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§1. Lie algebras

Lie algebras

1.1. Proposition. Hello
1.1 on page 2

1.2. A Lie algebra is a vector space g endowed with a bilinear function [—,—] : g x g — g, the
bracket of g, which is antisymmetric, so that

[y, x]=~[x,y] ()

for all x, y € g, and which satisfies Jacobi’s identity

[x. [y, 2]] + [, [z x]] + [ [x, y]] = 0 (2)

for all x, y, z € g. In that case, a subalgebra of g is a subspace h) C g such that [x, y] € h whenever
x and y are elements of b.

1.3. An observation which is useful in checking that concrete examples are Lie algebras is the
following:

Proposition. Let g be a vector space and let [—, -] : g x g — g be a antisymmetric bilinear function.
(i) The function J : g x g x g — g such that

J(x,y,2) =[x, [y, 2]] + [y, [, x]] + [2, [%, 1]

forall x, y, z € g is alternating.
(ii) If g is finite dimensional and (xy, . .., x, ) is a basis of g, then [—, —| turns g into a Lie algebra
if and only if we have ] (x;, xj, xi) = 0 for all i, j, k € {1,...,n} such that i < j < k.

Proof. (i) We have to check that J(x,x,y) = J(x, y,y) = 0 for all x and y in g, and this follows
from a direct calculation. For example, we have J(x,x, y) = [x, [x, y]] + [x, [y, x]] + [y, [x, x]]
and the first two terms cancel each other because [x, y] = —[ ¥, x] and the third term is zero.

(ii) To see that the bracket turns g into a Lie algebra we have to check that the function J of (i)
vanishes identically and, since that function is trilinear and alternating, that happens if and only if
J(xi,xj,xj) =0when1<i<x; <xj<xj<n. O

1.4. It follows immediately from this proposition that if g is a vector space of dimension at most
two any bilinear function [-, -] : g x g > g turns g into a Lie algebra. Indeed, in that case the
function J of the proposition vanishes identically simply because it is trilinear and anti-symmetric.

As aless trivial example of how this proposition can be used, let g = k* and let [, ~] : gxg — g
be the cross product. If {x, y, z} is the standard basis of g, we then have

[x. 7] =2 [y.2] = x, [z.x] = y.



We claim that we obtain in this way a Lie algebra. As the cross product is bilinear and anti-
symmetric, Proposition 1.3 tells us that to check that Jacobi’s condition is satisfied we need only
compute that

J(x,3,2) =[x [y 2]] + [ [z x]] + [z [ y]] = (o x] + [y y] + [2,2] = 0.

More generally, we have the following result:

Proposition. Let g be a vector space of dimension 3 and let [—,—] : g x g — g be an anti-symmetric
bilinear map. Let {x, y, z} be a basis of g and suppose that the scalars a;, b;, c; are such that
[y,z] = a1x + b1y + c1z, [2,x] = axx + byy + 22, [x,y] = asx + b3y +c3z.  (3)

The bracket [, —] satisfies the Jacobi identity if and only if

ar b by «a by «a

as bs

ar ¢ a, b

as bs

a; €

b >

a; € by ¢ by «¢3 as 63'

Proof. The bracket satisfies the Jacobi condition if and only if the function J from Proposition 1.3
vanishes identically. Now g is 3-dimensional and ] is alternating and bilinear, so this happens if
and only if J(x, y,z) = 0. Computing the left hand side of this equation using the relations (3) one
finds that the condition is equivalent to the three equations given in the lemma. O]

1.5. If g and b are Lie algebras, a linear function f : g — b is a morphism of Lie algebras if

[f(x), f(D)] = f([x, y]) forallx, y € g.

The brackets appearing here in the left and right hand side are those of of b and of b, respectively.
It is immediate that the identity function of any Lie algebra is a morphism of Lie algebras, and

that the composition of morphisms of Lie algebras is again one: it follows from this that there is a

category Lie whose objects are Lie algebras and whose arrows are morphisms of Lie algebras.

1.6. An ideal of a Lie algebra g is a subspace i of g such that
[x,y]eiforallx e gandall y €.

In particular, an ideal is a subalgebra.
In every Lie algebra g the subspaces 0 and g are ideals. We say that g is simple if it has exactly
two ideals, which are then of course these two; the zero Lie algebra is thus not simple.

1.7. The ideals of Lie algebras play a role similar to that of ideals in rings:

Proposition. (i) The kernel of a morphism of Lie algebras f : g — b is an ideal of g.
(ii) If g is a Lie algebra and i is an ideal of g, then there is a unique Lie algebra structure on the
quotient space g/i such that the canonical function p : g — g/i is a morphism of Lie algebras.
If x and y are elements of g, then the bracket on g/i is such that

[x +1,y+i] =[x, y] +1.



Proof. (i) Let f : g — b be a morphism of Lie algebras. If x € g and y € ker f, then

f(leyD) = f(x), f(»)] = [f(x),0] =0,

so that [x, y] € ker f. This tells us that ker f is an ideal of g.

(ii) Let g be a Lie algebra and let i be an ideal of g.

Let x € g. We consider the function ¢, : y € g~ [x, y] +1 € g/i. It is clearly linear and maps i
to zero: if y € i, then ¢ (y) = y +1 = i. It follows from this that there exists a unique linear map
Cx:g/i— g/isuchthat ¢y (y+1) = cx(y) +iforall y e g.

There is a function ¢ : g — Endy(g/i) such that ¢(x) = ¢, for all x € g. It is easy to see that it
is linear, and it maps i to zero: indeed, if x € i, then for all y € g we have

Ex)(y+i) = &y +i) = [x.y] +i=1,

since i is an ideal. It follows from this that there is a unique linear function ¢ : g/i - End(g/i)
such that

Cx+i)(y+i) =c(x)(y) =[x, y] +i

for all x, y € g. We may now define a bracket [—, -] : g/i x g/i — g/isothat [x +1i, y+i] = ¢(x)(y)
for all x, y € g or, in other words,

[x+1i,y+i] =[x, y] +1. (4)

This bracket is anti-symmetric and satiafies Jacobi’s identity —this follows immediately from
the last equation and the fact that g is a Lie algebra— so that it turns the quotient g/i into a Lie
algebra. The canonical function p : x € g — x +1i € g/i is a morphism of Lie algebras: this is just a
restatement of the equality (4).

To finish the proof of the proposition, we have to check the uniqueness claim. Suppose that
[-,-]":g/ix g/i — g/iis abracket on g/i such that the canonical function p is a morphism of
Lie algebras. If x and y are elements of g, then we have

[, y]+i=p([x. y]) = [p(x), p(N] = [x + Ly + 1]

and this tells us that in fact the bracket [—, —]" coincides with the one we define before. O]

Examples

Abelian Lie algebras

1.8. If g is a vector space, the zero bilinear map [—,—] : g x g — g turns g into a Lie algebra
—indeed, the two conditions (1) and (2) are trivially satisfied for this bracket. We say that a Lie
algebra is abelian if its bracket vanishes identically, as in this example. Every subspace of an abelian
Lie algebra is a subalgebra and even an ideal. Every linear map between abelian Lie algebras is a
morphism of Lie algebras and two abelian Lie algebras are isomorphic if and only if they have the
same dimension are vector spaces.



Lie algebras associated to associative algebras

1.9. Let us recall that an associative algebra is a vector space A endowed with a bilinear multiplica-

tion - : A x A — A which is associative, in that x - (y-z) = (x - y) -z for all x, y, z € A; as usual, we

will write xy instead of x - y whenever this is convenient and does does not cause any confusion.
From an associative algebra we can construct a Lie algebra, as follows:

Proposition. Let A be an associative algebra. The map [—,—]: A x A - A such that

[x,y] =xy - yx

forall x, y € A turns A into a Lie algebra, which we denote Lie(A). This Lie algebra is abelian if and
only if the associative algebra A is commutative.

Proof. If x and y are elements of A, we have

[y,x]=yx—xy=~-(xy-yx)=~[x,y]

so the bracket is anti-symmetric. On the other hand, let us fix x, y and z in A. We have

[x, [y, 2]] =[x, yz = zy] = x(pz) - x(2zy) = (y2)x + (zy)x

and, similarly,

[y [2:x]] = y(2x) = y(xz) = (zx)y + (x2)y
and

[z [x, y]] = 2(xy) - 2(yx) = (xy)z + (yx)z.

If follows that the left hand side in Jacobi’s condition (2) is

x(yz) = x(zy) = (yz)x + (zy)x + y(zx) - y(x2)
—(zx)y + (x2)y + z(xy) — z(yx) = (xy)z + (yx)z

and since A is an associative algebra the terms appearing in this expression cancel in pairs: x(yz)
with (xy)z, x(zy) with (xz)y, and so on. We see that Jacobi’s equation holds and that Lie(A) is
therefore a Lie algebra. The last claim of the proposition is immediate, in view of the definition of
the bracket of Lie(A). O

1.10. The condition that the algebra A be associative was used in the proof the Proposition 1.9 but
it is not a necessary condition for the conclusion of that proposition to hold. If A is a possibly non-
associative algebra with multiplication - : A x A - A we may define a bracket [-,-]: Ax A —> A
as before, putting [x, y] = xy — yx for all x, y € A. This bracket is anti-symmetric but Jacobi’s
condition is no longer automatically satisfied. We say that the possibly non-associative algebra A
is Lie-admissible if [—, -] satisfies Jacobi’s condition. If that is the case, we write Lie(A) the
corresponding Lie algebra. In this language, Proposition 1.9 tells us that associative algebras are
Lie-admissible. On the other hand, it is immediate to check that a Lie algebra g is Lie-admissible.



Let us give a genuinely new example of a class of Lie-admissible algebras. If A is a possibly
non-associative algebra, the associator of A is the function

ag:(x,9,2) e AxAx A x(yz) — (xy)z € A,

which is manifestly trilinear. It is clear that the algebra A is associative exactly when its asso-
ciator a4 is identically zero, so we view a4 as a measure of how badly associativity fails in A.
We say that the algebra A is alternative if its associator is anti-symmetric or, equivalently, if
aa(x,x,y) = aa(x,y,y) = 0forall x, y € A. We are interested in these notions because of the
following result:

Proposition. An alternative algebra is Lie-admissible.

Proof. Let A be an alternative algebra and let a4 : A x A x A — A be its associator. We put on A
the bracket [-, -] : (x, y) € Ax A~ xy — yx € Aand consider the function J: Ax Ax A - Aof
Proposition 1.3. Since [—, —] is anti-symmetric, to prove that A is Lie-admissible we have to show
that the function J is identically zero. As in the proof of Proposition 1.9, we find that if x, y, z € A,
then

J(x,9,2) = x(yz) - x(2y) = (y2)x + (zy)x + y(2x) - y(x2)
= (zx)y + (x2)y + z(xy) — z(yx) = (xy)z + (yx)z

and this can be written in terms of the associator as

aa(x,y,2) —aa(x,z,¥) + aa(z,x,y) —aa(z, y,x) + aa(y,2,x) — aa(y, x,2).

As the associator is anti-symmetric, this is easily seen to be equal to zero. O]

Of course, this proposition is of interest only if we are able to exhibit Lie-admissible algebras
which are not associative. We refer the reader to the book [CS2003] by John H. Conway and Derek
Smith and to the survey [Bae2002] for information on the Cayley-Dickson algebra O of octonions,
an important and beautiful example of an alternative algebra which is not associative.

The general and special linear Lie algebra on a vector space

1.11. The most important instance of the construction of Proposition 1.9 is the following. If V' is a
vector space, then we have the associative algebra Endy (V') of all linear functions V — V, whose
multiplication is the composition of functions. We write gl( V') the Lie algebra Lie(Endy(V)) and
call it the Lie algebra of endomorphisms of V or the general linear Lie algebra on V.

Proposition. Let V' be a vector space.
(i) The Lie algebra gl(V') is finite-dimensional if and only if V is finite-dimensional. If that is the
case and n = dim V, then dim gl(V) = n?.
(ii) The Lie algebra gl( V') is abelian if and only if V is of dimension zero or one

Proof. The first part is clear. The second one follows at once from the fact that the associative
algebra Endy (V') is commutative if and only if V is of dimension at most one. O]



1.12. Let V be now a finite-dimensional vector space, so that we have available trace function
tr: Endg (V) — k. This is a linear function such that whenever f € Endy (V) and % is an ordered
basis of V we have

trf =tr[f]a
where on the right hand side of the equality [ f]4 denotes the matrix of the linear map f with
respect to the basis % and tr[ f] 4 its trace. This trace function has the property that

tridy =dimV
and

trfg=trgf (5)

whenever f and g are elements of Endy (V). Moreover, it is easy to see that these two properties
uniquely characterize it among linear maps from Endy (V) to k.

