Ejercicios surtidos

- 1. Sea X compacto y $f: X \to X$ continua. Probar:
 - (a) Si d(f(x), f(y)) < d(x, y) para todo $x \neq y$ entonces f tiene un único punto fijo.
 - (b) Si $d(f(x), f(y)) \ge d(x, y)$ para todo $x, y \in X$ entonces f es un homeomorfismo. Sugerencia: dado $x \in X$ y escribiendo $f^n := f \circ \ldots \circ f$ (n veces), probar que la sucesión $\{f^n(x)\}$ tiene alguna subsucesión que converge a x. Deducir que f es una isometría.
- 2. Sea $\{f_n\} \subset C([0,1])$ una sucesión acotada y definimos para cada n la función $g_n(t) = \int_0^1 G(t,s) f_n(s) ds$, donde $G: [0,1] \times [0,1] \to \mathbb{R}$ una función continua. Probar que la sucesión $\{g_n\}$ tiene una subsucesión que converge en C([0,1]).
- 3. E, F normados, $A \subset E$ abierto y $f: A \to F$ diferenciable en x_0 . Entonces

$$\limsup_{x \to x_0} \frac{\|f(x) - f(x_0)\|}{\|x - x_0\|} = \|Df(x_0)\|.$$

- 4. Dados E, F normados, $A \subset E$ abierto y $f: A \to F$ de clase $C^1, x \in A$ se dice punto regular de f si Df(x) es suryectiva y punto crítico en caso contrario. De la misma forma, $y \in F$ se dice valor regular si todas sus preimágenes son puntos regulares y valor crítico en caso contrario. Sea $U \subset \mathbb{R}^n$ un abierto acotado y $f: \overline{U} \to \mathbb{R}^n$ de clase C^1 (es decir, f es la restricción de una función de clase C^1 definida en un entorno de \overline{U}). Probar que si y es un valor regular de f entonces $f^{-1}(y)$ es finito.
- 5. Sean X un espacio métrico completo y A un subconjunto de $C(X, \mathbb{R})$. Supongamos que para todo $x \in X$ existe $R_x \in \mathbb{R}$ tal que $|f(x)| \leq R_x$ para toda $f \in A$. Entonces existe un abierto no vacío $U \subset X$ y una constante R tal que $|f(x)| \leq R$ para todo $x \in U$ y toda $f \in A$.
- 6. Una función $f \in C(\mathbb{R}, \mathbb{R})$ se dice *casi-periódica* sii para toda sucesión de números $T_n \in \mathbb{R}$ la sucesión de funciones $f_n(t) := f(t + T_n)$ tiene

una subsucesión que converge uniformemente en \mathbb{R} . Probar que toda función periódica es casi-periódica.

Para interesados en el tema, algunos ejercicios más:

- (a) Toda función casi-periódica es acotada.
- (b) Si f es casi-periódica y $f(t) \to 0$ para $t \to +\infty$ entonces $f \equiv 0$.
- (c) Si f_n es casi-periódica para todo n y $\{f_n\}$ converge uniformemente a cierta f, entonces f es casi-periódica. Sugerencia: usar un argumento diagonal.
- (d) Si f es casi-periódica entonces existe L tal que f alcanza máximos y mínimos locales (no estrictos) en cualquier intervalo de longitud L. Sugerencia: probar primero que existe L tal que f alcanza algún extremo en todo intervalo de longitud L.
- 7. Sea E normado. Si $C \subset E$ es cerrado y $K \subset E$ es compacto, entonces $C + K := \{c + k : c \in C, k \in K\}$ es cerrado. ¿Vale el resultado si K es solamente cerrado?
- 8. Probar que el cubo de Hilbert

$$\mathcal{C} := \{ y \in l^2 : 0 \le y_n \le 1/n \text{ para todo } n \}$$

es compacto.

- 9. Sea X un espacio métrico. Probar que son equivalentes:
 - (a) Para todo par F_1, F_2 de cerrados disjuntos vale $d(F_1, F_2) > 0$.
 - (b) Toda función continua que sale de X es uniformemente continua.
 - (c) Todo cubrimiento por abiertos admite un número de Lebesgue.

