ R2 ∶ h(p) ≥ 0} and H−(t0) = {p ∈ R2 ∶ h(p) ≤ 0}. The
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derivative of the composition h ○ γ ∶ (a, b) → R is

(h ○ γ)′(t) = d
dt
⟨n(t0), γ(t) − γ(t0)⟩ = ⟨n(t0), γ′(t)⟩

and, in particular, we have that

(h ○ γ)′(t0) = ⟨n(t0), γ′(t0)⟩ = 0.

On the other hand, the second derivative of that composition is

(h ○ γ)′′(t) = d2

dt2 ⟨n(t0), γ(t) − γ(t0)⟩ = ⟨n(t0), γ
′′(t)⟩

and its value at t0 is thus

(h ○ γ)′′(t0) = ⟨n(t0), γ′′(t0)⟩ = κ(t0).

Suppose now that γ has positive curvature at t0, that is, that κ(t0) > 0. In that case we have that
h ○ γ has (h ○ γ)′(t0) = 0 and (h ○ γ)′′(t0) > 0, and we know from calculus that it follows from
this that h ○ γ has a strict local minimum at t0. This means that there exists a positive number є
such that (t0 − є, t0 + є) is contained in (a, b) and

h(γ(t)) = (h ○ γ)(t) > (h ○ γ)(t0) = 0 for all t ∈ (t0 − є, t0 + є) ∖ {t0},

and this tells us that γ(t) is in the left open half-plane H0
+(t0) for all such t.

Suppose next that the curve γ has negative curvature at t0. The composition h ○ γ then has
(h ○ γ)′(t0) = 0 and (h ○ γ)′′(t0) < 0, and this tells us that h ○ γ has a strict local maximum at t0:
there exists a positive number є such that (t0 − є, t0 + є) is contained in (a, b) and

h(γ(t)) = (h ○ γ)(t) < (h ○ γ)(t0) = 0 for all t ∈ (t0 − є, t0 + є) ∖ {t0},

so that γ(t) is in the right open half-plane H0
+(t0) for all such t. This proves the proposition.

At a point where the curvature vanishes it can happen that the conclusion of either of the two
parts of the proposition holds, or that neither of them holds, so we cannot say anything useful in
this respect.

Example 1.7.5. Let us consider the curve

γ ∶ t ∈ R↦ (t, t
3) ∈ R2

at the point 0. The tangent line L there is clearly the horizontal axis, and there is no open interval
in R containing 0 that is mapped by γ into one of the two half-planes into which L divides the
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γ

γ(t0)

γ′(t0)

n(t0)

κ(t0) > 0

γ

γ(t0)

γ′(t0)

n(t0)

κ(t0) < 0
{fig:sign}

Figure 1.3. A geometric interpretation for the sign of the curvature of a plane curve.

plane. According to the proposition we have just proved, the curvature of γ at 0 must therefore be 0
— notice that this is not a unit-speed curve, so to compute its curvature we need Proposition 1.7.6
below that we are now going to prove.

Our definition of signed curvature applies to unit-speed curves. In principle, if we have any
regular curve we can find one of its unit speed reparametrizations and use that to compute its
curvature, but this is not really useful in practice: finding that reparametrization can be unfeasible.
Having a way to compute curvatures for arbitrary curves is therefore be useful, and that is what
the following proposition provides.

{prop:kappa:nus}

Proposition 1.7.6. Let γ ∶ (a, b) → R2 be a regular curve in the plane, and let x, y ∶ (a, b) → R2 be

its components. For all t ∈ (a, b), the signed curvature of γ at t is

κ(t) =
∣x
′(t) x′′(t)
y′(t) y′′(t)∣

∣γ′(t)∣3 .

The precise meaning of this statement is the following: if u ∶ (c, d) → (a, b) is a change of
parameter such that η ∶= γ ○ u is a unit speed curve and s ∈ (c, d) is the point such that u(s) = t,
then the curvature of η at the point s is given by the formula appearing on the right of the equality
in the proposition.

Proof. Let u ∶ (c, d) → (a, b) be an increasing change of parameter such that the composition
η ∶= γ ○ u ∶ (c, d) → R2 is a unit-speed curve, let t0 be a point in (a, b) and let s0 be the unique
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point in (c, d) such that u(s0) = t0. We have

η
′(s0) = γ′(u(s0)) ⋅ u′(s0) = γ′(t0) ⋅ u′(s0),

η
′′(s0) = γ′′(u(s0)) ⋅ u′(s0)2 + γ′(u(s0)) ⋅ u′′(s0) = γ′′(t0) ⋅ u′(s0)2 + γ′(t0) ⋅ u′′(s0)

and the unit normal vector to η at s0 is thus

n(s0) = (−y′(t0)u′(s0), x(t0)u′(s0)).

The curvature of η at u0 is

⟨η′′(s0),n(s0)⟩ = ⟨γ′′(t0) ⋅ u′(s0)2 + γ′(t0) ⋅ u′′(s0),n(s0)⟩
= ⟨γ′′(t0) ⋅ u′(t0)2,n(u0)⟩

because the vector n(s0) is orthogonal to γ′(t0), and this is

= −x′′(t0)y′(t0)u′(t0)3 + y′′(t0)x′(t0)u′(t0)3

= u
′(t0)3 ⋅ ∣

x′(t0) x′′(t0)
y′(t0) y′′(t0)

∣ . (1.10) {eq:cnu}{eq:cnu}

Finally, since η is a unit-speed curve, we have that

1 = ∥η′(u0)∥ = ∥γ′(r(u0)) ⋅ r′(u0)∥ = ∥γ′(t0)∥ ⋅ ∣u′(u0)∣

Since the function u is increasing, we have that u′(s0) > 0 and this equality tells us that
u′(s0) = ∥γ′(t0)∥−1. Using this in (1.7) gives us the formula that appears in the proposition.

Using this proposition we can, for example, compute the curvature of an ellipse.

Example 1.7.7. Let a and b be two positive real numbers. The curve

γ ∶ t ∈ R↦ (a cos t, b sin t) ∈ R2

traces an ellipse centered at the origin whose semi-axes are a and b. For all t ∈ R we have that

γ
′(t) = (−a sin t, b cos t)

so that ∥γ′(t)∥ =
√
a2 sin2 t + b2 cos2 t. We thus see that this is not a unit-speed curve in general.

We also have that

γ
′′(t) = (−a cos t,−b sin t)
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so according to the proposition the signed curvature function of γ is

κ(t) =
∣−a sin t −a cos t

b cos t −b sin t
∣

(a2 sin2 t + b2 cos2 t)3/2
= ab

(a2 sin2 t + b2 cos2 t)3/2
.

For example, if we take a = 2 and b = 1, then the trace of our curve and the graph of its curvature
are as follows:

-2 -1 1 2
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An important observation that we can make about the formula for the curvature of a not
necessarily unit-speed curve provided by Proposition 1.7.6 is that it shows that curvature is a
geometric invariant of curves in the precise sense that it does not depend on the way the curve is
parametrizes. The following exercise makes this precise.

Exercise 1.7.8. Let γ ∶ (a, b) → R2 be a regular curve in the plane, let x, y ∶ (a, b) → R2 be its
components. Let us consider a change of parameter u ∶ (c, d) → (a, b), and write x̄ ∶= x ○ u,
ȳ ∶= y ○ u ∶ (c, d) → R for the components of the reparametrization η ∶= γ ○ u ∶ (c, d) → R2 of γ.
Show that if s is an element of (c, d) and t ∶= u(s), then we have that

∣x
′(t) x′′(t)
y′(t) y′′(t)∣

∣γ′(t)∣3 =
∣x̄
′(s) x̄′′(s)
ȳ′(s) ȳ′′(s)∣

∣η′(s)∣3 .