1.13. Proposition. Let V be a finite-dimensional vector space of dimension n. The subspace

sl(V) = {f egl(V) : tr(f) = 0}
of gl(V) is an ideal —and therefore a subalgebra— of gl( V') of dimension n* — 1.
We call s[(V') the special linear Lie algebra on V.
Proof. If x and y are elements of gl( V'), then the identity (5) tells us that tr(fg) = tr(gf), so that

tr[f.g]l=tr(fg-gf)=0

and, in particular, [x, y] € s[(V). This implies at once that s[(V') is a subalgebra of gl(V). The
linear function tr : Endi (V') — k is not the zero function, so that its kernel —which is precisely
5I(V)— has codimension 1in Endy (V) and, as Endy (V') has dimension n?, this tells us that we
have dim s[(V') = n? — 1, as the proposition claims. O

Lie algebras associated to bilinear forms

1.14. Let again V be a vector space and let us consider now a bilinear form f: Vx V - kon V.
We say that a linear map f : V — V preserves f8 if for all x, y € V we have that

B(f(x),y) +B(x. f(y)) =0.

Proposition. Let V be a vector space and let 3 : V x V — k be a bilinear form. The subset o(V, f3)
of gl(V') of all linear maps which preserve 3 is a Lie subalgebra of gl(V).

Proof. An immediate verification shows that o(V, ) is a subspace of gl{(V'). On the other hand,
if f and g are elements of o(V, ), since f preserves 3 we have that

B(f(9(x)),y) + B(9(x), f(»)) =0, Bf(x),9(»)) +B(x. f(9())) =0



and since g preserves f3 that

B9(x), f(3)) +B(x, 9(f())) =0, Ba(f(x)),y) +B(f(x), 9(»)) = 0.

The sum of the left hand sides of the first two of these equations minus the sum of the left hand
sides of the other two is then

B(Lf>91(x), y) + B(x, [, 91(»)) =0,
so that [ f, g] € o(V, ). This proves the proposition. 0

Lie algebras of derivations

1.15. Let A be a possibly non-associative algebra, that is, a vector space endowed with an arbitrary
bilinear map - : A x A - A which we view as a multiplication on A. A linear function f: A - A s
a derivation of A if for all x, y € A we have that

flx-y)=f(x)-y+x-f(y)

Proposition. Let A be a possibly non-associative algebra. The subset Der(A) of gl(V') of all deriva-
tions of A is a Lie subalgebra of gl(A).

Proof. A straightforward computation proves that Der(A) is a subspace of gl(V'). To see that it is
a subalgebra, let f and g be two elements of Der(A) and let us show that [ f, g] is also in Der(A).
If x and y are in A, then we have

glx-y)=g(x)-y+x-g(y)

because f is a derivation, and then, since g is a derivation,

f(g(x-y)) = f(g(x)-y)+f(x-9(y)) = f(g(x))-y+g(x) - f(¥)+f(x) g(y)+x-f(g(y))

Reversing the roles of f and g, we also have that

g(f(x-y))=g(f(x))-y+ f(x)-g(y) +g(x)- f(y) +x-g(f(¥)).

and subtracting we find that

[f>9](x-y)=f(g(x-y)) - g(f(x-y))
=f(g(x))-y+x-f(g(y)) - g(f(x))-y-x-g(f(y))
[f>91(x) -y +x-1f,gl(y).

This tells us that [ f, g] € Der(A), as we wanted. O



1.16. Let us compute as an example of this construction the Lie algebra of derivations of the
algebra k[ X] of polynomials with coefficients in k on the variable X. We start by obtaining a
description of all derivations of this algebra.

Lemma. For every p € k[ X] the function

dp: f ek[X] > pf' ek[X]
is a derivation of the algebra k[ X]. Conversely, if d : k[ X ] — k[ X] is a derivation, then there is a
unique p € k[ X] such that d = d,,.
Proof. Let p e k[X].If f, g € k[X], then we have

dp(fg)=p(fg) =pf'g+pfg =dp(f)g+ fdy(9)

because the derivative satisfies Leibniz’s formula, and this tells us that d,, is a derivation of k[ X].
This proves the first part of the lemma.

Suppose now that d : k[ X] — k[X] is a derivation and let p = d(X). We claim that for all
n € Ny we have

d(X™) = nX""p, (6)

and this implies that the function d coincides with the function d,, for it coincides with it on every
element of the basis { X" : n € Ng} of k[ X].
We check (6) by induction on n. We have

d1) =d(1-1) =d(1)-1+1-d(1) = 2d(1)

because d is a derivation, and therefore d(1) = 0. This means that the equality (6) holds when
n = 0. On the other hand, if n € Ny and we suppose inductively that d(X") = nX" ! p, then we
have that

d(Xn+l) _ d(Xn ‘X) _ d(X”) X+ X d(X) = an_le-i-an = (l’l +1)an.

The induction is thus complete. O
For obvious reasons, if p € k[ X ] we will write
d
Pax
to denote the derivation dj, : k[X] — k[X] described in the lemma. It follows at once from it
that the function p € k[ X] — pdix € k[ X] is bijective, and it is easy to check that it is in fact an

isomorphism of vector spaces. To complete the description of the Lie algebra Der(k[X]) we need
to compute its bracket:

Proposition. If p, g € k[ X], the bracket in Der(k[X]) is such that

[P pax] = (p'a-pd) -



Proof. If f € k[ X], then we have
dp(dq(f)) =dp(af’) = p(af’) =pq' f' + paf”
and, similarly,

dp(dp(f)) = p'af' +paf’,

so that

[dp, dg](f) = dp(dp(f)) = dg(dp(f)) = pa'f' = p'af" = dpgr-prqa(f)-
It follows from this that [d, dq] = dpq/—prg> and this is what the proposition claims.

1.17. HACER: Perfection.
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§2. Representations of Lie algebras

Representations, modules and morphisms

2.1. Let g be a Lie algebra. A representation of g on a vector space M is a morphism of Lie algebras
p:g— gl(M) from g to the Lie algebra of endomorphisms of M. Explicitly, this means that the
function p is linear, that it maps each x € g to an endomorphism p(x) : M — M of the vector
space M, and that whenever x, y € g we have that

[p(x), p(¥)] = p([x, ¥]). )

If x € g we often write x, instead of p(x), and in this notation the condition (7) says that for all
X, ¥ € g we have xpr 0 yar — yar 0 xp1 = [%, ¥]m-

On the other hand, a g-module is a pair (M, -) in which M is a vector space and - : gx M - M
is a bilinear function such that

x-(y-m)=y-(x-m)=[x,y]-m. (8)

whenever x, y € g and m € M. Usually we say that M is itself a g-module, leaving the action -
implicit, and whenever the Lie algebra g about which we are talking can be determined from the
context, we speak simply of modules instead of g-modules.

The notion of representations of Lie algebras and that of their modules are related:

o If p: g — gl(M) is a representation of g on a vector space, we can construct an action

(xom) € gx Mo p(x)(m) € M

of g on M. The fact that p is a linear map implies at once that this action is a bilinear function,
and from the condition that p satisfies (7) it follows that we in fact have a g-module (M, -).
o Conversely, if we are given a g-module (M, -), then we can construct a representation
p:g— gl(V) of gon M putting, for each x € g and each m € M, p(x)(m) = x - m. That p
is a linear function is a consequence of the bilinearity of the action - and, as is to be expected,
the condition (7) is a direct consequence of the condition (8).
These two constructions are easily seen to be mutually inverse, and this shows that the two notions
presented above are in fact equivalent. We will switch from one point of view to the other whenever
we find it convenient.

2.2. If M and N are two g-modules, then a linear map f : M — N is a morphism of g-modules if
for all x € g and all m € M we have that

flx-m)=m- f(m).

We denote homy (M, N) the set of all morphisms of g-modules M — N. It is easy to see that it is a
subspace of the space homy (M, N) of all linear functions M — N.

The identity map of a g-module is a morphism of g-modules, and the composition of two
morphisms of g-modules is itself a morphism of g-modules: it follows from this that there is a

11



category whose objects are the g-modules and whose arrows are the morphisms of g-modules.
We write it ;Mod and we let ;mod be its full subcategory spanned by the g-modules which are
finite-dimensional as vector spaces.

2.3. As usual, if M is a g-module, we say that a subspace N of M is a submoduleof M if x -n e N
for all x € g and all #n € N. In that case we can restrict the action - : g x M — M of g on M to an
action-: g x N — N on N, and it is immediate that the latter turns N into a g-module. We will
always view submodules as g-modules in this way.

Proposition. (i) If f : M — N is a morphism of g-modules, then the kernel of f is a submodule
of M and the image of f is a submodule of N.
(ii) If M is a g-module and N € M is a submodule of M, there is a unique g-module structure on
the quotient space M /N such that the canonical function p : M — M/N is a morphism of
g-modules. With respect to that structure, we have

x-(m+N)=x-m+N

forall x € gand all m € M.

Proof. (i) Let f : M — N be a morphism of g-modules. If x € g and m € ker f, then we have
f(x-m)=x-f(m)=x-0=0,so that m is in fact in ker. Similarly, if n € im f and m € M is
such that f(m) = n, we have that x - n = x - f(m) = f(x - m) € im f. This tells us that ker f isa
submodule of M and that im f is a submodule of N.

(ii) Let M be a g-module and let N be a submodule of M. Let pps : g - gl(M) be the
representation of g corresponding to M and let p : M — M/N be the canonical function onto the
quotient vector space M/N. If x € g, the linear function

meMw— py(x)(m)+NeM/N

maps the subspace N to 0, so there exists a unique linear function p/n(x) : M/N — M/N such
that

puyn(x)(m+N) =ppu(x)(m)+N

for all m € M. In this way, we obtain a function p/y : g = gl(M/N). It is linear: if x, y € g and
a, b € k, we have for all m € M that

pm/n(ax +by)(m+N) =py(ax+by)(m)+N
apy(x)(m) +bpm(y)(m)+N
= aPM/N(x)(m) + bPM/N(y)(m)’

so that p/n(ax +by) = apyyn(x) +bppyn(y). Theaction - : g x M/N — M/N corresponding
to the function p,y/y is such that

x-(m+N)=x-m+N (9)

12



for all x € g and all m € M, and then we can compute that for all x, y € g and all m € M we have
x-y-(m+N)-y-x-(m+N)=(x-ym-y-x-m)+N=[x,y]- m+N=[x,y]-(m+N).

it follows that p,/y is a representation of g on M/N. With respect to this structure, the function
p: M — M/N is a morphism of g-modules: indeed, the equation (9) means precisely that
x-p(m)=p(x-m)forall x € gandall m e M. O

2.4. Submodules of M/N.]

Examples and constructions

Trivial modules

2.5. If M is a vector space, the zero bilinear function - : g x M — M turns M into a g-module, and
we say that a g-module whose action is the zero function is frivial. In particular, if we endow the
vector space k with its trivial g-module structure we obtain a g-module which we call the trivial
g-module. Whenever we view k as a g-module it will be with respect to this trivial structure.

2.6. If M is a module, the invariant subspace of M is
MP={meM:x-m=0forall x € g}.

The key properties of the invariant subspace are the following:

Proposition. (i) If M is a module, then the invariant subspace M? is the unique maximal trivial
submodule of M.
(ii) If M and N are modules and f : M — N is a morphism of modules, then f(M9%) € N9 and
the restriction f|ps : M® — N9 is a morphism of modules.
(iii) if M is a g-module, a linear function f : k — M is a morphism of g-modules if and only if
f(1) € M8. There is therefore a function

@ : f e homy(k, M) — f(1) e M®

and it is an isomorphism of vector spaces.

Proof. (i) Let M be a module. If m € M?, then for all x € g we have x - m = 0 € M: this tells us
that M? is a submodule of M. It is clear from this also that M9 is a trivial submodule. To show
it is the unique maximal one, let us suppose that N is a trivial submodule of M. If n € N, then
the triviality of N means that x - n = 0 for all x € g, and this tells us that n € M?: we thus see that
N c M¥, as we wanted.

(ii) In the situation of the proposition, if m € M and x € gwe have x - f(m) = f(x-m) =0, so
that f(m) € N9. This shows that the first claim is true, and the second one is then immediate.

(iii) Let M be a g-module and let f : k — M be a linear function. If f(1) is in M9, then for all
m € k we have f(m) = mf(1) € M9) and therefore f(x-m) =0 = x - f(m). This shows that f is
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a morphism of g-modules in that case. Conversely, if f is a morphism of g-modules, for all x € g
we have that x - f(1) = f(x-1) = f(0) =0, so that f(1) € M®.

