Ejercicios

- 1. (a) Las curvas Z(xy-1) y $Z(y-x^2)$ de \mathbb{A}^2 no son isomorfas.
 - (b) Si $f \in \mathbb{k}[x,y]$ es un polinomio irreducible de grado 2, entonces Z(f) es una variedad afín isomorfa a alguna de las dos de la primera parte.
- 2. Muestre que $Z(x^2 yx, xz x) \subseteq \mathbb{A}^3$ tiene tres componentes irreducibles y encuentre los ideales primos correspondientes a cada una.
- 3. El conjunto $Y = \{(t^3, t^4, t^5) \in \mathbb{A}^3 : t \in \mathbb{k}\}$ es un cerrado irreducible de \mathbb{A}^3 . Encuentre el ideal I(Y) y muestre que no puede ser generado por dos elementos.
- 4. Un abierto de \mathbb{A}^1 no es isomorfo a \mathbb{A}^1 .
- 5. Un morfismo de variedades afines que es un homeomorfismo no es necesariamente un isomorfismo:
 - (a) La función $t\in \mathbb{A}^1\mapsto (t^2,t^3)\in Z(x^3-y^2)\subseteq \mathbb{A}^2$ es un morfismo bicontinuo pero no un isomorfismo.
 - (b) Si k tiene característica positiva p, entonces la función $t \in \mathbb{A}^1 \mapsto t^1 \in \mathbb{A}^1$ es un morfismo bicontinuo pero no un isomorfismo.
- 6. Si $X \subseteq \mathbb{A}^n$ es un conjunto *finito*, entonces I(X) puede generarse con n elementos.
- 7. El ideal de $Z(x,y) \cup Z(z,w) \subseteq \mathbb{A}^4$ no puede ser generado con dos elementos (ni tampoco con tres!)
- 8. (a) Sean *a* y *b* dos enteros positivos. Muestre que la imagen de la función

$$t \in \mathbb{k} \mapsto (t^a, t^b) \in \mathbb{A}^2$$

es un cerrado irreducible y encuentre el ideal que lo define.

(b) La imagen de la función

$$t \in \mathbb{k} \mapsto (t^2 - 1, (t^1 - 1)) \in \mathbb{A}^2$$

tiene como imagen un cerrado irreducible de \mathbb{A}^2 de dimensión 1.

- 9. Sea $\phi: X \to Y$ un morfismo de variedades quasi-afines.
 - (a) Si $p \in Y$, entonces ϕ induce un morfismo $\phi_p^* : \mathcal{O}_{\phi(p),Y} \to \mathcal{O}_{p,X}$ de anillos locales que preserva los ideales maximales, esto es, tal que $\phi_+^*(\mathfrak{m}_{\phi(o)}) = \mathfrak{m}_p$.
 - (b) Si ϕ tiene imagen densa en Y, entonces este morfismo ϕ_p^* es inyectivo.
- 10. Sea X una variedad quasi-afín y $p \in X$. Hay una correspondencia biyectiva entre el conjunto de los ideales primos del anillo local $\mathcal{O}_{p,X}$ de p en X y el conjunto de las subvariedades cerradas de X que contienen a p.
- 11. Un grupo afín es una variedad afín G y un morfismo $\mu: G \times G \to G$ que hace de G un grupo de manera tal que la función $\iota: g \in G \mapsto g^{-1} \in G$ también es un morfismo.
 - (a) El grupo aditivo $G = \mathbb{k}$, con la operación de suma, es un grupo afín.
 - (b) El grupo multiplicativo $G = \mathbb{k}^{\times}$ de \mathbb{k} , visto como un abierto de \mathbb{A}^{1} , es un grupo afín.
 - (c) El grupo $GL_n(\mathbb{k})$ de las matrices inversibles con entradas en \mathbb{k} es un grupo afín.
 - (d) El grupo $SL_n(\mathbb{k})$ de las matrices de determinante 1 con entradas en \mathbb{k} es un grupo afín.
 - (e) Si G y H son dos grupos afines, entonces un morfismo de grupos afines $\phi:G\to H$ es un morfismo de grupos que es a la vez un morfismo de variedades. Encuentre todos los morfismos de grupos afines $\Bbbk\to \Bbbk$, $\Bbbk\to \Bbbk^\times$, $\Bbbk^\times\to \Bbbk$ y $\Bbbk^\times\to \Bbbk^\times$.
- 12. Sea G un grupo afín, con multiplicación $\mu: G \times G \to G$ e inversión $\iota: G \to G$. Los morfismos μ e ι inducen morfismos de álgebras $\Delta = \mu^*: \mathcal{O}(G) \to \mathcal{O}(G) \otimes \mathcal{O}(G)$ y $S: \mathcal{O}(G) \to \mathcal{O}(G)$. Por otro lado, si 1_G es el elemento neutro de G y vemos a $\{1_G\}$ como una variedad afín de la manera evidente así que en particular $\mathcal{O}(\{1_G\}) = \Bbbk$ entonces la inclusión $\{1_G\} \to G$ induce un morfismo de álgebras $\varepsilon: \mathcal{O}(G) \to \Bbbk$.