§1.8. Angle functions and the curvature

There is a useful interpretation of the signed curvature of a curve in terms of angles that we
will now describe. Let us suppose that γ ∶ (a, b) → R2 is a regular curve. If t is a point
in (a, b), then the tangent vector t(t) is a unit vector and there exists a real number θ(t) such
that t(t) = (cos θ(t), sin θ(t)). In fact, there are many choices for that number, since for all k ∈ Z
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we have that

(cos θ(t), sin θ(t)) = (cos(θ(t) + 2kπ), sin(θ(t) + 2kπ))

In any case, we see that there exist functions θ ∶ (a, b) → R such that t(t) = (cos θ(t), sin θ(t))
for all t ∈ (a, b), and that, in fact, there exist many such functions. The following proposition
asserts that we can even find such a function that is smooth.

{prop:angle-function}

Proposition 1.8.1. Let γ ∶ (a, b) → R2 be a regular curve in the plane.

(i) There is a smooth function θ ∶ (a, b) → R such that

t(t) = (cos θ(t), sin θ(t)) (1.11) {eq:theta}{eq:theta}

for all t ∈ (a, b).
(ii) If θ, θ̄ ∶ (a, b) → R are two continuous functions such that t(t) = (cos θ(t), sin θ(t)) and

t(t) = (cos θ̄(t), sin θ̄(t)) for all t ∈ (a, b), then there is an integer k ∈ Z such that

θ(t) − θ̄(t) = 2kπ

for all t ∈ (a, b).

We call a function θ as in the part (i) of this proposition an angle functionangle function for the curve γ.

Proof. (i) Let us suppose first that γ is a unit-speed curve, let t0 be an arbitrary point in (a, b),
and let θ0 ∈ R be such that

γ
′(t0) = (cos θ0, sin θ0). (1.12) {eq:theta:a}{eq:theta:a}

Notice that there is such a θ0 because γ′(t0) is a unit vector. Let x, y ∶ (a, b) → R be the
components of γ. Since γ is a unit-speed curve, we have that x′(t)2 + y′(t)2 = 1 for all t ∈ (a, b),
and therefore that

x
′(t) ⋅ x′′(t) + y′(t) ⋅ y′′(t) = 1

2
d
dt
(x′(t)2 + y′(t)2) = 0 (1.13) {eq:theta:0}{eq:theta:0}

for all such t. We will use this relation later.
Let us now consider the function θ ∶ (a, b) → R that on each t ∈ (a, b) takes the value

θ(t) = θ0 + ∫
t

t0
(x′(τ) ⋅ y′′(τ) − x′′(τ) ⋅ y′(τ))dτ.

This makes sense: the integrand

τ ∈ (a, b) ↦ x
′(τ) ⋅ y′′(τ) − x′′(τ) ⋅ y′(τ) ∈ R

is a smooth function because x and y are smooth functions on (a, b), so the integral exists for
each t ∈ (a, b).
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According to the Fundamental Theorem of Calculus, the function θ is differentiable and its
derivative at each t ∈ (a, b) is

θ
′(t) = x′(t) ⋅ y′′(t) − x′′(t) ⋅ y′(t). (1.14) {eq:theta:1}{eq:theta:1}

In particular, this shows that the function θ is smooth, since x and y are smooth. On the other
hand, it is clear that θ(t0) = θ0. We want to check next that the equality ((i)) holds.

Let us consider the two functions X, Y ∶ (a, b) → R that for all t ∈ (a, b) have

X(t) ∶= x′(t) ⋅ cos θ(t) + y′(t) ⋅ sin θ(t),
Y(t) ∶= x′(t) ⋅ sin θ(t) − y′(t) ⋅ cos θ(t).

We have that

X
′(t)
= x′′(t) ⋅ cos θ(t) − x′(t) ⋅ θ′(t) ⋅ sin θ(t) + y′′(t) ⋅ sin θ(t) + y′(t) ⋅ θ′(t) ⋅ cos θ(t)
= (x′′(t) + y′(t) ⋅ θ′(t))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⋅ cos θ(t) + (y′′(t) − x′(t) ⋅ θ′(t))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⋅ sin θ(t)

and that

Y
′(t)
= x′′(t) ⋅ sin θ(t) + x′(t) ⋅ θ′(t) ⋅ cos θ(t) − y′′(t) ⋅ cos θ(t) + y′(t) ⋅ θ′(t) sin θ(t)
= −(y′′(t) − x′(t) ⋅ θ′(t))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⋅ cos θ(t) + (x′′(t) + y′(t) ⋅ θ′(t))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

⋅ sin θ(t).

The expressions we marked with braces vanish. Indeed, let t be an element of (a, b). Using the
expression (1.8) for θ′(t) we see that

x
′′(t) + y′(t) ⋅ θ′(t) = x′′(t) + y′(t) ⋅ (x′(t) ⋅ y′′(t) − x′′(t) ⋅ y′(t))

= x′′(t) ⋅ (1 − y′(t)2) + x′(t) ⋅ y′(t) ⋅ y′′(t)

and, since x′(t)2 + y′(t)2 = 1, this is

= x′′(t) ⋅ x′(t)2 + x′(t) ⋅ y′(t) ⋅ y′′(t)
= (x′(t) ⋅ x′′(t) + y′(t) ⋅ y′′(t)) ⋅ x′(t)
= 0, {eq:theta:2:1}

because of the equation (1.8). Similarly, using the expression (1.8) and later (1.8) again we see that

y
′′(t) − x′(t) ⋅ θ′(t) = y′′(t) − x′(t) ⋅ (x′(t) ⋅ y′′(t) − x′′(t) ⋅ y′(t))

= y′′(t) ⋅ (1 − x′(t)2) + y′(t) ⋅ x′(t) ⋅ x′′(t)
= y′′(t) ⋅ y′(t)2 + y′(t) ⋅ x′(t) ⋅ x′′(t)
= (y′′(t) ⋅ y′(t) + x′(t) ⋅ x′′(t)) ⋅ y′(t)
= 0. {eq:theta:2:2}
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It follows from this that X′(t) = 0 and Y ′(t) = 0 for all t ∈ (a, b), so that the functions X and Y

are constant. Moreover, (1.8) implies that

X(t0) = x′(t0) ⋅ cos θ(t0) + y′(t0) ⋅ sin θ(t0) = x′(t0) ⋅ x′(t0) + y′(t0) ⋅ y′(t0) = 1

and that

Y(t0) = x′(t0) ⋅ sin θ(t0) − y′(t0) ⋅ cos θ(t0) = x′(t0) ⋅ sin θ0 − y′(t0) ⋅ cos θ0 = 0,

so that functions X and Y have values 0 and 1, respectively. For all t ∈ (a, b) we then have that

x
′(t) ⋅ cos θ(t) + y′(t) ⋅ sin θ(t) = 1, x

′(t) ⋅ sin θ(t) − y′(t) ⋅ cos θ(t) = 0,

and these two equalities imply that for all such t we also have

x
′(t) = cos θ(t), y

′(t) = sin θ(t).