Let us now show that the function ® defined in the statement of the proposition, which is
easily seen to be linear, is an isomorphism. If f € homy(k, M) is such that ®(f) = f(1) = 0, then
of course f is the function, since 1 generates k as a vector space: the function @ is thus injective.
On the other hand, if m € M9 then the linear function f : A € k = Am € M is a morphism of
g-modules according to what we have already proved, and clearly ®( f) = m. This proves that ®
is surjective. O

2.7. If M is a g-module, we denote [g, M| the subspace of M generated by the set
M ={x-m:xeg,meM}.

We claim that [g, M] is a submodule of M. Indeed, since every element of M’ is a linear combina-
tion of elements of M’ and the action of g on M is linear, to see that [g, M] is a submodule it is
enough to check that for all x € g and all m € M we have x - m € [g, M|, and this is immediate,
since in fact x - m belongs to M’

It follows from this that the quotient M/[g, M ] has a canonical g-module structure. We call it
the space of coinvariants of M and denote it M. It has properties dual to the invariant subspace:

Proposition. (i) If M is a g-module, then the space of coinvariants M is a trivial g-module. The
subspace [ g, M| is the unique minimal g-submodule N of M such that the quotient M /N is
trivial.

(i) If f : M — N is a morphism of g-modules, then f([g, M]) € [g, N| and there is a unique
linear function fy: Mg — Ny such that fy(m +[g, M]) = f(g) + [g, N] for all m € M.

Proof. (i) If m € M, then in My we have for all x € g that
x-(m+[g,M]) =x-m+[g,M]=[g,M],

which is the zero element of M, because x - m € [g, M]. This tells us that M is a trivial module.
Suppose now that N is a submodule of g such that the quotient M/M is a trivial g-module. If
x € gand m € M, we then have that

x-(m+N)=x-m+N=N,

so that in fact x - m € N. This tells us that the set M’ defined above is contained in N and, therefore,
that the subspace [g, M ] of M, which is generated by M’, is also contained there. This proves what
we want.

(i) Let f : M — N be a morphism of g-modules. To show that f([g, M]) < [g, N] it is enough
that we show that f(M’) c [g, N], for the set M’ generates the subspace [g, M] and the function f
is linear. This is immediate: if x € g and m € M, then the fact that f is a morphism of g-modules
tells us that f(x-m) = x- f(m) € N’ c [g, N]. The first claim of (ii) is thus proved, and the second
one follows immediately from it. O
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The adjoint representation

2.8. Let g be a Lie algebra. Since the bracket of g is a linear function, for each x € g the function

ad(x):yegr[x,yleg
is linear, and there is therefore a function ad : g — gl(g) such that ad(x)(y) = [x, y] for all
X, y € g. It is itself a linear function and it is moreover a representation of g. To see this, let us
observe that the action - : g x g — g corresponding to the function ad is simply the bracket of g,
so that x - y = [x, y] whenever x, y € g, and that this action satisfies condition (8): if x, y € g and
z € g, then

x-y-z=y-x-z=[x[yz]]-[y[xz],

and this is equal to

[[x.7).2] =[x, 5] 2

precisely because Jacobi’s condition holds in g. We call the representation ad the adjoint represen-
tation of g and the corresponding g-module g the adjoint module of g.

Spaces of homomorphisms

2.9. If M and N are g-modules, there is a g-module structure on the vector space homy (M, N)
of all linear maps M — N with action - : g x homg(M, N) - homi (M, N) such that for all x € g,
f € homg(M, N) and m € M we have

(x-f)(m) =x-f(m) - f(x-m). (10)

To see that this does define a g-module structure on homy (M, N') we have to do the following
calculation: if x and y are elements of g and f is element of homy (M, N), then for all m € M we
have that

(x-y-f)(m)=x-(y-f)(m)=(y-f)(x-m)
=x-y-f(m)—x-f(y-m)—y-f(x-m)+f(y-x-m)
and, similarly,
(y-x-f)(m)=y-x-f(m)-f(x-m)-x-f(y-m)+f(x-y-m),
so that
(x-y-f-y-x-f)(m)=x-y-f(m)=y-x-f(m)-f(x-y-m=-y-x-m)
=[x, y]- f(m) = f([x,y]-m)
= ([x,y]- f)(m).
This tells us that in fact
x-y-f-y-x-f=[xy]f

which is the required compatibility relation.
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2.10. The module structure on hom-spaces described above is compatible with the usual operations
on these spaces. For example, maps induced by composition are morphisms of g-modules:

Proposition. Let M, N and P be g-modules. If f : M — N is a morphism of g-modules, then the
linear maps

f*:gehomg(N,P)~ go fehomyg(M,P)
and
fe:gehomg(P,M)~ fofehomg(P,N)

are morphisms of g-modules.

Proof. Let f : M — N be a morphism of g-modules. The first map f* described in the proposition
is a morphism of g-modules because for all x € g and all g € homy (N, P), we have that

[ (x-g)(m) = (x-g)(f(m))
=x-g(f(m)) - g(x-f(m))
=x-g(f(m)) - g(f(x-m))
=x-f(g)(m) - f*(g)(x-m)
= (x-f7(9))(m)

forall m € M, so that f*(x-g) =x- f*(g).
Similarly, the second map in the proposition is a morphism because for all x € g and all
g € homy (P, M) we have

fe(x-9)(p) = f((x-9)(P))
= f(x-g(p)) - f(g(x-p))
=x-f(g9(p)) - f(g(x-p))
=x-f(9)(p) - £ (9)(x- p)
= (x-£:(9)(p)

forall p € P,so that f,(x-g) = x- f(9). O
2.11. The following very simple observation is extremely useful:

Proposition. If M and N are g-modules, then we have homy (M, N)? = homy(M, N).

It is important to notice that the claimed equality makes sense: the space homy(M, N) of
morphisms of g-modules is by definition a subspace of homy (M, N).

Proof. A linear map f : M — N is a morphism of g-modules if and only if for all x € g and all
m € M we have that x - f(m) = f(x - m), and this condition clearly holds if and only if we have
x- f=0forall x € g, thatis, if f € homy (M, N)S. O
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2.12. If M is a g-module, then we write M* its dual space, which is simply homy (M, k). Viewing
the vector space k that appears here as endowed with its trivial g-module structure, the construction
of 2.9 turns M* into a g-module. We call M* the dual g-module of M or the contragredient
representation. The action - : g x M* — M”™ is such that

(x-¢)(m) = —¢(m)
forall x € g, all ¢ € M™ and all m € M; this is simply what the formula (10) for the action tells us
in this case, since k is a trivial module.
As a specific example of this, we may consider the dual representation g* of the adjoint
representation of g that we described in 2.8. We call g* the coadjoint representation of g.

Tensor products

2.13. Let M and N be two g-modules, and let pp; : g — gl(V) and py : g — gl(N) be the
associated representations of g. If x € g, then we may consider the linear map

p(x)=pu(x)®@idy +idy @ py(x) : M® N - M ® N,

and in this way we obtain a function p : g - gl(M ® N) which is easily seen to be linear. The
corresponding action of g on M ® N is the unique bilinear map -: g x (M ® N) - M ® N such
that forall x € g, m € M and n € N has

x-men=(x-m)@n+mae (x-n).
We claim this turns M ® N into a g-module. Indeed, if x, y € g, m € M and n € N, then we have
x-y‘m®n:x-((y‘m)®n+m®(y-n))
=(x-ymeon+t(ym)o(x-n)+(x-m)@(y-n)+me(x-y-n)
and, similarly,
yxmen=(y-xm)en+(x-m)@(y-n)+(y- m)@(x-n)+me(y-x-n).
Subtracting, we see that
Xy m@n-y-x-moen
=(x-ymeon-(y-xm)en+m®@(x-y-n)-me(y-x-n)
=(x-ym-y-x-moOn+m(x-y-n—-y-x-n)

=([xy]-m)en+me ([x,y]-n)
=[x,y] - men.

This means that the equality
X-y-t—y-x-t=[x,y] t
forall x, y € g and all elementary tensors t of M ® N. Since the elementary tensors generate M ® N

as a vector space, this implies at once that the equation holds in fact for all t in M ® N, an this
proves that we do have a g-module structure on M ® N, as we claimed.
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2.14. The usual properties of the tensor product of vector spaces hold in the context of modules
over a Lie algebra:

Proposition. (i) If M, N and P are g-modules, then the linear map
a:M®(N®P)—> (M®N)®P

suchthat a(m® (n®@p)) = a((men)@p) forallm € M, n € N and p € P is an isomorphism
of g-modules.
(ii) If M and N are g-modules, then the linear map

B:M®N->N®M

such that B(m ® n) = n ® m for allm € M and all n € N is an isomorphism of g-modules.
(iii) If M is a g-module, then the linear maps

AmeM—1l1omek® M, pmeM—-mele Mk

are isomorphisms of g-modules.

Proof. We know from linear algebra that there are maps «, 8, A and p as described in these three
statements and that they are isomorphisms of vector spaces. In order to prove the proposition, we
need only show that they are morphisms of g-modules and this follows from a direct computation
in each case. O

2.15. Similarly, the well-known adjoint relation between homy and ® is compatible with module
structures:

Proposition. Let M, N and P be g-modules. The linear map
® : homg(M ® N, P) - homy (N, homy (M, P))

such that ®(f)(n)(m) = f(m ® n) for all f € homg(M ® N,P), n € N and m € M is an
isomorphism of g-modules.

Proof. We know from linear algebra that there is such a linear map ® and that it is an isomorphism
of vector spaces, so we need only show that that map is a morphism of g-modules. Let x € g and
fehomg(M® N, P).If m e M and n € N, we have that

O(x-f)(n)(m) = (x-f)(men)
=x-f(me®n)-f(x-men)

=x-f(men)-f((x-m)®n)— f(me (x-n)). (11)

On the other hand,

(x-@(f))(n) = x-©(f)(n) - O(f)(x-n),
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so that

(x-O(f))(m)(m) = (x- O(f)(n))(m) = D(F)(x - n)(m)
= x- ®(f)(n)(m) - O() () (x - m) - O(f) (x - n)(m)
—x-f(men) - f((x-m)®n) - f(me (x-n)).

Comparing this with (11) we see that

®(x- f)(n)(m) = (x- ©(f))(n)(m),

and this equality, which holds for all n € N and all m € M, implies at once that ®(x - f) = x- O(f).
This shows that ® is a morphism of g-modules, as we wanted. O
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§3. The Lie algebra sl,(k) and its finite-dimensional
representations

3.1. We fix an algebraically closed field k of characteristic zero and let 5[, (k) be the Lie subalgebra
of gl, (k) consisting of those matrices with trace equal to zero. We put

e (0)) a5 %) ()

The set {E, H, F} is a basis for s[;(k) and a computation show that we have
[H,E] = 2E, [E,F]=H, [H,F] = -2E.

In this chapter we will work almost exclusively with this Lie algebra, which we will write simply
as g and to whom we will omit omit explicit references unless they are needed. In particular, we
will speak of modules instead of s, (k)-modules, and so on.

Simple modules

3.2. A module is simple if it is nonzero and it does not have any non-zero proper submodules. Our
first result is that somewhat miraculously we have a complete description of all finite-dimensional
simple modules over sl (k). The basic observation that allows us to do this is the following:

Lemma. Let M be a module. If m € M is an eigenvector for Hyy of eigenvalue A € k then
H-E-m=(A+2)E-m, H-F-m=(A-2)F-m.

In particular, if the vector E - m is non-zero, then it is an eigenvector of Hyr of eigenvalue A — 2 and if

the vector F - m is non-zero, then it is an eigenvector of Hyy of eigenvalue A — 2.

Proof. Let m € M be a non-zero vector and let A € k be such that H - m = Am. We have
H-E-m=E-H-m+[H,E]-m=AE-m+2E-m=(A+2)E-m
and, similarly, H- F - m = (1 — 2)F - m, as the lemma claims. O

3.3. The lemma tells us that if M is a module, then the maps Ej; and Fj, interact in a very special
way with the eigenspaces of Hy,. Building up on this, we can completely describe simple modules:

Proposition. Let M be a finite-dimensional simple module of dimension r + 1. There exists a basis
{mgy, my,...,m.} of M such that for each i € {0, ..., r} we have

0, ifi = 0;
E-mi =

(r—i+l)m;_y, if0<i<r;
H-m;=(r-2i)m;

{(i+1)m,~+1, ifo<i<r

F-m;=
"o, ifi=r.
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Proof. Let M be a simple finite-dimensional module. We consider on our ground field k the
partial order < such that whenever A and y are elements of k we have

A <p <= there exists an i € Ny such that g — A = 2i.

Since k is algebraically closed, we know that the map Hjs : M — M has eigenvalues and, since it
has finitely many, it is clear that there exists an eigenvalue A of Hj; which is maximal with respect
to the order of k. Let m € M be an eigenvector for Hys corresponding to A. As

H-E-m=E-H-M+2E-m=(A+2)E-m,
we must have that
E-m=0, (12)

for otherwise E - m would be an eigenvector de Hy, corresponding to the eigenvalue A + 2 and
A <A +2ink, contradicting the choice of A.
If j € Ny is such that F/ - m # 0, then the j + 1 vectors

m, F-m, F*-m, ..., Fl.m (13)

are all non-zero. Since m is an eigenvector of Hs of eigenvalue A, a straightforward induction
using Lemma 3.2 shows that we more generally have that

H-F-m=(A-2i)F-m  forallie{0,...,j}. 09

It follows that the j + 1 vectors listed in (13) are eigenvectors of Hy; corresponding to distinct
eigenvalues and are therefore linearly independent. Of course, this implies that j + 1 is at most
equal to dim M. We thus see that we may consider the number

¢=max{jeNg: F -m=%0},

for the set whose maximum we are taking is non-empty and bounded.