Si además X tiene una cantidad a lo sumo finita de puntos aislados, entonces cualquiera de los enunciados anteriores equivale a decir que X es compacto.

10. Sea $f: \mathbb{R}^n \to E$ continua, donde E es un espacio de Banach de dimensión infinita. Probar que f no es suryectiva. *Observación*: se puede probar, en cambio, que existen funciones continuas suryectivas ('curvas de Peano') por ejemplo de \mathbb{R} en el cubo de Hilbert.

11. Sea $I: C[0,1] \to \mathbb{R}$ dada por

$$I(u) = \int_0^1 f(t, u(t)) dt$$

donde $f: \mathbb{R}^2 \to \mathbb{R}$ es de clase C^1 . Probar:

- (a) I es de clase C^1 .
- (b) u es punto crítico de I si y solo si $\frac{\partial f}{\partial u}(t,u(t))=0$ para todo t.
- 12. Sean $A \subset \mathbb{R}^{n \times n}$ el conjunto de matrices inversibles y $f : A \to \mathbb{R}^{n \times n}$ dada por $f(M) = M^{-1}$. Probar que f es diferenciable y calcular Df(M). Generalizar para un espacio de Banach cualquiera.
- 13. Probar que no existe una función continua $f: \mathbb{C}\setminus\{0\} \to \mathbb{C}$ tal que $f(z)^2 = z$ para todo z. Sugerencia: probar que f tendría que verificar f(zw) = f(z)f(w) para todo z, w o f(zw) = -f(z)f(w) para todo z, w.
- 14. Sea X un espacio métrico y $A \subset X$. Un elemento $a \in X$ se llama punto de condensación de A si para todo entorno U de x se cumple que $U \cap A$ es no numerable. Probar que si X es separable, entonces todo subconjunto no numerable tiene un punto de condensación.
- 15. Sea E un espacio normado y $A \subset E$ abierto denso. Dado $x \in E$, probar que existen $u, v \in A$ tales que x = u v.
- 16. Sea $f: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ dada por $f(M) = M^k$. Probar que f es diferenciable. Si MN = NM, probar que $Df(M)N = nM^{n-1}N$.
- 17. Dada $M \in \mathbb{R}^{n \times n}$, definimos $e^M := \sum_{n \geq 0} \frac{M^n}{n!}$.
 - (a) Probar que la función $M\mapsto e^M$ está bien definida y es diferenciable. Calcular la derivada en la dirección N para N que conmuta con M.
 - (b) Sea $X_0 \in \mathbb{R}^n$ y $X : \mathbb{R} \to \mathbb{R}^n$ la curva definida por $X(t) = e^{tM}X_0$. Probar que X'(t) = MX(t) y $X(0) = X_0$.
- 18. Generalizar los ejercicios anteriores para $M \in L(E, E)$, donde E es un espacio de Banach.

19. Sea E un \mathbb{R} -e.v. y sea $C \subset E$ un cono, es decir, C es convexo y verifica:

$$C + C \subset C$$
, $C \cap -C = \{0\}$.

Probar que la relación definida por $x \leq y$ sii $y - x \in C$ es un orden compatible con las operaciones de E. Recíprocamente, dado un orden compatible \leq , el conjunto de elementos no negativos $\{x \in E : x \geq 0\}$ es un cono. Dada una norma en E, probar que el orden inducido por un cono C es compatible con la topología si y solo si C es cerrado.