This proves that θ is a smooth angle function for the curve γ, as we wanted.
All this we did assuming that the curve γ ∶ (a, b) → R2 is a unit-speed curve. Let us now remove

that extra hypothesis. As we know, there is, in any case, a change of parameters u ∶ (c, d) → (a, b)
such that η ∶= γ ○ u ∶ (c, d) → R2 is a unit-speed parametrized curve and u′(t) = 1/∥γ′(t)∥ for all
t ∈ (a, b). What we have already done implies that there is a smooth angle function θη ∶ (c, d) → R
for the curve η, so that

γ′(u(s))
∥γ′(u(s))∥ = γ

′(u(s)) ⋅ u′(s) = η′(s) = (cos θη(s), sin θ(s))

for all s ∈ (c, d). If σ ∶ (a, b) → (c, d) is the function inverse to u, then it follows immediately
from this that for all t ∈ (a, b) we have

t(t) = γ′(t)
∥γ′(t)∥ = (cos θη(σ(t)), sin θ(σ(t))),

and thus that the function θ ○ σ ∶ (a, b) → R is a smooth angle function for γ.

(ii) Let θ, θ̄ ∶ (a, b) → R be two continuous functions such that γ′(t) = (cos θ(t), sin θ(t))
and γ′(t) = (cos θ̄(t), sin θ̄(t)) for all t ∈ (a, b). If t is an element of (a, b), we thus have that
cos θ(t) = cos θ̄(t) and sin θ(t) = sin θ̄(t), and this implies, as we know, that there is an integer
k(t) ∈ Z such that

θ(t) − θ̄(t) = 2πk(t). (1.15) {eq:thth}{eq:thth}

We obtain in this way a function k ∶ R → Z, and since θ and θ̄ are continuous functions, the
equality (1.8) implies that the function k is itself continuous. As k only takes integer values, it is in
fact constant. The claim (ii) of the proposition follows from this at once.
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Once that we have angle functions at hand it is very easy to establish their connection with
curvature:

{prop:angle-kappa}

Proposition 1.8.2. Let γ ∶ (a, b) → R2 be a unit-speed plane curve, let θ ∶ (a, b) → R be an angle

function for γ, and let κ ∶ (a, b) → R be the signed curvature function of γ. For all t ∈ (a, b) we
have that

κ(t) = θ
′(t).

In the proof of Proposition 1.8.1 we explicitly constructed an angle function for a unit-speed
curve and showed that its derivative is given by the formula in (1.8): in view of Proposition 1.7.6
we see that this proposition is true for that angle function, and then using the second part of
Proposition 1.8.1 it is easy to conclude that in fact the proposition is true for all angle functions.
We will prove Proposition 1.8.2 directly, without involving an angle function constructed in any
specific way.

Proof. Since θ is an angle function for γ, we have

n(t) = (− sin θ(t), cos θ(t)), γ
′′(t) = (−θ

′(t) ⋅ sin θ(t), θ
′(t) ⋅ cos θ(t))

for all t ∈ (a, b), and therefore κ(t) = ⟨γ′′(t),n(t)⟩ = θ′(t).

Using angle functions we can construct an important invariant of closed curves.

Proposition 1.8.3. Let γ ∶ [a, b] → R2 be a closed curve, and let γ̃ ∶ R→ R2 be the periodic extension

of γ̃ of period d ∶= b− a. There is an integer i(γ) such that for every smooth angle function θ ∶ R→ R
for γ̃ and every real number t0 we have

i(γ) = θ(t0 + d) − θ(t0)
2π

.

We call the integer i(γ) described here the rotation index of the curve γ.

Proof. Let t0 be a real number, and let t̃ ∶ R → R and θ ∶ R → R be the tangent vector field and
a smooth angle function for γ̃, so that t̃(t) = (cos θ(t), sin θ(t)) for all t ∈ R. As γ̃ is a periodic
function of period d, we have that t(t0 + d) = t(t0), and therefore we have

cos θ(t0 + d) = cos θ(t0), sin θ(t0 + d) = sin θ(t0),

and this implies that θ(t0 + d) and θ(t00) are numbers that differ by an integer multiple of 2π
and therefore that the quotient

θ(t0 + d) − θ(t0)
2π

(1.16) {eq:af:1}{eq:af:1}
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is an integer. We want to show that this integer depends only on the curve γ and not on the way
the number t0 and the smooth angle function θ were chosen.

Let θ1 ∶ R→ R be another smooth angle function for the parametrized curve γ̃. According to
the second part of Proposition 1.8.1, there is an integer k ∈ Z such that θ1(t) − θ(t) = 2kπ for all
t ∈ R, and it follows immediately from this that

θ1(t0 + d) − θ1(t0)
2π

= θ(t0 + d) − θ(t0)
2π

.

This allows us to conclude that the integer (1.8) does not really depend on the way the smooth
angle function θ is chosen.

Finally, what we have done implies that the function

t ∈ R↦ θ(t + d) − θ(t)
2π

∈ R,

which is smooth, takes integer values: as the set Z is discrete, we can therefore conclude that this
function is actually constant, and this means precisely that the value of the quotient (1.8) does not
really depend on the way the number t0 is chosen. This proves the proposition.

Using the relation between angle functions and curvature that we found earlier, we can prove
the following nice result:

Proposition 1.8.4. Let γ ∶ [a, b] → R2 be a closed curve, and let κ ∶ [a, b] → R be the corresponding

curvature function. The rotation index of γ is

i(γ) = 1
2π ∫

b

a
κ(τ)dτ.

The integral that appears in the right hand side of this equality is usually called the total
curvature of the curve γ.

Proof. Let us suppose first that the curve γ is a unit-speed curve. We know that θ′(t) = κ(t) for
all t ∈ [a, b], so that according to the Fundamental Theorem of Calculus we have that

∫
b

a
κ(τ)dτ = θ(b) − θ(a) = 2π ⋅ i(γ),

and the equality in the proposition follows immediately from this.

Let now γ ∶ [a, b] → R2 be a closed parametrized curve which is not necessarily unit-speed.
As we know, if L is the length of γ, there is then a change of parameters u ∶ [0, L] → [a, b] such
that the curve η ∶= γ ○ u is a unit-speed parametrized curve.

35



§1.9. Euclidean motions

A function Rn → Rn is called an Euclidean motionEuclidean motion or an isometry if it preserves distances, that is,
if whenever p and q are two points in Rn we have that

d( f (p), f (q)) = d(p, q).

The simplest Euclideanmotions in the planeR2 are those described in the following three examples.

{ex:e2:trans}

Example 1.9.1. Let p = (x0, y0) be point in R2. The function

τp ∶ (x , y) ∈ R2 ↦ (x + x0, y + y0) ∈ R2

is an Euclidean motion that we call the translation by p. Indeed, if (x , y) and (u, v) are two points
in R2 we have that

d(τp(x , y), τp(u, v))
2 = d((x + x0, y + y0), (u + x0, v + y0))

2

= ((x + x0) − (u + x0))
2 + ((y + y0) − (v + y0))

2

= (x − u)2 + (y − v)2

= d((x , y), (u, v))2.

{ex:e2:rot}
Example 1.9.2. Let θ be a real number. The function

ρθ ∶ (x , y) ∈ R2 ↦ (x cos θ − y sin θ , x sin θ + y cos θ) ∈ R2

is an Euclidean motion that we call the rotation of angle θ centered at the origin. If (x , y) and
(u, v) are two points in R2, then

d(ρθ(x , y), ρθ(u, v))
2

= d((x cos θ − y sin θ , x sin θ + y cos θ), (u cos θ − v sin θ , u sin θ + v cos θ))2

= ((x cos θ − y sin θ) − (u cos θ − v sin θ))2

+ ((x sin θ + y cos θ) − (u sin θ + v cos θ))2

= ((x − u) cos θ − (y − v) sin θ)2 + ((x − u) sin θ + (y − v) cos θ)2

= (x − u)2 cos2
θ − 2(x − u)(y − v) cos θ sin θ + (y − v)2 sin2

θ

(x − u)2 sin2
θ + 2(x − u)(y − v) sin θ cos θ + (y − v)2 cos2

θ

= (x − u)2 + (y − v)2

= d((x , y), (u, v))2,

and this is what we are claiming.
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{ex:e2:refl}
Example 1.9.3. Finally, the function

σ ∶ (x , y) ∈ R2 ↦ (x ,−y) ∈ R2

is an Euclidean motion that we call the reflection with respect to the x axis. Indeed, if (x , y) and
(u, v) are two points in R2, then

d(σ(x , y), σ(u, v))2 = d((x ,−y), (u,−v))2

= (x − u)2 + ((−y) − (−v))2

= (x − u)2 + (y − v)2

= d((x , y), (u, v)).