Let us write m; = %F" -m for each i € {0,..., ¢}. We want to see how the elements of g act on
these vectors.

« From their very definition and the choice of the number ¢, it is clear that we have

i+1)mji, ifo<i<é
R O (15
0, ifi==¢.
o On the other hand, the equalities (14) tell us that
H-m;=(A-2i)m; forallie{0,...,¢}. (16)
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« Finally, we claim that

. 0, ifi = 0; )
= 17
i+ Dmiy, ifo<ic<e

That this holds when i = 0 is precisely the content of the equality (12). If instead i = 1, we
have

E-my=E-F-m=F-E-m+H-m=Am=1A-1+1)m,

so that (17) also holds in this case. Finally, if we suppose that1 < i < £ and that (17) holds
for i, we have

1 1 1
E-m,-+1:.—E-F-m,-:_—F-E-m,-Jr_—H-m,-
i+1 i+1 i+1
A—i+1 A=2i
= — F-mj 1+ ——Fm;
i+1 i+1
Z(A—i)m,’.

We thus see that the subspace (mq, my, ..., mg) is a submodule of M: indeed, the equalities (15),
(16) and (17) tell us that this subspace is preserved under the action of F, H and E, respectively.
Now, M does not have any proper non-zero submodules, so that subspace must coincide with M
itself. It follows that dim M = £ + 1 and, since

0=E-F*'m=0E-F-mg=0F-E-mg+0 H-mg=0el(e(A-€+1)+1-26)m
= (€+ 1A - €)m,

and my # 0, that A = £. Using this last equality, we see at once that the identities that the proposition
claims are precisely those in (15), (16) and (17). O

3.4. We can restate the description of simple modules provided by Proposition 3.3 in terms of
matrices: the proposition tells us that if M is a finite-dimensional simple module of dimen-
sion 7 + 1, then there exists an ordered basis % of M such that the matrices of the linear maps
En, Hy, Fyr i M — M with respect to 2 are

0 r 0 0

0 0 r—1 0

0 0 0 r—2

0 0 0 0

|Emll g = . )

0 2 0
0 0
0 0 0
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r 0 0 0
0 r—2 0 0
0 0 r—4 0
0 0 0 r—6
|Hml 5 =
-r+4 0 0
0 —r+2 0
0 0 -r
and
0 0 0 0
1 0 0 0
0 2 0 0
0 0 3 0
|1Faml 5 =
0 0 0
r—1 0 0
0 r 0

3.5. A direct consequence of Proposition 3.3 is the following:
Proposition. Two finite-dimensional simple modules of the same dimension are isomorphic.

Proof. Let us suppose that r € Ny and that M and M’ are two simple modules of dimension r + 1.
According to Proposition 3.3, there exist bases = {my, ..., m,} and B’ = {mj,...,m,} of M
and M’ such that the action of E, H and F on the elements of Z and of &’ are given by the
formulas given in that proposition. This implies at once that the linear map f : M — M’ such that
f(m;) = m; foreach i € {0,...,r} is an isomorphism of modules. O

3.6. On the other hand, the description of finite-dimensional simple modules provided by Propo-
sition 3.3 suggests a way of proving the existence of such modules:

Proposition. For each r € Ny there exist simple modules of dimension r + 1.

Proof. Let r € Ny and consider a vector space M of dimension r + 1 with an ordered basis
P = (my,...,m,). We define linear maps e, h, f : M - M mimicking the formulas of Proposi-
tion 3.3, so that for each i € {0,...,r} we have

o, if i = 0;
e(m;) = (r—i+)m;y, if0<i<r
h(m;) = (r-2i)m;;

f(mi) :{

(i+1)mj4, ifo<i<r
0, ifi=r.
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We claim that these linear maps satisfy the relations

[h.e] = 2e, [e.f]= h, [h, f] = -2f (18)

in the Lie algebra gl(M). To check this it is enough, in each case, to compute the result of
applying both sides of the equalities to each element of the basis %, and this can be done by direct

computation. For example, let us do this for the first of the three equalities. Let i € {0,...,r}.
We have
. (o, if i = 0;
mi —>
(r—i+1)m;_y, if0<i<r

—
(r—i+1)(r-2i+2)m;_y, if0O<i<r;
and

h
mi —> (r—2i)m;

. o, ifi =0;
(r=2i)(r—i+1)m;—y, if0O<i<r
and then [k, e](mp) =0andif0<i<r
[he](mi) = ((r—i+1)(r—2i+2) = (r=2i)(r—i+1))mj=2(r—i+1)m;y
=2e(mj_y).
It follows from this that [k, e] = 2e, as we wanted.

The fact that the equalities (18) are satisfied implies at once that the linear map p : g - gl(M)
such that p(E) = e, p(H) = hand p(F) = f is a morphism of Lie algebras, and this map p turns M
into a module over g. As dim M = r + 1, to prove the proposition it is enough that we show that M
is a simple module.

In order to do that, let us suppose that N is a non-zero submodule of M and let n be a non-zero

element of N. As % is a basis of M, there exist scalars ay, ..., a, € k such that n = aomg+---+a,m,,
and since N is a submodule of M for each i € Ny we have that

aor'mo + a;(r=2)'my+--+a,(-r)'m, =aoH' -mo+--+a,H -m,=H'-neN.

Since the r + 1 scalars r, r — 2, ..., —r are distinct, this implies that for each i € {0, ..., r} we have
aim; € N. Now n is not the zero element, so there exists a j € {0,...,r} such that a; #+ 0 and we
then have m; € N. It follows from this that

1.
mgy = —E/. m; eN
r!
and, using again that N is a submodule, we see that for each i € {0, ..., r} we have
m; =il F'-mgeN.
The whole basis # is thus contained in N, so that, of course, N = M. This proves that M is simple,

as we wanted. O
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3.7. Itis useful to observe that using the same ideas as in the proof of Proposition 3.3 we can obtain
the following slightly stronger result:

Proposition. Let M be a finite-dimensional module. If m € M is a singular weight vector of weight A,
then A is a non-negative integer and there is a simple module S of M of dimension A +1 containing m.
Ifwe put mi = F' - m for each i € {0,...,}, the set {my, ..., my} is a basis for S whose elements
are weight vectors, with

H- m; = (/\ —2i)m,~

foreachie{0,...,A}.

Proof. Using Lemma 3.2 and induction, we see at once that
H-F'-m=(A-2i)F"-mforallieN,.

As in the proof of Proposition 3.3, this implies that if j € Ny is such that F/ - m # 0 then the
vectors m, F- M, ..., F' - m are linearly independent. This, together with the fact that M is
finite-dimensional implies that we may consider the number

¢=max{jeNg:F -m=%0}.
For each i € {0,...,¢} we put m; = %Fi - m and let S be the subspace of M spanned by

PB ={my,...,mp}. Foreach i€ {0,...,¢} we have

H- m; = (/\ - 2i)m,~,

(i+1)mjn, if0<i<é
F-m,- =
0, ifi=¢.

One the other hand, an induction just like the one we did in the proof of Proposition 3.3 shows
that

E 0, ifi =0;
cm; =
" r+1-iymi, ifo<i<e.

It follows from this formulas that S is a submodule of M, and it is obvious that S is isomorphic
to the simple module constructed in the proof of Proposition 3.6. This proves the proposition,
asm =mg € S. ]

Schur's Lemma and the Casimir operator

3.8. If M is a module, the Casimir operator of M is the linear map
Qpu:meM—E-F-m+F-E-m+iH-H-meM.

This map is a natural endomorphism of M, in the following sense:
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Proposition. (i) If M is a module, then Qp : M — M is a morphism of modules.
(ii) If f : M — N is a morphism of modules, then the square

M % N
QMJ/ Qn
M-—LsN
commutes.

Proof. (i) Let M be a module. That the map Qj; : M - M is an endomorphism of modules
follows from a direct computation. We have

Om(E-m)=E-F-E-m+F-E-E-m+3H-H-E-m
=E-F-E-m+(E-F-E-m-H-E-m)+XH-E-H-m+2H-E-m)
=E-F-E-m+E-F-E-m+3H-E-H-m
=(E-E-F-m-E-H-m)+E-F-E-m+.E-H-H-m+2E-H-m)
=E-E-F-m+E-F-E-m+1E-H-H-m
=E-(E-F-m+F-E-m+3H-H-m)
=E-Qp(m)

and similar computations show that Qp (F - m) = F - Qp(m) and Qp(H - m) = H- Qp(m).
These equalities tell us that Q,; is a morphism of modules.

(ii) Let now f : M — N be a morphism of modules. If m € M, we have for all x and y in g that
f(x-y-m)=x-y- f(m),and using this we see that

f(Qm(m))=f(E-F-m+F-E-m+3H-H-m)
=E-F-f(m)+F-E-f(m)+iH-H- f(m)
= Qn(f(m)),

and this equality es precisely what the proposition claims. O]

3.9. Since we have at this point a complete description of the finite-dimensional simple modules,
we are able to compute their Casimir operators. We start with the following famous observation
due to Issai Schur [Schigo4].

Lemma. If f : M — M is an endomorphism of a finite dimensional simple module, then there exists
a scalar A € k such that f = Aidp.

Proof. Since our ground field is algebraically closed, we know that the linear map f admits an
eigenvalue A € k; in particular, there exists a non-zero vector m € M such that f(m) = Am. The
linear function h = f —Aidy : M — M is a morphism of modules, so its kernel ker / is a submodule
of M. As h(m) = 0, this submodule is non-zero, and since M is simple it must coincide with M.
Of course, this means that the map h = f — Aidy, is the zero map, so that f = did,. O]
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3.10. Proposition. If M is a finite-dimensional simple module of dimension r + 1, then the Casimir
operator of M is

QM = %1’(1’4— 2)IdM

Proof. Let M be a finite-dimension finite module of dimension 7+ 1. The linear map Qp : M - M
is an endomorphism of M, so Schur’s Lemma 3.9 tells us that there exists a scalar A € k such
that Qp; = Aidpy. Now, in view of Proposition 3.3 we know that there exists an ordered basis
{my, ..., m,} of M such that the action of the generators E, H and F of g is as described there. In
particular, we have that

Am=QM(m0)
=E-F-mg+F-E-mg+iH-H-my

:E-m1+%72m0

2
rmgy + %T my

%r(r +2)myg

and this implies that we must have A = %r(r +2), because the vector my is not zero. O

Semisimplicity

3.11. We want to analyze now the structure of an arbitrary finite-dimensional module and we will
do this by reducing the problem to the description we already have of simple modules. The key
tool in that reduction is the following definition.

If M is a module, a composition series for M is a finite increasing sequence of submodules

MycS M; S-S M,;

of M such that My = 0, M; = M and for each i € {1, ..., t} the quotient module M;/M;_; is simple.
We call the quotients M/ M, ..., M,/ M,_; the factors of the composition series.
An important fact is that composition series exist in the situation which interests us:

Proposition. Every non-zero finite-dimensional module admits a composition series.

Proof. If M is simple, then
My € M;

is a composition series for M. If not, then among all the proper submodules of M we may pick
one of maximal dimension. Call it N. As dim N < dim M, we may suppose inductively that there
exists a composition series

NoEN; S-S Ny
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of N. Since N is a proper submodule of M of maximal dimension, the quotient M/N is a simple
module, and therefore

NoENC---SEN,CEM

is a composition series for M. O
3.12. The next step is to establish a key property of the trivial module:

Proposition. The trivial module k is projective relative to the class gmod of all finite-dimensional
modules.

Proof. According to Proposition 3.11, every module in ymod has a finite filtration whose subquo-
tients are finite-dimensional simple modules. According to Proposition 5.12, then, to show that
the trivial module k is projective relative to ymod it is enough that we show that it is projective
relative to the class of all finite-dimensional simple modules. Let then

0 M —L B9k > 0 (19)

be an extension of k by a finite-dimensional simple module M. We consider two cases now:
o First, let us suppose that M is not the trivial module, and let us write ¢ its dimension.
According to Proposition 3.8, we have a commutative diagram

f g

0 > M > E > k > 0
QMl lQE lﬂk:o
W T
0 > M 7 > E J > k > 0

in which the vertical arrows are Casimir operators. Since Qy = 0, this tells us that go Qg = 0
and the exactness of the bottom row implies then that there exists a morphism of modules
7:E - M such that f o7 = Qp. As

fofof=Qpof=foQu
and the morphism f is injective, we see that

Fof=Quy=30(€+2)idy.