Averigüe qué es un *álgebra de Hopf* y muestre que $(\mathcal{O}(G), \Delta, \varepsilon, S)$ es un álgebra de Hopf.

13. (a) Pruebe que si X e Y son variedades quasi-afines contenidas en \mathbb{A}^n y \mathbb{A}^m , entonces el subconjunto $X \times Y$ de \mathbb{A}^{n+m} es una subvariedad quasi-afín y las proyecciones $\pi_1: X \times Y \to X$ y $\pi_2: X \times Y \to Y$ son morfismos.

- (b) Más aún, de esta manera obtenemos un producto para X e Y en la categoría de las variedades quasi-afines: cada vez que $\phi: Z \to X$ y $\psi: Z \to Y$ son morfismos con dominio en una variedad quasi-afín Z, existe un morfismo $h: Z \to X \times Y$ y uno solo tal que $\pi_1 \circ h = \phi$ y $\pi_2 \circ h = \psi$.
- 14. (a) Lea los capítulos 2 y 3 del libro *Ideals, Varieties and Algorithms* de D. Cox, J. Little y D. O'Shea.
 - (b) Si f y g son dos elementos de k[x] no simultáneamente constantes, entonces la imagen de la función

$$t \in \mathbb{k} \mapsto (f(t), g(t)) \in \mathbb{A}^2$$

es un cerrado irreducible.

- (c) Aprenda a usar el programa *Macaulay2* lo suficiente como para poder resolver en la práctica la parte 2 de este ejercicio.
- 15. (a) Traduzca, usando la correspondencia entre cerrados de \mathbb{A}^n y los ideales radicales de $\mathbb{k}[x_1,\ldots,x_n]$, el teorema que afirma que todo cerrado de \mathbb{A}^n es unión finita irredundante de cerrados irreducibles de manera única.
 - (b) En un libro de álgebra conmutativa como el de Atiyah–Macdonald el de Eisenbud, o el de D. Cox *et al.* mencionado arriba lea el teorema de descomposición primaria de ideales de un anillo conmutativo noetheriano.
 - (c) Aprenda a usar *Macaulay2* para calcular la descomposición primaria de un ideal de un anillo de polinomios.
- 16. (a) Sea G un grupo cíclico de orden primo p, sea $\gamma \in G$ un generador y sea $\omega \in \mathbb{C}$ una raíz p-ésima primitiva de la unidad. El grupo G actúa sobre \mathbb{A}^2 de manera tal que

$$\gamma \cdot (x, y) = (\omega x, \omega y)$$

para cada punto $(x,y) \in \mathbb{A}^2$. Determine el álgebra de invariantes $\mathcal{O}(\mathbb{A}^2)^G$, escríbala explícitamente como un cociente de un álgebra de polinomios y la variedad cociente \mathbb{A}^2/G . Considere primero valores pequeños de n para 'adivinar' cual es el resultado general.

(b) Sea $D = \langle r, s : r^n, s^2, srsr \rangle$ el grupo diedral de orden 2n y sea $\omega \in \mathbb{C}$ otra vez una raíz n-ésima primitiva de la unidad. Hay una acción de D sobre \mathbb{A}^2 tal que

$$r \cdot (x,y) = (\omega x, \omega^{-1} y),$$
 $s \cdot (x,y) = (y,x)$

para cada $(x,y) \in \mathbb{A}^2$. Describa explícitamente el cociente \mathbb{A}^2/D .