We will provide below a concrete and useful description of all Euclidean motions. To do that,
we need to recall some facts from linear algebra. A matrix A in Mn(R) is orthogonal matrixorthogonal if it satisfies
the following equivalent conditions:

• ⟨Ax ,Ay⟩ = ⟨x , y⟩ for all x, y ∈ Rn.
• ∣Ax∣ = ∣x∣ for all x ∈ Rn.
• AAt = AtA = I, so that A and its transpose At are mutually inverse.
• The columns of A form an orthonormal basis for Rn.
• The transposed3 rows of A form an orthonormal basis for Rn.

We write On(R) for the set of all orthonormal matrices in Mn(R) and call it the orthonormal grouporthogonal group.
A few key properties of this set are the following:

• The identity matrix I belongs to On(R).
• If A and B are elements of On(R), then the product AB is also an element of On(R).
• If A is an element of On(R), then A is invertible, its inverse is also an element of On(R)
and, in fact, A−1 = At .

In fact, it is because of these properties that we call the set On(R) a group.
If A is an orthogonal matrix, then 1 = det I = detAAt = detA ⋅detAt = (detA)2, and therefore

the determinant of A is either 1 or −1. If the determinant of A is 1 we say that the matrix A is special
orthogonal. We write SOn(R) for the set of all special orthogonal matrices in Mn(R) and call it
the special orthogonal group. This set has properties similar to those of On(R):

• The identity matrix I belongs to SOn(R).
• If A and B are elements of SOn(R), then the product AB is also an element of SOn(R).
• If A is an element of SOn(R), then A is invertible, its inverse is also an element of On(R)
and, in fact, A−1 = At .

3Remember that the elements of Rn are column vectors, so we have to transpose the rows of A to obtain elements
of that vector space.
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The following two examples describe the orthogonal matrices in dimensions 2 and 3. Similar
analyses can be carried out in all dimensions, in fact.

{ex:O2}

Example 1.9.4. Suppose that A is an element of O2(R). The first column of A is a unit vector inR2,
so we know that there exists a number θ ∈ R such that column is equal to ( cos θ

sin θ ). The second
column of the matrix is orthogonal to the first column, so is a scalar multiple of ( − sin θ

cos θ ) and has
norm 1, so it is either this vector or its opposite. We thus see that A is one of the two matrices

(cos θ − sin θ

sin θ cos θ
) , (cos θ sin θ

sin θ − cos θ
) .

The first one has determinant 1 while the second one has determinant −1. In this way we obtain an
enumeration of all the element so O2(R) and of SO2(R).

Example 1.9.5. Let now A be an element of SO3(R). We have that

det(A− I) = detAt ⋅det(A− I) = detAt(A− I) = det(At
A−At) = det(I−At) = −det(A− I),

and this implies that det(A− I) = 0, so that 1 is an eigenvalue of A and there exists a unit vector u

inR3 such that Au = u. Let (v ,w) be an ordered orthonormal basis for the orthogonal complement
of the subspace span(u). Let C be the matrix that has as columns the three vectors u, v and w:
since these three vectors are orthonormal, we have that C tC = I3. and therefore the matrix C is
orthogonal and its inverse is its transpose C t .

We have that

⟨Av , u⟩ = ⟨Av ,Au⟩ = ⟨v , u⟩ = 0

and similarly ⟨Aw , u⟩ = 0, to that the vectors Av and Aw are orthogonal to u and therefore the two
belong to the subspace span(v ,w). This implies that there are four numbers a, b, c and d such that

C
t
AC =

⎛
⎜⎜
⎝

1 0 0
0 a b

0 c d

⎞
⎟⎟
⎠
.

If we let B be the matrix ( a b
c d ), we can write this in the form

C
t
AC = (1 0

0 B
) . (1.17) {eq:so3}{eq:so3}

From this it follows that

C
t
A

t
C = (C t

AC)t (1 0
0 Bt)
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and thus, since CC t = AAt = I3, that

I3 = C t
C = C t

A
t
AC = C t

A
t
C ⋅ C t

AC = (1 0
0 Bt)(

1 0
0 B

) = (1 0
0 BtB

) .

It follows from this that BtB = I2, so that the matrix B is orthogonal. From (1.9.5) we see immedi-
ately that detB = 1, so that in fact B is special orthogonal and we know that there is a number θ

such that B = ( cos θ − sin θ
sin θ cos θ ). The conclusion of all this is that

if A is an element of SO3(R), then there exists an orthogonalmatrix C of determinant 1
and a real number θ such that

C
t
AC =

⎛
⎜⎜
⎝

1 0 0
0 cos θ − sin θ

0 sin θ cos θ

⎞
⎟⎟
⎠
.

If u, v and w are the elements of R3 given by the columns of the matrix C, then the

function x ∈ R3 ↦ Ax ∈ R3 is then a rotation of angle θ around the line of direction u

through the origin.

It is very easy to see that, conversely, for every orthogonalmatrixC of determinant 1 and every θ ∈ R
the matrix

C

⎛
⎜⎜
⎝

1 0 0
0 cos θ − sin θ

0 sin θ cos θ

⎞
⎟⎟
⎠
C

t

is an element of SO3(R), so this provides a precise description of the elements of that group.

Exercise 1.9.6. Obtain a similar description for the elements of O3(R) of determinant −1.

The following simple lemma that allows us to compare elements of SO2(R) will be useful later.

{lemma:so2:unique}

Lemma 1.9.7. Let A and B be two elements of SO2(R), and let v be a non-zero element of R2.

If A ⋅ v = B ⋅ v, then in fact A = B.

Exercise 1.9.8. Prove the lemma.

With the information we have about orthogonal matrices at hand we can now state and prove
the following result that completely describes Euclidean motions.

39



{prop:motions}
Proposition 1.9.9.

(i) If A ∈ On(R) is an orthogonal matrix and b ∈ Rn is a vector, then the function

f ∶ x ∈ R↦ Ax + b ∈ Rn

is an Euclidean motion.

(ii) Let f ∶ Rn → Rn be an Euclidean motion. There exist an orthogonal matrix A ∈ On(R) and a
vector v ∈ Rn, both uniquely determined by f , such that f (x) = Ax + b for all x ∈ Rn.

Proof. (i) Let A ∈ On(R) be an orthogonal matrix, let b ∈ Rn be a vector, and let us consider the
function f ∶ x ∈ Rn ↦ Ax + b ∈ Rn. If x and y are any two elements of Rn, then we have that

d( f (x), f (y)) = ∥ f (x)− f (y)∥ = ∥(Ax +b)−(Ay+b)∥ = ∥A(x − y)∥ = ∥x − y∥ = d(x , y),

and this tells us that the function f is an Euclidean motion.
(ii) Let us consider the function f̄ ∶ Rn → Rn such that f̄ (x) = f (x) − f (0) for all x ∈ Rn.