It follows at once that the map r = ﬁ? is a retraction of f and, as a consequence of this,
that the extension (19) is split.

o Let us next suppose that M is a trivial module. Let e € E and let x, y € g. We have
g(y-e) =y-g(e) =0, because g(e) is an element of the trivial module k. This implies that

there exists an m € M such that y - e = f(m). Now, as M is also a trivial module, we have
x-y-e=x-f(m)=f(x-m)=0.
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Of course, we also have y - x - e = 0 and then, in fact, we see that

[x.y]-e=0

for all x, y € g. Now the algebra g is perfect, so that [g, g] = g, and the last equality then
tells us that E is itself also a trivial module. In particular, if e is any element of E such that
g(e) =1, then the linear map s : A € k — AeE is a morphism of modules which is a section
of g. The extension (19) is therefore split also in this case.
In this way we conclude that every extension of k by a finite-dimensional simple module is split,
as we wanted. O

3.13. Proposition. Every extension of finite-dimensional modules is split.

Proof. Let

0 > M > N > P > 0 (20)

be a short exact sequence of finite-dimensional modules. Applying the functor homy (P, —) we
obtain another short exact sequence of modules,
0 —— homg(P, M) SELEN homy (P, N) SN homg(P,P) —— 0 (21)
Let us now consider the linear map
¢ : Ak — Aidp homi (P, P),

which is easily seen to be a morphism of modules. Since the three modules appearing in (21)
are finite-dimensional, it follows from Proposition 5.10 that there exists a morphism of modules
¢ : k — homy (P, N) such that g, o ¢ = ¢. In particular, the linear map s = ¢(1) : P — N is such
that

x-s=x-¢(1)=d(x-1)=0

for all x € g, so that s is in fact a morphism of modules, and

gos=g.(s) = g-(¢(1)) = ¢(1) = idp.

We see in this way that s is a section of the morphism g appearing in the short exact sequence (20)
and therefore that that short exact sequence is split. O

3.14. We can now state the main result of this section:

Theorem. Every finite-dimensional module is isomorphic to a direct sum of simple modules. In fact,
if M is a module and

MycM;c---c M,

is a composition series for M, then there exists an isomorphism

n
M=z @M,‘/Mi_l.
i=1
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Proof. Let M be a finite-dimensional module and let us consider a composition series like in the
statement of the theorem. We proceed by induction on its length n. We may suppose that M is
not the zero module, as otherwise there is nothing to prove, and then we have n > 1.

If n =1, then M is simple, and the result is clear. If n > 2, then

MoS M c---C My,

is a composition series for M,_;, and therefore the inductive hypothesis tells us that
n-1
My 2@ M; /M, (22)
i=1

a direct sum of simple modules. On the other hand, we have a short exact sequence

0 > M, > M, —— M,/M,.; —— 0

and it is, according to Proposition 3.13, split, so that
M=M,=2M,1® Mn/Mn—l-

Putting together this isomorphism with (22), we see that there is an isomorphism as the one whose
existence the theorem claims. O

Multiplicities

3.15. We have shown that every finite-dimensional module is isomorphic to a direct sum of simple
ones. We now propose to prove that this isomorphism is essentially unique. We start with a simple
result, which is really a continuation of Schur’s Lemma 3.9.

Lemma. If S and T are finite-dimensional simple modules, then we have

1, ifSand T are isomorphic modules;

dimhomg(S,T) =
o($:T) {O, if not.

Proof. Let S and T be finite-dimensional simple modules. If there is an isomorphism of modules
f:§ — T, then the function

frigehomy(S,S) — fogehomg(S,T)
is linear and an isomorphism, with inverse the function

(f)*:gehomy(S,T) = f'ogehomy(S,S).

It follows from this that the vector spaces homy(S, T) and homg(S, S) have the same dimension,
and we know from Lemma 3.9 that homg (S, S) is one dimensional, since it is generated by its
non-zero element idg : S — S. This proves the first claim.
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Suppose next that S and T are not isomorphic and, to reach a contradiction and prove the
second claim, that there is a non-zero morphism of modules f : § — T. Since f is not the zero
map, its kernel is a proper submodule of S: as S is simple, it follows then that ker f = 0, so that f
is injective. Similarly, the image of f is a non-zero submodule of T, which is also simple, so that
im f = T. We see in this way that f is in fact a isomorphism, and this is impossible in view of our
hypothesis. O]

3.16. Our first uniqueness result is that the number of times a simple module appears —up to
isomorphism— in a direct sum decomposition of a finite-dimensional modules is independent of
the particular decomposition under consideration:

Proposition. Let M be a module and let S be a simple module. If n € Ny and Sy, ..., S, are simple
modules such that M = @7, S, then
#{ie{l,...,n}:S8;= S} =dimhomy(S, M), (23)
so that the number appearing in the left hand side of the equality depends only on M and S, and not
on the choice of n and the simple modules Sy, ..., Sy.
In view of this, we may denote that number [ M : S]. We call it the multiplicity of S in M.
Proof. Letn e Nandlet Sy, ..., S, be simple modules as in the statement. We have

n
Si) ~ P homy(S, Si),

homg(S, M) = homg(S,
' i=1

n
i=1

so that
n
dimhomy(S, M) = >" dimhomg(S, S;).

i=1

Using Lemma 3.15 we see immediately that this sum is equal to the number of elements of the set
{ie{l,...,n}:S; = S}, and this proves the (23) of the proposition. O

3.17. Using the well-definedness of the multiplicity of direct summands, we can prove the following
precise form of the uniqueness of direct sum decompositions:

Proposition. Let M be a finite-dimensional module, and suppose that m, n € No and that Sy, ..., S,
L, ..., Ty are simple modules. If M = @2, S; and M = @', Tj, then m = n and there is a bijection
o:{L...,n} > {L,...,n} such that forall i € {1,...,n} we have S; = T ;).

Proof. Let m,n e NgandletS,..., Sy, and Ty, ..., T, be simple modules such that M = @”, S;
and M = EB;’ZI T;. The set

I={ie{l,...,m}: S;#S;jforall je{1,...,i-1}}

contains 1, so that it is not empty: let k € N be its cardinal and let jj, ..., ji be its elements.
We know from Proposition 3.16 that for each [ € {1,..., k} there exists a bijective function

mo{ie{l,...,mp:8; =8} »{ie{l,...,n}: T;=8§;}
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and we use this to define a function 77 : {1,...,m} - {1,...,n} asfollows: if i € {1,...,m}, itis
clear from the definition of the set I that there exists a unique / € {1,...,k} such that S; @ S ;> and
we may therefore set 77(i) = 7;(i). We have that S; = Ty(;) forall i € {1,...,m}.

This function is surjective. Indeed, let t € {1,...,n}. Proposition 3.16 implies that the set
{ie{l,...,m}:S; 2 T;} is not empty and it is easy to see that its minimum element is equal to j;
for some I € {1,..., k}. It follows immediately from this that ﬂ(ﬂl_l(t)) = t. It follows, of course,
that m > n. Now, reversing the roles of the two direct sum decompositions in all that we have
done, can can obtain the reverse inequality in the same way, and therefore we actually have that
n = m and, in particular, that the function 7 is a bijection, and as it has the required property, this
proves the proposition. O

3.18. If n € Ny and S is a module, we write nS the module

So--—-oS.
[ —

n summands

Proposition. If M is a finite-dimensional module M, then there exist k > 0 and simple modules
Si, ..., Sk such that for all i, j € {1,...,k} we have S; = S; exactly when i = j, and

k
M=z [M : S,]S,
i-1

Proof. This follows immediately from the results above. O]

3.19. A consequence of the caracterization of multiplicity given in Proposition 3.16 is that it is
monotone for inclusions:

Proposition. If M is a finite-dimensional module and N is a submodule of M, then [N : S] < [M : S]
for every simple module S.

Proof. Let M be a finite-dimensional module, let N be a submodule of M and let S be a finite-
dimensional simple module. If ; : N — M is the inclusion, we have a linear map

15+ f €homy(S,N) 1o f e homy(S, M)

and itis injective, so that in particular dim homy(S, N') < dim homy(S, M). The desired conclusion
follows from this using Proposition 3.16. O]

3.20. Proposition. Let M be a finite-dimensional module and let n e Ng and Sy, ..., S, be simple
modules such that M = @, S;. If N is a submodule of N, then there exists a subset 1 € {1,...,n}
such that N = @1 S;.

Proof. HACER O
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Isotypic components

3.21. If M is a finite-dimensional module, we know at this point that there exist #n € Ny and simple
modules Sy, ..., S, such that there is an isomorphism ¢ : @7 | S; = M. As a consequence of this,
ifforeach i€ {1,...,n} welet T; = ¢(S;) then we have an internal decomposition

M = é T;
i=1

as a direct sum of simple submodules. It is important to remark that, in contrast to the uniqueness
results that we have obtained so far, it is not true that the submodules T3, ..., T}, are well-determined
by the module M: it is only on their isomorphism classes that we have information. This is in the
nature of things, and we cannot do better. For example, if M is a 2-dimensional trivial module
and Tj and T, are any two 1-dimensional subspaces such that T; n T, = 0 then we have an internal
direct sum decomposition M = T} & T, of M as a module — as there are infinitely many choices
for the pair (T3, T2), uniqueness obviously fails.

There is a way to partially fix this lack of uniqueness, at the cost of considering coarser
decompositions. Doing this will be our next task.

3.22. We start with the following auxiliary result, which is a generalization of Schur’s Lemma that
tells us that a non-zero morphism with simple domain is injective.

Lemma. Let M and S be finite-dimensional modules and suppose that S is simple. If n € N and
fis -5 fu 2 S = M are morphisms of modules which are linearly independent elements of the vector
space homg(S, M), then the submodules fi(S), ..., fu(S) of M, all of which are isomorphic to S, are
independent and we therefore have that @', f;(S) € M.

Proof. We proceed by induction on the number # of morphisms. Since the morphisms are linearly
independent, they are non-zero and, as S is simple, they are injective: this implies that for each
ie{l,...,n} wehave f;(S) 2 S. In particular, the lemma holds if n = 1.

Let us now suppose that n > 1and show that the submodules f,(S), ..., f4(S) are independent:
this will prove the lemma. In fact, we will only verify that

Si(8) N (f2(S) + -+ fu($)) =0,

as the rest of what there is to be done is similar. We assume, in order to reach a contradiction, that
this intersection is not zero: as it is then a non-zero submodule of the simple submodule f(S),
it cannot be a proper one and it follows from this that we in fact have that

fi(8) € f2(8) + -+ fu(S).

Of course, the morphisms f5, ..., f, are linearly independent, so we inductively know that
the submodules £,(S), ..., f4(S) of M are independent and that their sum is direct. In particular,
for each j € {2,...,n} there is a morphism of modules p; : f2(S) + -+ f,(S) = f;(S) whose
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restriction to f;(S) is the identity of f;(S) and which vanishes on fi(S) forall k € {2,...,k}~ {j},
and we have

Zn:pj(t) =tforallte fo(S) + -+ fu(S). (24)

j=2

If now j € {2,...,n}, using the fact that the functions f; and f; are injective, it is easy to see that
there is unique endomorphism g; : § — S such that the diagram

gij

S s S
lfl lff
A(S) — £(S) ++ fulS) 2= £i(S)

commutes and, since S is simple, Schur’s Lemma 3.9 tells us that there exists a scalar A jek such
that g; = Aids. We have thus found scalars A,, ..., A, such that for each j € {2,...,n} we have

pi(fi(s)) = Ajfi(s)

for all s € S. In view of (24), we then have that
fi(s) = 2 pi(fi(s)) = X Aifi(s)
j=2 j=2

forall s € S, that s, that f; = ¥, A; fi: this is absurd, because the morphisms fi, ..., fu are linearly
independent. This contradition is the one we wanted. O

3.23. If M is a finite-dimensional module and S is a simple module, then the isotypic component
of M of type S is the submodule Mg obtained as the sum of all submodules of M which are
isomorphic to S:

Ms= ) N.
NeM
N=S§

It is obvious, in view of the form of this definition, that Mg = Mg whenever S and S’ are isomorphic
simple modules: this means that the component Mg depends only on the isomorphism class of S.
3.24. Isotypic components generalize a construction we have already considered in 2.6:

Proposition. If M is a finite-dimensional module, the isotypic component of trivial type My coincides
with the invariant subspace M.

Proof. HACER O]
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3.25. In Proposition 2.6(iii) we described the invariant subspace of a module M in terms of
morphisms k — M. This generalizes to the other isotypic components as follows:

Proposition. Let M be a finite-dimensional module and let S be a finite-dimensional simple module.
(i) There is a linear function ¢s : S ® homy(S, M) - M such that ¢s(s® f) = f(s) forallse S
and all f € homgy(S, M). This function is an injective homomorphism of modules, provided
that we view the vector space homy(S, M) as a trivial module, and its image is exactly the
isotypic component M. In particular, it corestricts to an isomorphism S®homgy(S, M) — Ms.
In particular, we have that dim Mg = [M : S] -dim S.
(i) Ifn = [M: S]and {fi,..., fu} is a basis of homgy(S, M), then for each i € {1,...,n} the
submodule f;(S) of M is isomorphic to S and there is an internal direct sum decomposition

My =e§ﬁ<s>.