- 20. Sea E un espacio normado y $f: E \to \mathbb{R}$ dada por $f(x) = ||x||^r$ con r > 0. Probar que f es diferenciable en 0 si y solo si r > 1.
- 21. Sea $A \subset \mathbb{R}^n$ abierto. Una función $f: A \to \mathbb{R}^m$ se dice diferenciable en el sentido de Carathéodory en $a \in A$ sii existe $\phi: A \to L(\mathbb{R}^n, \mathbb{R}^m)$ continua en a tal que

$$f(x) - f(a) = \phi(x)(x - a).$$

- (a) Probar que f es diferenciable en a en el sentido de Carathéodory si y solo si es diferenciable en a.
- (b) Usar el punto anterior para probar la regla de la cadena.
- 22. Sean E un espacio normado y $H \subset E$ un hiperplano cerrado. Entonces $E \setminus H$ tiene dos componentes conexas. En cambio, si H no es cerrado entonces $E \setminus H$ es conexo. Sugerencia: considerar $\varphi : E \to \mathbb{R}$ lineal tal que $\ker(\varphi) = H$ y $H^+ = \{\varphi > 0\}$, $H^- = \{\varphi < 0\}$. Si H no es cerrado, entonces H^+ y H^- son densos.
- 23. Sean E, F normados, $A \subset E$ abierto y $f: A \to F$ diferenciable. Supongamos que $[x,y] \subset A$ y $\|Df(z)\| \leq M$ para todo $z \in [x,y]$. Entonces

$$||f(x) - f(y)|| \le M||x - y||.$$

Sugerencia: fijar $\eta > 0$ y considerar la función $\varphi : [0,1] \to A$ dada por $\varphi(t) := \|f(y + t(x - y)) - f(y)\| - t(M + \eta)\|x - y\|$. Probar que el conjunto de valores de t tales que $\varphi \leq 0$ en [0,t] es cerrado y abierto.

Observación. Una demostración mucho más directa surge del 'comentario' que hicimos en clase: para todo $z \in F \setminus \{0\}$ existe $T \in L(F, \mathbb{R})$ de norma 1 tal que $Tz = \|z\|$. En efecto, alcanza con tomar z = f(x) - f(y) y aplicar el teorema de valor medio a la función $T \circ f$. Comparar con el ejercicio 5-iii) de la práctica de diferenciación. El mismo 'comentario'

(que en realidad es el teorema de Hahn-Banach) sirve para probar de manera más sencilla que si f es dos veces diferenciable en cierto $a \in A$ entonces $D^2 f(a)$ es simétrica, es decir:

$$D^{2}f(a)(v)(w) = D^{2}f(a)(w)(v).$$

Para esto, es suficiente con estudiar la restricción de f al subespacio generado por v y w; en otras palabras, se puede suponer $E = \mathbb{R}^2$. Por otra parte, usando el 'comentario' y el hecho de que $D^2(T \circ f) = T \circ D^2 f$, se puede suponer que $F = \mathbb{R}$. Entonces la demostración sale considerando $\phi(x,y) := [f(x,y)-f(x,y_0)]-[f(x_0,y)-f(x_0,y_0)]$, donde $a=(x_0,y_0)$. Hay que acotar con cuidado; la cuenta se hace mucho más sencilla suponiendo (como se hace en Análisis I) que f es de clase C^2 en un entorno de a, aunque en realidad esta hipótesis no hace falta.

- 24. Obtener la expresión del polinomio de Taylor de orden k centrado en x_0 y fórmula del resto para una función $f:A\to\mathbb{R}$ de clase C^{k+1} donde A es un abierto de un espacio normado. Sugerencia: considerar el desarrollo de Taylor de $f\circ\varphi$, donde $\varphi(t):=x_0+t(x-x_0)$.
- 25. Demostrar (usando el resultado sobre contracciones uniformes) el teorema de la función inversa y obtener el teorema de la función implícita como corolario. Sugerencia: dada $f: A \subset E \times F \to G$ de clase C^n , considerar $F: A \to E \times G$ definida por F(x, y) := (x, f(x, y)).
- 26. Sean E un espacio de Banach, $A \subset E$ abierto y $F : A \to \mathbb{R}$ de clase C^1 . Sea $x_0 \in S := \{x \in A : F(x) = 0\}$ tal que $DF(x_0)$ es suryectiva. Un elemento $v \in E$ se dice tangente a S en x_0 sii existe una curva suave $c : (-\delta, \delta) \to S$ tal que $c(0) = x_0$ y c'(0) = v. El 'espacio tangente' $T_{x_0}S$ se define como el conjunto de todos los vectores tangentes a S en x_0 . Probar que $T_{x_0}S = \ker(DF(x_0))$.