If x and y are two elements of Rn, then

∥x − y∥2 = ∥x∥2 − 2⟨x , y⟩ + ∥y∥2,

and of course also

∥ f (x − y)∥2 = ∥ f (x)∥2 − 2⟨ f (x), f (y)⟩ + ∥ f (y)∥2.

We can use this and the fact that f preserves distances to see that

2⟨ f̄ (x), f̄ (y)⟩ = ∥ f̄ (x)∥2 + ∥ f̄ (y)∥2 − ∥ f̄ (x − y)∥2

= ∥ f (x) − f (0)∥2 + ∥ f (y) − f (0)∥2 − ∥ f (x) − f (y)∥2

= d( f (x), f (0))2 + d( f (y), f (0))2 − d( f (x), f (y))2

= d(x , 0)2 + d(y, 0)2 − d(x , y)2

= ∥x∥2 + ∥y∥2 − ∥x − y∥2

= 2⟨x , y⟩.

This tells us that the function f̄ preserves inner products:

for all x, y ∈ R we have ⟨ f̄ (x), f̄ (y)⟩ = ⟨x , y⟩.

Let now (e1, . . . , en) be a orthonormal basis for Rn, so that for all i, j ∈ {1, . . . , n} be have that

⟨ei , e j⟩ =
⎧⎪⎪⎨⎪⎪⎩

1 if i = j;

0 in any other case.
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Since the function f̄ preserves inner products, we also have that (̄ f (e1), . . . , f̄ (en)) is an ortho-
normal basis for Rn, since ⟨ f̄ (ei), f̄ (e j)⟩ = ⟨ei , e j⟩ for all i, j ∈ {1, . . . , n}. As a consequence of
this, we have that when x is an element of Rn,

if ⟨x , f̄ (ei)⟩ = 0 for all i ∈ {1, . . . , n}, then x = 0.

Let x and y be two elements of Rn. If i ∈ {1, . . . , n}, then

⟨ f̄ (x) + f̄ (y) − f̄ (x + y), f̄ (ei)⟩
= ⟨ f̄ (x), f̄ (ei)⟩ + ⟨ f̄ (y), f̄ (ei)⟩ − ⟨ f̄ (x + y), f̄ (ei)⟩
= ⟨x , ei⟩ + ⟨y, ei⟩ − ⟨x + y, ei⟩
= ⟨x + y − (x − y), e1⟩
= 0,

and we can therefore conclude that f̄ (x) + f̄ (y) − f̄ (x + y) = 0, so that f̄ (x + y) = f̄ (x) + f̄ (y).
Similarly, if x is an element of Rn and λ one of R, we have that for each i ∈ {1, . . . , n}

⟨ f̄ (λx) − λ f̄ (x), f̄ (ei)⟩
= ⟨ f̄ (λx), f̄ (ei)⟩ − λ⟨ f̄ (x), f̄ (ei)⟩
= ⟨λx , ei⟩ − λ⟨x , ei⟩
= ⟨λx − λx , ei⟩
= 0,

so again we see that f̄ (λx) − λ f̄ (x), so that in fact f̄ (λx) = λ f̄ (x). Putting everything together,
we have proved that the function f̄ ∶ Rn → Rn is linear. It follows from this, as usual, that there is a
matrix A ∈Mn(R) such that f̄ (x) = Ax for all x ∈ Rn. The columns of A are precisely the vectors
f̄ (e1), . . . , f̄ (en), and these form an orthonormal basis for Rn, so the matrix A is orthogonal. If we
put b ∶= f (0), then f (x) = f̄ (x) + f (0) = Ax + b for all x ∈ Rn, and we see that the existence
statement of the proposition is true. Let us prove the uniqueness statement next.

Suppose that A1 and b1 are an orthogonal matrix in O(n) and a vector in Rn such that
f (x) = A1x + b1 for all x ∈ Rn. We then have that b = f (0) = b1, and for all x ∈ Rn that

0 = f (x) − f (x) = (Ax + b) − (A1x + b1) = (A− A1)x .

This clearly implies that the matrix A−A1 is zero, so that also A = A1, and this completes the proof
of the proposition.

Suppose that f ∶ Rn → Rn is an Euclidean motion, so that, according to the proposition, there
exist an orthogonal matrix A ∈ On(R) and a vector b ∈ Rn, both uniquely determined by f , such
that f (x) = Ax + b for all x ∈ Rn. We say that the Euclidean motion f is proper, direct or positive
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if the determinant of A is 1, and that it is improper, inverse or negative it that determinant is −1. We
write E(n) for the set of all Euclidean motions Rn → Rn, and SE(n) for the set of those Euclidean
motions that are proper. The set E(n) is the Euclidean group, while SE(n) is the special Euclidean
group.

Exercise 1.9.10. Let G be one of the sets E(n) or SE(n).
• The identity function idRn ∶ Rn → Rn belongs to G.
• If f and g are elements of G, then the composition f ○ g is also an element of G.
• If f is an element of G, then f is a bijective and its inverse is also an element of G.

Using the description that we gave in Example 1.9.4 of the orthogonal matrices in M2(R) and
Proposition 1.9.9 we can enumerate all Euclidean motions in the plane.

• If θ ∈ R and (a, b) ∈ R2, then the function f ∶ R2 → R2 such that

f (x , y) = (x cos θ − y sin θ + a, x sin θ + y cos θ + b)

for all (x , y) ∈ R2 is a proper Euclidean motion, and every direct Euclidean motion is
obtained in this way.

• Similarly, if θ ∈ R and (a, b) ∈ R2, then the function f ∶ R2 → R2 such that

f (x , y) = (x cos θ + y sin θ + a, x sin θ − y cos θ + b)

for all (x , y) ∈ R2 is a improper Euclidean motion, and every improper Euclidean motion is
obtained in this way.

In particular, it is immediate to check that the translations of Example 1.9.1, the rotations of
Example 1.9.2 and the reflection of Example 1.9.3 are all accounted for in this enumeration.

Exercise 1.9.11. Show that if f ∶ R2 → R2 is a proper Euclidean motion, then there exist a
translation τ ∶ R2 → R2 and a rotation ρ ∶ R2 → R2 such that f = τ ○ ρ. Are τ and ρ uniquely
determined by f ? Similarly, show that f ∶ R2 → R2 is an improper Euclidean motion, then there
exist a translation τ ∶ R2 → R2 and a rotation ρ ∶ R2 → R2 such that f = τ ○ σ ○ ρ, with σ the
reflection of Example 1.9.3.

Exercise 1.9.12. A reflectionreflection in the plane is an isometry r ∶ R2 → R2 that is not the identity and
that leaves all the points in a line L fixed — in that case, the line L is completely determined by r

and is the axis of the reflection. For example, the map S from Example 1.9.3 is a reflection, as it
leaves every point of the horizontal axis fixed, so that axis is the axis of the reflection.
(1) Show that the composition of two reflections with parallel axes is a translation, and that

every translation is the composition of two reflections.
(2) Similarly, show that that the composition of two reflections with non-parallel axes is a
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rotation with center at the point of intersection of the two axes, and that every rotation is a
composition of two reflections.

One of the reasons for which reflections are important is that they are simultaneously very simple
and enough to generate all Euclidean motions efficiently, in the sense that the following result
holds:
(3) Show that every Euclideanmotion of the plane is the composition of at most three reflections,

and that every positive Euclidean motion is the composition of at most two reflections.