Proof. It is easy to check that there is a linear map as in (i), and that it is a morphism of modules
is a consequence of the fact that for each x € g, s € S and f € homg(S, M) we have

$s(x-s®f) = ¢s((x-5)® f) = f(x-5) =x-f(s) =x- §s(s ® f).

The second equality here is due to the fact that we are viewing homy(S, M) as a trivial module.

Letn =[M:S]andlet% = {fi,..., fu} beabasis of homy(S, M). We know from Lemma 3.22
that the submodules fi(S), ..., fu(S) are all isomorphic to S and independent, so that their sum,
which we will denote Mg, is direct and contained in M. We claim that in fact Mg = Mg and that
therefore (ii) holds. To see this it is enough that we show that if N is a submodule of M which is
isomorphic to S, we then have N ¢ Mg, as Mg is the sum of all such submodules.

Let N be a submodule of M isomorphic to S. There is then an injective morphism f : § - M
whose image is N and, since # is a basis of homy(S, M), scalars Ay, ..., A, € k such that
f =Y, Aifi. For each s € S we have that

n n
f(s) =2 Aifi(s) € Y Aifi(S) = Mg,
i=1 i=1
and this tells us that N is contained in M g, as we wanted.
Now that we know that (ii) holds, in particular we have that
dimMg =[M:S]-dimS =dim S ® homg(S, M).

The domain and codomain of the map ¢ thus have the same finite dimension: as it is a surjection,
it is necessarily an isomorphism. This completes the proof of the proposition. O

3.26. We can now describe the direct sum decomposition in which we are interested:

Proposition. Let M be a finite-dimensional module. There are finitely many non-zero isotypic
components in M and M is their direct sum.
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This means that if M is a finite-dimensional module, then there exist #n € Ny and simple mod-
ules Sy,..., Sy, pairwise non-isomorphic, such that Mg, # Oforalli e {1,...,n}and M = P!, Ms,.
This internal direct sum decomposition of M is canonical, in that up to permutation it is well-
determined by M. We call it the isotypic decomposition of M.

Proof. Let.” be a set of representatives for the isomorphism classes of finite-dimensional simple
modules. We want to prove first that whenever n e Nand Sy, ..., S, are pairwise distinct elements
of ., then the isotypic components Mg, ..., Mg, are independent, and we do it by induction
on n. Of course, if n = 1 there is nothing to do.

Let then n > 1 and let S, ..., S, be pairwise distinct elements of .. To show that the
corresponding isotypic components are independent it will be enough to show that

]VIS1 N (1\/152 + e+ MS,,) =0.

Let I be the intersection in question. As I is a submodule of Mg, and Mg, = [M : §;]Sy, it follows
from Proposition 3.20 that I 2 k;S; for some integer kj such that 0 < k; < [M : $;]. On the other
hand, we know inductively that the direct sum Mg, + --- + Mg, is direct and isomorphic to

[M : 82]82 DD [MI Sn]Sn,

and that same proposition tells us that there are integers k, ..., k, such that 0 < k; <[M : §;] for
eachie{2,...,n}and I =2 @', k;S;. We have thus proved that there is an isomorphism

n
k181 = @ k,-S,-.
i=2
Since §; £ Sjforall j € {2,...,n}, computing the multiplicity of S; on both sides of this isomor-
phism we find that k; = 0, so that in fact I = 0.

As every finite set of isotypic components is independent, it follows that the set of all isotypic
components is independent, and their sum M’ = @g. » Mg is direct. This is a submodule of M,
so its dimension is finite: this implies that the set . = {S € . : M # 0} is finite. To finish the
proof, we have to show that M = M".

There is a short exact sequence

9

0 >y M' —— M > M/ M' —— 0

and, as all exact sequences of finite-dimensional modules, it is split: there is then a section
0: M/M" - M of g. Suppose that M’ ¢ M, so that the quotient M/M’ is non-zero and has a
simple submodule T. The intersection M’ N ¢ (T) is a submodule of 0(T) contained in the kernel
of g, and since the restriction of g to the image of ¢ is injective, this implies that M’ n (T = 0.
This is absurd: we have 0 # o(T) € M € M’ We must therefore that M = M’, as we wanted. []
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3.27. The isotypic decomposition of a finite-dimensional module is canonical and natural, in that
it is preserved by all homomorphisms. This is the generalization of Proposition 2.6(ii) to isotypic
components of non-trivial type.

Proposition. Let S be a finite-dimensional simple module. If g : M — N is a morphism of finite-
dimensional modules, then we have g(Mg) C N, so that g restricts to a morphism of modules
gs : Ms - Ns.

Proof. Let g : M — N be morphism of finite-dimensional modules. In order to prove that
g(Ms) € Ng it is enough that we show that if T' is a submodule of M which is isomorphic to S,
then we have g(T) € Ng. But this is clear: the restriction g|7 : T — N is either zero or injective,
because T is simple: in the first case we have g(T) = 0 and in the second one g(T') is a submodule
of N isomorphic to S, so that it is contained in Ng. OJ

Characters

3.28. Let M be a finite-dimensional module. A consequence of the information we have thus far
is that

the linear map Hy : M — M is diagonalizable and that it has integer eigenvalues. (25)

Indeed, we know that there exist n € Ny and simple submodules Sj, ..., S, of M such that
M = @, S;, and this implies in particular that for each i € {1,..., n} the subspace S; of M is Hy;-
invariant and Hy|s, = Hy,. It follows from this that Hy, is diagonalizable if for all i € {1,...,n}
the map Hg, is diagonalizable, and we know from Proposition 3.3 that this holds. Moreover, it is
clear from this that a scalar is an eigenvalue of H, if and only if it is an eigenvalue of one of the
maps Hg,, and the latter have integer eigenvalues.

For each A € k, we denote M” the eigenspace of the linear map Hy; : M — M corresponding
to the eigenvalue A and call this subspace the weight subspace of M of weight A. The non-zero
elements of M* are the weight vectors of M of that weight. In view of our observation (25) above,
we have that M = @)z M A and, since M is finite-dimensional, that M* = 0 for all A € k except
finitely many,

We denote Z[g*'] the ring of Laurent polynomials with integer coefficients and we refer to its
elements simply as polynomials —this should not be cause for any confusion. The character of
the module M is the polynomial

AM = Z dim M* q)‘.
AeZ
This makes sense: as we have observed, we have M* = 0 for almost all A € k, so the sum is finite.

3.29. The following is often a useful rephrasing of this definition:

Lemma. Let M be a finite-dimensional module of dimension r. If B = {my, ..., m,} is a basis of M
whose elements are eigenvectors of Hyy, so that for each i € {1,...,r} there is a scalar A; € k (which
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is necessarily an integer, as we know) such that H - m; = A\;m;, then we have

Proof. Grouping terms, we see that

r
Sv=Y Y M= Hie L k=g
i=1 AeZ | ie{l,....,r} AeZ

and, since the set {m; : i € {1,...,r} : ; = 1} is a basis of the weight space M?, this is

= ZdimMAq’l:XM. O
AeZ

3.30. As we will amply demonstrate in what follows, the characters of modules are actually quite
amenable to computation. The key properties that enable that are codified in the following result:

Proposition. (i) If

0 > M > E > N s 0

is a short exact sequence of finite-dimensional modules, then xg = xm + xn. In particular, if
M and N are finite-dimensional modules, then ypyen = XM + XM-

(ii) If M and N are finite-dimensional modules, then xmen = XM * XN-

(iii) If M is a finite-dimensional simple module of dimension r + 1, then

qr+1 _ q—r—l
M
Proof. (i) Let r = dimM and s = dim N. As Hj; and Hy are diagonalizable maps, there exist
ordered bases ' = (my,...,m,) and B” = (ny,...,ns) of M and of N, respectively, whose
elements are eigenvectors of Hy; and of Hy. There exist 71y, ..., 71, € E such that g(#;) = n; for
eachi e {1,...,s}, and it is easy to see that B = (my, ..., m,, 71y, ..., 7is) is an ordered basis of E
and that the matrix of Hg with respect to 4 is a upper triangular block matrix of the form

gz(\HMI : )
« 0 |Hyl

It follows immediately from this that the multiplicity of a scalar as an eigenvalue of Hg is the sum

IHE

of its multiplicity as an eigenvalue of Hj; and its multiplicity as an eigenvalue of Hy, that is, that
for all A € k we have

dim E* = dim M* + dim N*.
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That yg = ym + xn follows immediately from this.
To prove the second claim of (i) we need only observe that if M and N are finite-dimensional
modules, then there is a short exact sequence of the form

("5)

» M®N

id
0 s M (Odv),

N—0
and that what we have already proved therefore tells us that yyen = xm + XN-

(ii) Let M and N be finite-dimensional modules of dimensions r and s, respectively, and
let ' = (my,...,m;) and B" = (ny,...,n;) be ordered bases of M and of N whose elements
are eigenvectors of Hyy and of Hy. There are then integers Ay, ..., A, and yy, ..., ys such that
H-mj=Am;forallie{l,...,r} and H-nj=yjnjforall je {1,...,s}.

We know from linear algebra that the set Z = {m; ® nj:i e {1,...,r},je {l,...,s}} is basis
of the vector space M ® N. We claim that its elements are weight vectors. Indeed, if i € {1,...,r}
and je{l,...,s}, we have

H-mi®nj=(H-mj)@nj+m; ® (H-nj) =Aim; @ nj+m; ® ujn;
= (i +uj)m; @ nj.

so that the elementary tensor m; ® n; is an weight vector of M ® N of weight A; + p;. It follows
from this and from the lemma above that

aven = Y qM =3 M S gk =y e
=

1<i<r i=1
1<j<s

(iii) If M is a finite-dimensional simple module of dimension r +1, then Proposition 3.3 tells us
that the eigenvalues of H); are precisely the numbers of the form r — 2i with i € {1,...,r}, so that

r r+l -r-1
2i_9 —19
xm=2,9 "= e
;) -9
This completes the proof of the proposition. O

3.31. The usefulness of the character of a module is that while it is an object of a much simpler
nature than a representation it allows us to recover information about it:

Proposition. If M be a finite-dimensional module, then yp (1) = dim M and for all r > 0 we have
[M: V] = Res(q™" - 9)q"xm(9)- (26)
Proof. Let M be a finite-dimensional module. It follows immediately from the definition that

xm(1) = > dim M,
AeZ
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and this is equal to dim M because the linear map Hy; : M — M is diagonalizable. Let, on the
other hand, r € Ng. We know that there exists a d > 0 such that M = EB?:O[M : V;] V3, so that

d d
(a7 -)a xm(@) = 2 [M:Vil(q " - 9)q xv,(q) = X [M: Vilg' (¢ —q7),

i=0 i=0
and the coefficient of ¢! in this polynomial is precisely [M : V,]. This is the meaning of the
equality (26) that appears in the proposition. O
3.32. An immediate corollary of Proposition 3.31 is the following fundamental observation:
Proposition. Two finite-dimensional modules with the same character are isomorphic.

In other words, we do not lose any information about the isomorphism class of a module if
you pass to its character.

Proof. If M and N are two finite-dimensional modules which have the same character, then
Proposition 3.31 tells us that for all simple modules S we have [M : §] = [N : §], so that, according
to Proposition 3.18, M = N. O
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84. Some applications

Tensor products and the Clebsch—Gordan formula

4.1. The following result is due to Alfred Clebsch (1833-1872, Germany) and Paul Gordan (1837-
1912, Germany):

Proposition. If r, s € Ny are such that 0 < s < r, then there is an isomorphism
Vi@ Vi 2 Vis @ Vigs2 @ Vigs 3@ @ Vi (27)

Since the tensor product of modules is commutative —this is what Proposition 2.14(ii) states—
and distributes over direct sums, the above result allows us to describe the tensor product of two
arbitrary finite-dimensional modules, at least in principle.