Sugerencia: tomando $z \in E$ tal que $DF(x_0)z = 1$, se puede identificar $E = \ker(DF(x_0)) \oplus \langle z \rangle$ con $\ker(DF(x_0)) \times \mathbb{R}$. Escribir $x_0 = w_0 + s_0 z$ y aplicar el teorema de la función implícita para expresar los puntos de S cercanos a x_0 en la forma w + s(w)z, donde s es una función de clase C^1 definida en un entorno de w_0 tal que $s(w_0) = s_0$. Verificar que la curva $c(t) := w_0 + tv + s(w_0 + tv)z$ cumple lo pedido. ¿Cuál es la idea geométrica en esta construcción?

Observación: en particular, si 0 es un valor regular de F se dice que S es una (hiper)superficie regular. Por ejemplo, la esfera $S_1 := \{x \in l^2 : ||x|| = 1\}$ es una hipersuperficie regular, ya que la función $F(x) = ||x||^2 - 1$ es diferenciable. ¿Cuál es el espacio tangente a S_1 en x? Más

en general, si E es un espacio de Banach y $T: E \times E \to \mathbb{R}$ es bilineal, continua, simétrica y definida positiva y F(x) := T(x,x) es la forma cuadrática asociada, probar que $F^{-1}(1)$ es una hipersuperficie regular y calcular su espacio tangente en cualquier punto.

27. Sean $f, g: A \to \mathbb{R}$ de clase C^1 y x_0 un extremo de f ligado a la condición g = 0. Si $Dg(x_0)$ es survectiva, entonces existe $\lambda \in \mathbb{R}$ tal que $Df(x_0) = \lambda Dg(x_0)$.

Sugerencia: dado $v \in \ker(Dg(x_0))$, tomar una curva c como en el ejercicio anterior y deducir que $Df(x_0)v = 0$.

- 28. 'Equivalencia' entre el teorema de la función implícita y el teorema de existencia y unicidad de ecuaciones diferenciales:
 - (a) Sean $A \subset \mathbb{R}^2$ abierto, $f: A \to \mathbb{R}$ de clase C^2 y $(x_0, y_0) \in A$ tal que $f(x_0, y_0) = 0$ y $\frac{\partial f}{\partial y}(x_0, y_0) \neq 0$. Deducir la existencia de una función implícita y(x) del hecho de que el problema

$$y'(x) = -\frac{\frac{\partial f}{\partial x}(x, y(x))}{\frac{\partial f}{\partial y}(x, y(x))}, \qquad y(x_0) = y_0$$

tiene solución única definida en un intervalo abierto que contiene a x_0 .

(b) Sean $A \subset \mathbb{R} \times \mathbb{R}^n$ abierto, $f: A \to \mathbb{R}^n$ de clase C^1 . Para cada $(t_0, x_0) \in A$ existe y de clase C^1 definida en un entorno de t_0 tal que x'(t) = f(t, x(t)) y $x(t_0) = x_0$. Por simplicidad, se puede suponer $A = \mathbb{R} \times \mathbb{R}^n$ y $t_0 = 0$. Definiendo $y(t) := x(\lambda t)$, el problema se transforma en $y'(t) = \lambda f(\lambda t, y(t))$, $y(0) = x_0$. Considerar la función $F: C([-1, 1], \mathbb{R}^n) \times \mathbb{R} \to C([-1, 1], \mathbb{R}^n)$ dada por $F(y, \lambda) = y - T(y, \lambda)$, donde

$$T(y,\lambda)(t) := x_0 + \lambda \int_0^t f(\lambda s, y(s)) ds.$$

Entonces $F(x_0, 0) = 0$ y $\frac{\partial F}{\partial y}(x_0, 0) = I$. Esto dice que hay una curva y definida cerca de $\lambda = 0$ tal que $F(\lambda, y(\lambda)) = 0$.