§1.10. The fundamental theorem of plane curves

If γ ∶ (a, b) → R2 is a unit speed curve and x, y ∶ (a, b) → R are its components, the normal field
n ∶ (a, b) → R2 of γ has n(t) = (−y′(t), x′(t)) for all t ∈ (a, b). We will use below several times
the fact that we have the equality

n(t) = Rπ/2γ
′(t),

with Rπ/2 = ( 0 −11 0 ), the orthogonal matrix that corresponds to the rotation of angle π/2 described
in Example 1.9.2. We will also use below the following property of the matrix Rπ/2.

Lemma 1.10.1. If A ∈ O2(R) be an orthogonal matrix and d ∶= detA is its determinant, then

Rπ/2A = d ⋅ ARπ/2.

Proof. The determinant of A is either +1 or −1. In the first case, there is a real number θ such that
A = ( cos θ − sin θ

sin θ cos θ ), and in the second case there is a real number θ such that A = ( cos θ sin θ
sin θ − cos θ ). In

each of these two cases we can compute directly that the equality Rπ/2A = d ⋅ ARπ/2 holds.

The following proposition describes what happens to the curvature of a curve when we «move»
the curve using an Euclidean motion: it almost does not change.

Proposition 1.10.2. Let γ ∶ (a, b) → R2 be a unit speed plane curve and let f ∶ R2 → R2 be an

Euclidean motion. The composition η ∶= f ○ γ ∶ (a, b) → R2 is also a unit speed plane curve and if

κγ, κη ∶ (a, b) → R are the signed curvature functions of γ and of η, respectively, then κγ = κη if f is
proper, and κη = −κγ if f is improper.

Proof. We know from Proposition 1.9.9 that there are an orthogonal matrix A ∈ O2(R) and a
vector b ∈ R2 such that f (x) = Ax + b for all x ∈ R2. We then have that η(t) = Aγ(t) + b for all

43



t ∈ (a, b), and therefore we see immediately that η is a smooth curve and that

η
′(t) = Aγ′(t)

for all t ∈ (a, b). In particular,for any such t we have

∥η′(t)∥ = ∥Aγ′(t)∥ = ∥γ′(t)∥ = 1,

since A is orthogonal and γ is a unit speed curve, and this tells us that η is a unit speed curve. As
η′′(t) = Aγ′′(t) for all t ∈ (a, b), the signed curvature of η is

κη(t) = ⟨η′′(t),nη(t)⟩ = ⟨Aγ′′(t), Rπ/2η
′(t)⟩ = ⟨Aγ′′(t), Rπ/2Aγ

′(t)⟩.

If f is a proper Euclidean motion, then the matrix A is special orthogonal and, as we noted above,
Rπ/2A = ARπ/2. It follows from this that

κη(t) = ⟨Aγ′′(t),ARπ/2γ
′(t)⟩ = ⟨γ′′(t), Rπ/2γ

′(t)⟩ = ⟨γ′′(t),n′γ(t)⟩ = κγ(t).

If instead the map f is an improper Euclidean motion, then the orthogonal matrix A has determi-
nant −1 and we know that Rπ/2A = −ARπ/2, so what we have is that

κη(t) = ⟨Aγ′′(t),−ARπ/2γ
′(t)⟩ = −⟨γ′′(t), Rπ/2γ

′(t)⟩ = −⟨γ′′(t),n′γ(t)⟩ = −κγ(t).

This proves the proposition.

The second important observation that we have to make is that two curves that have the same
curvature functions are in fact related by an Euclidean motion:

Proposition 1.10.3. Let γ, η ∶ (a, b) → R2 be two unit-speed curves defined on the same interval.

If the corresponding curvature functions κγ, κη ∶ (a, b) → R are equal, then there exists a unique

proper Euclidean motion f ∶ R2 → R2 such that η = f ○ γ.

Proof. Let us suppose that κγ(t) = κη(t) for all t ∈ (a, b), let t0 be any element of (a, b), and let
θγ, θη ∶ (a, b) → R be smooth angle functions for γ and θ, respectively. For each t ∈ (a, b) we
then have that

θ
′
η(t) = κη(t) = κγ(t) = θ

′
γ(t),

so that there exists a real number α such that θη(t) = θγ(t) + α for all t ∈ (a, b). This implies that

η
′(t) = (cos θη(t), sin θη(t)) = (cos(θγ(t) + α), sin(θγ(t) + α))
= Rα ⋅ (cos θγ(t), sin θγ(t)) = Rα ⋅ γ′(t)
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for all t ∈ (a, b). Let us now put b ∶= η(t0) − Rα ⋅ γ(t0) and consider the proper Euclidean motion

f ∶ x ∈ R2 ↦ Rα ⋅ x + b ∈ R2.

The function h ∶= η− f ○γ ∶ (a, b) → R2 is differentiable and has h(t0) = η(t0)−(Rα ⋅γ(t0)+b) = 0
and h′(t) = η′(t) − Rα ⋅ γ′(t) = 0 for each t ∈ (a, b), so that in fact it is constant of value 0. We
can therefore conclude that η = f ○ γ, and this proves the existence claim of the proposition.

To prove the uniqueness claim, let us suppose that g ∶ R2 → R2 is another proper Euclidean
motion such that η = g ○ γ, and let A and c be the special orthogonal matrix and the element
of R2 such that g(x) = A ⋅ x + c for all x ∈ R2. We then have that η′(t0) = A ⋅ γ′(t0), and we can
conclude from this and Lemma 1.9.7 that A = Rα because we also have that η′(t0) = Rα ⋅ γ′(t0).
As also η(t0) = g(γ(t0)) = Rα ⋅ γ(t0) + c, we have that c = η(t0) − Rα ⋅ γ(t0) = b, and therefore
g = f . This completes the proof of the proposition.

We say that two units-speed parametrized curves γ, η ∶ (a, b) → R2 are equivalent under
proper Euclidean motions if there is a proper Euclidean motion f ∶ R2 → R2 such that η = f ○ γ.

Exercise 1.10.4. Let (a, b) be an open interval. Show that the relation of equivalence under proper
Euclidean motions is an equivalence relation on the set of all unit-speed parametrized curves
defined on (a, b).

The combination of the last two propositions allows us to obtain the following key property of
the curvature:

Corollary 1.10.5. Two unit-speed parametrized curves defined on the same open interval are equiva-

lent under proper Euclidean motions if and only if they have the same curvature function.

In other words, an equivalence class of unit-speed parametrized curves under proper Euclidean
motions is completely determined by the curvature function of any one of its elements.

In view of this, it is interesting ask what possible curvature functions can a unit-speed
parametrized curve have. Our following proposition answers this question.

Proposition 1.10.6. If κ ∶ (a, b) → R is a continuous function defined on an open interval, then

there exists a unit-speed parametrized curve γ ∶ (a, b) → R2 whose curvature function is precisely κ.

Proof. Let κ ∶ (a, b) → R be a continuous function, and let t0 be an element of (a, b). Since κ is
continuous, we can define a function θ ∶ (a, b) → R putting

θ(t) = ∫
t

t0
κ(τ)dτ,

and it follows from the Fundamental Theorem of Calculus that θ is a differentiable function such
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whose derivative is θ′ = κ; in particular, θ is actually of class C1.
Let us consider the function T ∶ (a, b) → R2 such that

T(t) = (cos θ(t), sin θ(t))

for all t ∈ (a, b). This is also a function of class C1, and this allows us to define a final function
γ ∶ (a, b) → R2 that on each t ∈ (a, b) takes the value

γ(t) = ∫
t

t0
T(τ)dτ.