Proof. Let r and s be as in the statement of the proposition. In order to prove that there is an
isomorphism (27) it is enough, in view of Proposition 3.32, to show that the two modules appearing
there have the same character, and this just a matter of a simple computation in Z[g*']:

qr+1 _ q—r—l qs+1 _ q—s—l
qa-q7 a-q7
1 (qr+s+2 _ qr—s q—r+s _ q—r—s—Z)
a-q7

Xvi@Ve = XV, " XV, =

-9 -9
_ q_lq_l((qr+s+l +qr+s—1 +m+qr—s+l) _ (q—r+s—1 +...+q—’—3+1 +q—r—s—l))
~ qr+s+1 _ q—r—s—l Sr+s—1 _ q—r—s+1 qr—s+1 _ q—r+s—1
I Ry R
= XVr+s + XVrJrs—Z R XVr—s
= XVr+s€BVr+s—2@"'@Vy—s‘ D

4.2. The proposition we have just proved describes the structure of tensor products of simple
modules as a direct sum but does not tell us what the actual submodules that appear in that
decomposition are. In many situations we need this finer information, and that is provided by the
following result:

Proposition. Let M and N be two finite dimensional modules, and let m and n be singular weight

vectors of weights A and y in M and in N, respectively, so that in particular A and p are non-negative
integers. If p is a integer such that 0 < p < min{A, u}, then

2 (A= u-p+i) Flom  FPin
ZJ V0 it (p-i)!

is a singular weight vector of weight A + y —2p in M ® N.
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Proof. Let p be a non-negative integer such that 0 < p < min{A, u}. Foreachi € {0,...,p} letus
putm; = %F ".mandn; = %F . n. We know from Proposition 3.7 that m; and n; are weight vectors
of weights A —2i and y — 2i, respectively, and that the vectors my, ..., m, and the vectors ny, ..., 1,
are linearly independent. It follows from this, in particular, that the vector —let us denote it w—
that appears in the statement of the proposition is non-zero and, since each summand m; ® n,_;
is a weight vector of weight (1 —2i) + (u —=2(p—1i)) =1+ u—2pin M ® N, that so is w.

To complete the proof, then, we need only show that E - w = 0. For this, we write

() (u-p i)
’ (A-p)iu!

and compute that

p .
E-w= ;}(—1)’51,- ((E mi)®@ny_j+m;® (E- ”p—i))

)

p-1

=S (Diai(A+1-i)ymig@npi+ Y (-1 ai(u+1-p+i)m; ® npiy
i=1 i=0
P
= (—1)’(—ai+1(l—i)+ai(y+1—p+i))m,-®np_i_1
i=0
=0,
since for each i € {0,...,p — 1} we have that a; .y (A —i) = a;(p +1- p +i). O

Invariant bilinear forms

4.3. Let M be a vector space. A bilinear form on M is a bilinear map f3 : M x M — k. Such a thing,
as we know, can be identified to a linear map M ® M — k, and we will usually switch from one
point of view to the other without mention. In terms of this identification, the set of all bilinear
forms on M is simply homy (M ® M, k), the dual space of M ® M.

We say that a bilinear form §: M x M — k is non-degenerate if

o for all m € M there exists an n € M such that §(m, n) # 0, and

o forall n € M there exists an m € M such that f(n, m) # 0.
On the other hand, we say that 8 is symmetric if f(m,n) = f(n, m) for all m, n € M, and that it
is anti-symmetric if B(m, n) = —p(n, m) for all m, n € M.

4.4. If M is a module, then we say that a bilinear form f3: M x M — k is invariant if for all x € g
and all m, n € M we have that

B(x-m,n)+ B(m,x-n)=0.

If we view 8 as a linear map M ® M — k, this means precisely that it is a morphism of modules
—provided that we put on k the trivial module structure— and therefore the set of invariant
bilinear forms on M is the subspace homy(M ® M, k) of homy (M ® M, k). We have shown that
homgy (M ® M, k) coincides with the subspace of invariants hom k(M ® M, k): a bilinear form is
invariant if and only if it is an invariant element of the space of bilinear forms.
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4.5. An easy consequence of the Clebsch-Gordan Formula is that we can describe the invariant
bilinear forms on finite-dimensional modules:

Proposition. Let M be a finite-dimensional simple module. The vector space homg(M ® M, k) of
invariant bilinear forms on M is 1-dimensional. If B : M x M — Kk is a non-zero invariant bilinear
form on M, then [3 is non-degenerate, and it is symmetric or anti-symmetric if dim M is odd or even,
respectively.

Proof. Letr € Ny be such that dim M = r+1. As we know, this implies that there is an isomorphism
of modules M = V,, and we may just as well suppose that M is V, for the purpose of this proof.
From the Clebsch-Gordan Formula 4.1 we know that there is an isomorphism of modules

r
V,® V2@ Vai
i=0

and then we have an isomorphism of vector spaces

.
homg(V; ® V;, k) = @ homg(Vai, k).
i=0
As k = Vp, we know from Lemma 3.15 that homg (V5;, k) = 0if i # 0 and that dim homg(Vp, k) = L.
This proves the first part of the proposition.
Let us now fix an non-zero invariant bilinear form : M x M — k on our finite-dimensional
simple module M, and let us consider the set

M ={meM:B(m,n)=0forallneM}.

It is easy to see that M’ is a subspace of M and it is a submodule, because if x € g and m € M’
we have for all n € M that f(x - m,n) = —f(m,x-n) =0, so that x - m € M'. As M is simple, it
follows from this that M’ is either the zero subspace of M or equal to M itself, and the second
possibility cannot occur, since f3 is not the zero bilinear form. A similar argument shows that the
set M" ={neM:f(m,n)=0forall m e M} is also the zero subspace of M and, in conclusion,
that the form f is non-degenerate.

Let us denote S and A the sets of symmetric and anti-symmetric invariant bilinear forms on M,
respectively. These are subspaces of homy(M ® M, k), as one can readily check, and in fact we
have a direct sum decomposition

homg(M ® M, k) =S o A. (28)

Indeed, a bilinear form f: M ® M — k which is in § N A is necessarily zero, as for all m, n € M
we have that

B(men)=-f(n®@m)=-F(men),

with the first equality coming from the anti-symmetry and the second one from symmetry. On the
other hand, if §: M ® M — k is an invariant bilinear form on M, then there are invariant bilinear
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forms fBs, Ba : M ® M — k such that for all m, n € M we have

Ps(m@n) =3(B(men)+p(nem))

and
Ba(m @ n) = 3(B(m@n) - B(nem)),

they are symmetric and anti-symmetric, respectively, and 8 = 8 + f,.

In view of the decomposition (28) and the fact that the vector space homg(M ® M, k) is
1-dimensional, we see immediately that we have in fact that homg(M ® M, k) is equal to one of A
or S. This is what the proposition claims. d

4.6. The proposition we have just proved tells us that each finite-dimensional module can be
canonically endowed with a non-degenerate bilinear form, uniquely determined up to a scalar,
and that it is either symmetric or anti-symmetric. It does not tell us what this form is, nor does
the argument we have used allow us to decide if it is symmetric of anti-symmetric. Let us show
how we can use the precise form of the Clebsch-Gordan Formula provided by Proposition 4.2 to
actually construct the form.

Let us fix r > 0 and let V be a simple module of dimension r + 1. We want to exhibit a non-zero
vector in homy(V ® V, k), which, as we know, is the invariant subspace of hom(V ® V, k), the
dual space (V ® V)* of V ® V. There is a linear function @ : V* ® V* — (V ® V*) such that for
each ¢, v € V* and each v, w € V we have ®(¢ @ y) (v ® w) = ¢(v)w(w), and this map @ is an
isomorphism of modules. We can therefore look for an non-zero invariant element of V* ® V™.

There is a basis Z = {my, ..., m,} of V whose elements are weight vectors, with

H-m;=(r-2i)m;
foreachi€{0,...,r} and

0, ifi =0; (i+)mjy, if0<i<r
E.mi: F.mi:
(r—i+Dm;_y, if0O<i<r; 0, ifi=r.

Let " = {¢o, ..., ¢, } be the basis of V* dual to %, so that ¢;(m;) = J;,; forall i, j€ {0,...,n}.
One sees at once, using the definition of the action g on V*, that

Hogi = (2i - 1)y
for each i € {0,...,n}, and that
—(r—i+1)¢p;y, if0<Li<r; 0, if i =0;
E- i = ( )i E- g
0, ifi=r —(i+1)¢iy, if0<i<r.
In particular, the vector ¢, is a singular weight vector of weight r and for each i € {0,...,r} we
have,
i i (r+1)!
Flogp=(-) ——L ¢ ;.
¢r = ( )(r+1_i)!</> (29)
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It follows from Proposition 4.2 that
1< .
= 2 (DR (FE ) @ (F7F-¢,)
o

is a weight vector of V* ® V™ of weight 0, and using (29) this is easily seen to be a scalar multiple
of

r+2

w = kz:;)(_l)k(k N 1)¢r—k ® k.

Proposition. Let V be a finite-dimensional simple module of dimension r + 1 and let {my, ..., m,}
be a basis of V as in Proposition 3.3. There is a non-degenerate invariant bilinear form f: VoV — k
such that

Bms,m;) = (-1

r+2

. )6i+j,r

j+1

foralli, j€{0,...,r}, and it is symmetric if r is even, and anti-symmetric if r is odd.

Proof. Our observations above imply that ®(w) is an invariant bilinear form on V, and it is
manifestly non-zero. If i, j € {0, ...,r}, then

O(w)(m; @ m;) = j(—nk(”z)@k(mi)m(mj) - (—1)1'(”2)&_]-,1.,

P k+1 j+1

and this has the same evalue as the expression given in the proposition. Using that formula, it is
immediate to see that B(m;, m;) = (=1)"B(mj, m;) forall i, j € {0,...,r}, and the last claim of
the statement follows at once from this. O]

Tensor powers

4.7. In many contexts it is useful to understand the structure of the tensor powers of representations
and this can be done using the Clebsch-Gordan Formula. The simplest non-trivial example of
this is that of the powers of the 2-dimensional simple representation:

Proposition. If d, r > 0, then the multiplicity of V, as a direct summand of the dth tensor power
‘/1®1’ iS
( d ) 2(r+1)
d
(V4 :v,] =\ 5"

0, it it is not.

——~ ifd+riseven;
d+r+2 i (30)

We have computed some of these multiplicities in Table 1 on the following page.
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d 0 1 2 3 4 5 6 7 8 9 10 11 12
0 1
1 1
2 1 1
3 2 1
4 2 3 1
5 5 4 1
6 5 9 5 1
7 14 14 6 1
8 14 28 20 7 1
9 42 48 27 8 1
10 42 90 75 35 9 1
1 132 165 110 44 10 1
12 132 297 275 154 54 1 1

Table 1. The multiplicites [V;®¢ : V,], with the zeroes omitted. These numbers can be
computed very efficiently using the recurrence relation found in the proof of Proposition 4.7.

Proof. Let us write a? = [V;®¢ : V,] for each d, r > 0. If d > 0, then we have V% = @59 alV,
and using the Clebsch-Gordan Formula we see that

Ve _ el g v eV, @ Vi 2 @ al (Vi @ Vi) @ al i

r>0 r>1
~ d d d ~ d d d
= @ a Vi ® EB a, Vi1 @ 0] Vi @ ar—IVT ® EB ar Ve @ a Vi
r>1 r>1 r>2 r>0

= @P(ai, +aly) Vs @ af V.

r>1
This tells us that for all r, d > 0 we have

d .
ay, ifr=0;
af*! = { y (31)
r

d .
al_j+ar,, ifr>1L

It is clear that V;®° = Vo, so that a) = 1 and a? = 0 for all r > 0: this means that the equation (30)
holds if d = 0. Let us now fix d € Ny, suppose that for all r > 0 we have

( d ) 2(r+1)

4 iz ) Ty if d + ris even;
a, = (32)
0, if it is not.
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and show that

d+1\ 2(r+1
( )—(r ), ifd +r+1iseven;
ad+1:

d+1+r
a = d+r+3 (33)

0, if it is not.

for all ¥ > 0. To do this we consider two cases:

« Suppose first that the number d + r is even. According to the recurrence relations (31) we
have that ad*! = a? and a9*! = a? | + a?,, for all r > 0, and the right hand sides of these
equalities vanish in view of our hypothesis (32): this proves (33) in this case.

o Suppose next that d + r is an odd number. As d + r — 1 and d + r + 1 are even, from the
recurrence (31) and the inductive hypothesis (32) we see that

g gl d ( d ) 2r ( d )2(r+2)

=a,  +ad, =
r r—1 r+1 d+r-1 d+r+l
S=ld+r+1 \F=/d+r+3

d! 2r d! 2(r+2)
+
dir-lyd-r+l dtrilyd-r-1
e 1d+r+1 e 1d+r+3

~ d! 2r . 2(r+2)
derlydorly \ (g 4 r v 1) EI(d 44 3)

d! 2r . 2(r+2)\ d! 4(d+1)(r+1)
_d+27+11_d—2’—1! d-r+1 d+r+3] _d+27+1!_d—27—1!(d—r+1)(d+r+3)
o (d+1)! o 2(r+1) _(d+1)2(r+1)

d+r+lyd—r+l, T\ dtr+l >
el oty (d + 1+ 3) = )d+r+3

This is exactly what (33) claims in this case.
The proposition is thus proved. O

4.8. An interesting observation that one can make is that Proposition 4.7 implies that the whole
finite-dimensional representation theory of sl (k) can be “reconstructed” from its 2-dimensional
simple module Vj, in the sense that all simple modules appear as direct summands of its tensor
powers. In fact, an immediate consequence of that proposition is that for all r > 0 the sum of the
isotypic components of V;®" with composition factors in the set { Vp, ..., V,_1} is a submodule R
which allows us to find the simple module V;, up to isomorphism, as the quotient V,"/R: this
provides a recursive construction of all simple modules starting from V;.