As before, the Fundamental Theorem of Calculus tells us that γ is a differentiable function whose
derivative is γ′ = T , so that in fact γ is of class C2. Moreover, using we see that

∥γ′(t)∥ = ∥T(t)∥ = 1,

so that γ is a unit-speed parametrized curve in R2. As γ′(t) = T(t) = (cos θ(t), sin θ(t)) for all
t ∈ (a, b) and the function θ is continuous, we see that θ is an angle function for γ, and therefore
the curvature function κγ ∶ (a, b) → R of γ is such that κγ(t) = θ′(t) = κ(t) for all t ∈ (a, b). We
have thus proved the proposition.

The proof that we have given for this proposition is of a constructive nature: given a func-
tion κ ∶ (a, b) → R we can explicitly construct, following the steps of the proof, a unit-speed
parametrized curve γ ∶ (a, b) → R2 whose curvature function is κ.

Example 1.10.7. Let R be a positive number, and let κ ∶ R → R be the constant function of
value 1/R. Following the proof of the proposition, we define θ ∶ R→ R putting, for each t ∈ R,

θ(t) = ∫
t

0
κ(τ)dτ = ∫

t

0

dτ

R
= t

R
.

We then consider the function T ∶ R→ R2 with

T(t) = (cos θ(t), sin θ(t)) = (cos
t

R
, sin

t

R
),

and its integral γ ∶ t ∈ R↦ ∫ t
0 T(τ)dτ. As

∫
t

0
cos

τ

R
dτ = R sin

t

R
, ∫

t

0
sin

τ

R
dτ = −R cos

t

R
,

we see that

γ(t) = (R sin
t

R
,−R cos

t

R
).

Clearly γ is the standard unit-speed parametrization if the circle of radius R centered at the origin,
with initial point γ(0) equal to (0,−R).
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Example 1.10.8. Let us now take κ ∶ R→ R be the function such that

κ(t) = 1
1 + t2

for all t ∈ R. Following the steps of the proof, we find that

θ(t) = arctan t

and, since

∫
t

0
cos arctan τ dτ = arcsinh t, ∫

t

0
sin arctan τ dτ =

√
1 + t2,

that

γ(t) = (arcsin t,
√
1 + t2)

for all t ∈ R. The following two graphs show the function κ and the trace of the parametrized
curve γ.

-4 -2 2 4

0.2

0.4

0.6

0.8

1.0

-2 -1 1 2

2

3

4

5

Inmost situations, if we start with a curvature function we cannot actually compute analytically
the curve whose existence is claimed in the proposition, but in that case we can use numerical
methods to obtain approximations. In Figure 1.4 on page 48 we show the result of doing this in
some examples.
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κ(t) = t κ(t) = −t sin t

κ(t) = 1 + cos2 t κ(t) = 2 + cos2 t

κ(t) = 2 sin 2t + cos t − 2 cos 6t
{fig:ftc}

Figure 1.4. Some examples of curves determined by their curvatures.
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§1.11. Exercises

Exercise 1.11.1. Determine conditions on a function r ∶ (a, b) → R that ensure that the
parametrized curve γ ∶ (a, b) → R2 with

γ(θ) = (r(θ) cos θ , r(θ) sin θ)

for all θ ∈ (a, b) is a unit-speed curve.

Solution. As

γ
′(θ) = (r′(θ) cos θ − r(θ) sin θ , r′(θ) sin θ + r(θ) cos θ),

we have that ∥γ′(θ)∥ =
√

r′(θ)2 + r(θ)2. The curve will have unit-speed, then, exactly when
r′(θ)2 + r(θ)2 = 1.

{exer:logarithmic-spiral}
Exercise 1.11.2. Find all curves with the property that the angle formed by the segment from the
origin to one of its points and the tangent line at that point does not depend on the point. We call
this curves logarithmic spirals — in Figure 1.5 the reader can find a drawing of one.

Solution. Let γ(θ) = (r(θ) cos θ , r(θ) sin θ) be a parametrized curve with that property, deter-
mined by a positive function r. The angle α formed by the segment from the origin to γ(θ) and
the tangent line there is such that

⟨γ(θ), γ′(θ)⟩ = ∥γ(θ)∥ ⋅ ∥γ′(θ)∥ ⋅ cos α

As ∥γ(θ)∥ = r(θ),

γ
′(θ) = (r′(θ) cos θ − r(θ) sin θ , r′(θ) sin θ + r(θ) cos θ)

and thus ∥γ′(θ)∥ =
√

r′(θ)2 + r(θ)2, this tells us that

cos α = r(θ)r′(θ)
r(θ)
√

r′(θ)2 + r(θ)2
= r′(θ)√

r′(θ)2 + r(θ)2
.

The function r therefore is a solution to the differential equation

(r′(θ)2 + r(θ)2) cos2
α = r

′(θ)2,

which we can rewrite in the form

d
dθ

log r(θ) = r′(θ)
r(θ) =

1√
sec2 α − 1

.
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{fig:logarithmic-spiral}

Figure 1.5. The logarithmic spiral with polar equation r = eθ from Exercise 1.11.2.

We can immediately solve this: if θ0 is an element of the domain of r and r0 ∶= r(θ0), then

r(θ) = r0 exp
θ − θ0√
sec2 α − 1

.

Conversely, using this formula we can clearly define a smooth positive function t ∶ R → R that
gives rise to a parametrized curve with the property we want.

Exercise 1.11.3. Find all regular curves all of whose normal lines pass through the origin.

Solution. Let γ ∶ (a, b) → R2 be a unit-speed parametrized curve all of whose normal lines pass
through the origin. If t is an element of (a, b), then a point p of R2 is on the normal line to γ at t

exactly when ⟨p− γ(t), γ′(t)⟩ = 0. It follows from this that if the curve has the property described
in the statement of the exercise then ⟨γ(t), γ′(t)⟩ = 0 for all t ∈ (a, b).

It follows from this that γ(t) is orthogonal to γ′(t), so it is a multiple of the normal vector:
there exists a function λ ∶ (a, b) → R such that γ(t) = λ(t) ⋅ n(t), and this function is smooth
because λ(t) = ⟨γ(t), n(t)⟩ for all t ∈ (a, b). Since

λ
′(t) = d

dt
⟨γ(t), n(t)⟩ = ⟨γ′(t), n(t)⟩ + ⟨γ(t), n′(t)⟩ = ⟨γ(t), κ(t) ⋅ γ′(t)⟩ = 0,

the function λ is actually constant. This tells us that for all t ∈ (a, b) the point γ(t) has
∥γ(t)∥ = ∥λ ⋅ n(t)∥ = ∣λ∣, so that the trace of γ is contained in the circle of radius ∣λ∣ centered at
the origin. Let us notice that

0 = d
dt
⟨γ(t), γ′(t)⟩ = ⟨γ(t), γ′(t)⟩ + ⟨γ(t), γ′′(t)⟩ = 1 + ⟨λ ⋅ n(t), κ(t) ⋅ n(t)⟩

= 1 + λ ⋅ κ(t),

so κ(t) = −1/λ is constant, as it should be.

50



{fig:involute-circle}

Figure 1.6. The curve of Exercise 1.11.4, the involute of the unit circle.

{exer:involute-circle}
Exercise 1.11.4.
(1) Show that the parametrized curve γ ∶ (0,+∞) → R2 with

γ(θ) = (cos θ + θ sin θ , sin θ − θ cos θ)

for all θ ∈ (0,+∞) has the property that all of its normal lines are at distance 1 from the
origin. We have drawn this curve and its normal lines in Figure 1.6.

(2) Let ℓ be a positive number. Show that if γ ∶ (a, b) → R2 us a unit-speed curve all of whose
normal lines are at distance ℓ from the origin, then there are numbers α, β ∈ R and є ∈ {±1}
such that the curvature function of γ has

κ(t) = є√
αt + β

for all t ∈ (a, b).
(3) Find all curves with that property.

Solution. Let us suppose that γ ∶ (a, b) → R2 is a unit-speed parametrized curve with the property
described in the statement of the exercise. The line normal to the curve at γ(t) can be parametrized
by the function

α ∶ s ∈ R↦ γ(t) + s ⋅ n(t) ∈ R.
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In particular, the square of the distance from α(s) to the origin is

∥α(s)∥2 = ∥γ(t) + s ⋅ n(t)∥2 = ∥γ(t)∥2 + 2s ⋅ ⟨γ(t), n(t)⟩ + s
2

and the critical points of this occur at values of s such that

d
ds
∥α(s)∥2 = 2⟨γ(t), n(t)⟩ + 2s = 0.

There is therefore a unique critical point at s0 = −⟨γ(t), n(t)⟩, and it has to be a minimum, for
geometric reasons. The square of the distance from the line to the origin is therefore

ℓ
2 = ∥α(s0)∥2 = ∥γ(t)∥2 − ⟨γ(t), n(t)⟩2. (1.18) {eq:qq}{eq:qq}

This is true for all t ∈ (a, b), so differentiating we see that

0 = 2⟨γ(t), γ′(t)⟩ − 2⟨γ(t), n(t)⟩(⟨γ′(t), n(t)⟩ + ⟨γ(t), n′(t)⟩).

As γ′(t) ⊥ n(t), γ′′(t) = κ(t)n(t), and n′(t) = −κ(t)γ′(t), this tells us that

0 = ⟨γ(t), γ′(t)⟩ ⋅ (1 + ⟨γ(t), γ′′(t)⟩). (1.19) {eq:qq:2}{eq:qq:2}

Let us suppose for amoment that there is an element t0 of (a, b) such that ⟨γ(t0), γ′′(t0)⟩ ≠ −1.
Since γ is smooth, there is then a positive number є such that (t0 − є, t0 + є) ⊆ (a, b) and
⟨γ(t), γ′′(t)⟩ ≠ −1 for all t ∈ (t0 − є, t0 + є). It follows then from (1.11), that

⟨γ(t), γ′(t)⟩ = 0

for all t ∈ (t0 − є, t0 + є), and this implies that the normal line to γ at γ(t) passes through the
origin. As the number ℓ is positive, this is absurd.

We thus see that

κ(t) ⋅ ⟨γ(t), n(t)⟩ = ⟨γ(t), γ′′(t)⟩ = −1

for all t ∈ (a, b). Going back to (1.11) we see that for such t we have

ℓ
2 = ∥γ(t)∥2 + 1

κ(t)2 . (1.20) {eq:qqq}{eq:qqq}

On the other hand, for such t we also have

d2

dt2 ∥γ(t)∥
2 = 2

d
dt
⟨γ(t), γ′(t)⟩ = 2⟨γ′(t), γ′(t)⟩ + 2⟨γ(t), γ′′(t)⟩ = 2 − 2 = 0,

so there are numbers α and v such that

∥γ(t)∥2 = −αt + v

for all t ∈ (a, b). Using this and (1.11), and putting β ∶= ℓ2 − v we can therefore conclude that

κ(t)2 = 1
αt + β for all t ∈ (a, b).

The claim of the exercise follows immediately from this.

52



Exercise 1.11.5. Let γ ∶ R → R2 be a closed unit-speed curve. If the image of γ is contained in a
circle of radius r, then there exists a point t0 in R such that the curvature of γ at t0 is κ(t0) ≥ 1/r.

This tells us that if a closed curve is contained in a small circle then it must have a point where
its curvature is large, a fact that should be intuitively clear.

Solution. Let γ ∶ R → R2 be a closed unit-speed curve whose image is contained in the circle
centered at a point p ∈ R2 with radius r, so that the smooth function f ∶ R → R such that
f (t) = ⟨γ(t) − p, γ(t) − p⟩ is bounded by r2. Since the curve is closed, the function f is periodic,
and since it is continuous it attains its maximum: there is a point t0 in R such that f (t) ≤ f (t0)
for all t ∈ R. As f is smooth and has a maximum at t0, we have that

0 = f
′(t0) = 2⟨t(t0), γ(t0) − p⟩,

and this implies that there is a number ρ such that γ(t0) − p = ρ ⋅ n(t0), and since

r
2 ≥ f (t0) = ⟨γ(t0) − p, γ(t0) − p⟩

we see that ∣ρ∣ ≤ r. Moreover, the fact that f has a maximum at t0 implies that

0 ≥ 1
2 f
′′(t0) = ⟨t′(t0), γ(t0) − p⟩ + ⟨t(t0), t(t0)⟩ = κ(t0) ⋅ ⟨n(t0), γ(t0) − p⟩ + 1

= ρ ⋅ κ(t0) + 1.

We thus see that ∣ρ∣ ⋅ ∣κ(t0)∣ ≥ 1, so ∣κ(t0)∣ ≥ 1/∣ρ∣ ≥ 1/r.

Exercise 1.11.6. Let γ ∶ [0, L] → R2 be a closed unit-speed curve in the plane with strictly positive
curvature, let n ∶ [0, L] → R2 be its normal field, and let r be a positive number.

We consider the curve δ ∶ [0, L] → R2 such that

δ(t) = γ(t) − r ⋅ n(t)

for each t ∈ R. We call it a parallel curve of γ. Make pictures of these curves in some easy examples
to see why it is called like that.
(1) Prove that the length of δ is

len(δ) = len(γ) + 2πr.

(2) Prove that the signed curvature κδ of δ is given by in terms of that of κ by the formula

κδ =
κγ

1 + r ⋅ κγ
.
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Solution. We have that

δ
′(t) = γ′(t) − r ⋅ n′(t) = t(t) − r ⋅ n′(t) = t(t) + rκ(t) ⋅ t(t) = (1 + rκ(t)) ⋅ t(t),

so that the length of δ is

len(δ) = ∫
L

0
∥δ′(t)∥dt = ∫

L

0
(1 + rκ(t))dt = ∫

L

0
dt + r∫

L

0
κ(t)dt.

Of course, ∫ L
0 dt = L = len(γ). On the other hand, if θ ∶ [0, L] → R is a smooth angle function for

the curve γ, so that t(t) = (cos θ(t), sin θ(t)) for all t ∈ [0, L], then we know that θ′(t) = κ(t) for
all t ∈ [0, L], so that ∫ L

0 κ(t)dt = θ(L) − θ(0). This difference is 2π times the rotation index i(γ)
of the curve γ: since γ has strictly positive curvature, it is a simple convex closed curve, and we
know that its rotation index is +1 or −1, and since the curvature is positive, it is in fact +1. Putting
everything together, we see that len(δ) = len(γ) + 2πr. This proves the first part of the exercise.

As we noted above, δ′ = (1 + rκ) ⋅ t, so that ∥δ′∥ = (1 + r ⋅ κ), and

δ
′′ = (1 + rκ)′ ⋅ t + (1 + rκ) ⋅ t′ = (1 + rκ)′ ⋅ t + (1 + rκ)κ ⋅ n,

so that

det(δ′, δ′′) = det((1 + rκ) ⋅ t, (1 + rκ)′ ⋅ t + (1 + rκ)κ ⋅ n) = (1 + rκ)2κ.

The possibly non-unit-speed curve δ has therefore signed curvature given by

κδ =
det(δ′, δ′′)
∣δ′(t)∣3 . = (1 + rκ)2κ

(1 + rκ)3 =
κ

1 + rκ
,

as the second part of the exercise claims.
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