4.9. As a special case of Proposition 4.7, we have:

Corollary. Forall d > 0,

0, ifdisodd;

dim(V;®)9 = [V : V] =
m(V™) Vi 0] {Cd, if d is even; (34)
2

where for each n € Ny we are writing C,, the nth Catalan number,
2n\ 1
L et 0
n/n+l
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These numbers, named after the mathematician Eugéne Charles Catalan (1814-1894, France
and Belgium), are very well-known in combinatorics and famously count many different types of
objects. Richard Stanley’s beautiful monograph [Stazo15] provides a wealth of information about
these numbers and describes, in particular, over 200 types of combinatorial objects which are
enumerated by them.

4.10. Let us show another argument which also proves the formula (34) of Corollary 4.9 and
which is of a rather different nature. Since yv;(q) = g + ¢!, we know from Proposition 3.30(ii)
that for each d > 0 we have

Kyed(q) = (q+q7)".

Let us consider the series

f@@:t) =3 xyea(@)t! =3 (g +q7") :

d=0 d=0 1_(q+q_1)t’
with converges absolutely for all pairs (g, t) in the open set
Q={(q:1)eC?:q=0,|(g+q )t/ <1}

of C? and uniformly on compact sets contained there. Let p € (0, }1), let Q = B(0,1) and
T = B(0, p) be the closed discs in C centered at the origin and of radii 1 and p, respectively, and
let S! ¢ C be the unit circle. We have for all t € T that S' x {¢} is contained in Q, so that it makes
sense to consider the integral

2mi (q —a)f(g:1)dq (61 -9) ZXVW(‘] )t4 dg.
d>0

Since the series converges uniformly on S! x T, this is

-y

97" = @) xyei(9)1" dg

50 2mi

> ReS(q —q)wi(q) t?
d>0

= Z Vv1®d : Vo] . t
d>0

Let us now fix t € T\ {0}. We have

1 1 q -q 1 qg -1
- ,td:—f—d:—f—d.
i (q Df(a.t)dg=—— S 1-(q+q Dt 1 2mi Jo pr—qertd

The integrand in this last integral is a meromorphic function on C whose only poles are at the
points

A()_ \/1—4t2’ B(t)zl—\/1—4t2

2t 2t
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and are both simple; indeed, we have

q't-q+t=1t(q-A(t))(q-B(t))

and A(t) — B(t) = V1-4t2/2t + 0. As lim;|A(t)| = oo and lim;_o|B(t)| = 0, we can choose p
small enough in (0, %1) so that the only pole in Q is B(t) and belongs to the interior. Choosing p
in that way, we have that for each t € T\ {0}

1 2.1 21 2
— [ S ——dq= Res —T—— - lim —T——(q-B(1))
2mi Jst Pt —q+t q=B(t) ¢?t—q+1t q-B(t)g*t—q+t

q* -1 B(t)>-1 2

= lim = = .
g—~B() t(q—A(t)) t(B(t)-A(t)) 1+V1-4£
We can therefore conclude that for all t € T we have

Z[V®d:V0]'td= 2 :1—\/1—4t2
el 1+V1— 4t 212

which, according to Newton’s generalized binomial formula, is

ezl 50

k>0 k>0

This recovers the result of Corollary 4.9.
A nice observation to make at this point is that if we put

1-+V1-4¢
hrv(t) = S [V : Vol - ¢ = YR
d>0
then we have that
hry. (£)* = hry () +1=0. (35)

As Thy, (t) = Y450 Cat??, replacing in this equation we find that
1-Co Y +| > cici-cy|* =0,
d>2 i+j=d-1

so that Cy = 1and

Ca= Y GCiC;
i+j=d-1

for all d > 1. This recurrence relation for the Catalan numbers is often used as their definition and
is a key fact in many of their combinatorial interpretations.
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On the other hand, we can rewrite the equation (35) in the form

1
1-t2hry (t)’

and iterating this formula —after making sure the right hand side makes sense— we can obtain

hrv (t) =

the following expression in terms of a continued fraction:

hrvi(t) = Y[V : Vol -7 = 5
d>0 t

4.11. While this alternative proof of Corollary 4.9 may seem complicated, it differs from the
original way we obtained that proposition in that it does not depend on knowing previously the
multiplicities, and this is quite significant. In principle, the same idea can be used to compute the
series

hrw(t) = Y [M®: Vo] - 12
d>0
for all finite-dimensional modules M. In practice, though, this requires solving certain equations
which are not easy. Let us consider in detail the case of the 3-dimensional simple module V;.
As before, we consider the series

1
f(g.t) = a(q) t1= Y (g +1+q ) = —,
;)XV;D dZZ;) 1-(q®?+1+g72)t

which converges absolutely and uniformly on every compact subset of
Q={(q.t)eC*:q#0,|(g* +1+q )| <1}.

For each t in a neighborhood of 0, we have

1
VR4 v] 1t = — 1o ,t) dg,
Lg)[ 2 Vol 5 Jola —a)f(a.1)dg

by essentially the same calculation that we did for V}, and we are left with computing this integral.
It is immediately seen to be equal to

1 -9
2mi Jst gt +q*(t-1) +t

dg. (36)
We restrict our attention to small but non-zero t. The denominator of this integrand factors as

t(q* - A(1))(q* - B(1)),

50



with

—t+V1-2t-3¢2 C1-t-V1-2t -3¢

Alt) = - 21 ’ B(t) 2t

As lims_g A(t) = oo, lim_o B(t) = 0,and B(t) # 0 for ¢ # 0, for ¢ sufficiently small the integrand
has in the interior of S two simple poles at the square roots of B(t) and is holomorphic in the
closed unit disc. If we denote one of those two square roots C(t), it follows from all this that the
integral (36) is equal to

3 3

9 -4 9 -9

R + R ,
q:Ce(St) Pt+q*>(t-1)+t q=—g%t) Pt+q*>(t-1)+t

which in turn, since the two poles are simple, is the same as

3 3

. q9 -9 . 949
q—ljén(t) q3t+q2(t—1)+t(q_c(t))+q—>ll—n8(t) q3t+q2(t—l)+t(q+c(t))
C(t)®-C(t) -C(t)*+C(t)  B(1)-1

" 2C()(C(07 - A1) T ~2C(0)(C(0)? - A(1)) ~ B(1) - A1)

Simplifying this last expression, we conclude that

2
hev, (£) = SV V] -4 = .
(1) ,;[ 2 | 1+t+V1-2t-1#

Let us denote R, the coefficient [V2®d : Vo] with which the monomial ¢ appears in this series, so

that hrv, (t) = Y450 Rat?. A straighforward computation shows that
t(t + 1) hry, (1) = (t+ 1)y, () +1=0.
This implies that

1
0= thTVz(t)z — hTVz(t) +——=1-Rp+ Z
1+¢ S

( Z R,'Rj—Rd-i-(—l)d) td,

i+j=d-1

so that Rp =1 and

Ri= Y RiRj+(-1)4
i+j=d-1

for all d > 1. Using this recurrence relation —which is remarkably similar to the one for Catalan
numbers— it is very easy to compute these numbers: the sequence starts with

1, 0,1,1, 3, 6, 15, 36, 91, 232, 603, 1585, 4213, 11298, 30537, 83097, 227475,
625992, 1730787, 4805595, 13393689, 37458330, 105089229, 295673994, ...

These are the Riordan numbers —in honor of the combinatorialist John F. Riordan (1903-1988,
United States)— and their sequence appears as the entry Aoo5043 in the OEIS [Slo2017].
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Symmetric powers

4.12. Let us now consider symmetric powers. If M and N are finite-dimensional modules, then
for all d > 0 there is an isomorphism of modules

s{MeN)z @ S'Me SN,
i+j=d
and the Clebsch-Gordan Formula 4.1 therefore reduces, in principle, the description of the

structure of the symmetric powers of an arbitrary module to that of the symmetric powers of
simple ones. It makes sense, then, that we concentrate on these.

4.13. Letus fix d, r > 0, and let V, be a finite-dimensional simple module of dimension r. We

want to describe the dth symmetric power sv,. According to Proposition 3.3, there is a basis
PB = {my, ..., m,} of V, such that, among other things,

H-m;=(r-2i)m;forallie{0,...,r}.

Let I = {0,...,r} and let I{?) be the set of all d-tuples i = (i,...,iz) in I¢ that are non-
decreasing, so that 1< i; < --- < iy <r. Foreachi= (ij,...,i4) € I(d), we consider the element
mij=mj @ Omj, € SV,. As we know, the set Z(4) = {mj:ie I(d)} is a basis of the dth sym-
metric power S V;. The elements of this basis are weight vectors: indeed, if i = (iy,...,i4) € I (d),
then we have

d

H'mi:H'mil @"'@mid = Zm,l @"‘(H'ﬂ’l,‘].)@"'@ﬂ’ljd
=1

d d
= Z(r—Zij)mil © ---mi]. [OREINO] mi, = (Z(T—Zi]’)) mj
j=1 j=1

so that m; is a weight vector of weight
d
Y(r=2ij) =rd = 2(iy + - + ig).
j=1

It follows then from Lemma 3.29 that the character of $9V, is
Ksiv, () = 3 q'* o), (37)
ie1(4)
We have to understand this sum, and to do that it will be convenient to use the language of
partitions.

4.14. A partition is an ordered sequence A = (Ay,...,A;) of integers such that A; > - > A; > I;
if n = A1 +---+ A; we say that A is a partition of n. The integers A; that appear in the partition
are its parts and the number [ of parts is the length of the partition; the length can be zero, and
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in that case the partition is necessarily a partition of 0, which is its only partition. For example,
(7,6,4,4,2,1,1) is a partition of 25 into 7 parts, and the fifteen partitions of 7 are

(7) (6,1) (5,2) (5,1,1) (4,3)
(4,2,1) (4,1,1,1) (3,3,1) (3,2,2) (3,2,1,1)
(3,1,1,1,1) (2,2,2,1) (2,2,1,1,1) (2,1,1,1,1,1) (1,1,1,1,1,1,1)

We will represent a partition graphically using Young diagrams: if (Ay,..., ;) is a partition,
then the corresponding Young diagram is a finite collection of boxes, arranged in left-justified
rows, the length of which are, from top to bottom, the parts of the partition. An example is worth
a thousand words: the diagram corresponding to the partition (7, 6,4, 3,1,1) is

For each choice of 1, d, n € Ny we let I1(r, d, n) be the set of all partitions of # into at most d parts
all of which are not larger than r, and write 7(r, d, n) the cardinal of the set I1(r, d, n). In terms
of diagrams, this means that a partition is in II(r, d, n) if the corresponding diagram has n boxes
in total and fits in a rectangle of height d and width . Among the partitions of 7 that we listed
above, the elements of I1(3,4,7) are

(3,3,1) (3,2,2) (3,2,1,1) (2,2,2,1)

and therefore 7(3,4,7) = 4. We make the convention that if # is non-integral, then I1(7,d, n) is
the empty set.

4.15. Let us go back to the expresion (37) for the character of siv,. Grouping terms in the sum
according to the exponent of g, we find immediately that

Xsdv,(CI) _ Z qrd72(i1+---+id) _ Z #I(d)(n) . qrd72n

iel(d) n>0

with ID (n) = {i € I9) : iy + .- + iy = n} for each n € Ny. Now, the sets I(¥) () and I1(r, d, n)
are in bijection. Ifi = (i},...,i4) is an element of I(*) (n), then dropping all the trailing zeros
from the sequence (iq, ..., i) obtained by reversing i we obtain a partition of # which has at most
d parts, all of which are not larger than r, and such a thing is an element of II(r, d, n). Conversely,
if A = (A1,...,A;) is an element of I1(r, d, n), then adding d — I zeros to end of the reversed
sequence (A, ..., ;) we obtain an element (0,...,0,A;,...,A;) of I¢¥) (n). It is clear that these
two constructions are mutually inverse.
We conclude in this way that

Xsav,(q) = Y n(r.d,n)- g, (38)

n>0
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r 0 1 2 3 4
0 ot o o o o

1 ot 1 2! 3! 4

2 ot 2! 0'4! 2l6! 0'4!g!

3 ot 3! 2l6! 315191 0'4l6'812!

4 ot 4 olalg! 0'4l6!8l12! 0'428210'12116*

5 ot 5t 2leh0 315171911115! 0'426'8%10'12214'16'20"

6 o' 6! 0'4l812! 2'628'10'12114118!  0%426!8%10'12°14'16%18120124!

Table 2. The composition factors of the symmetric powers S?V,. Here the expression
0'234152 denotes the module V, ® 3V; @ V; @ 2V5, and so on.

4.16. From this it is a simple matter to obtain the multiplicities of the composition factors of 7 V.
The following result was announced by Arthur Cayley in 1856 [Cay1889] and proved for the first
time by Joseph Sylvester in 1878 [Syl1974].

Proposition. If d, r and s are non-negative integers, then the multiplicity of Vs as a composition
factor of S?V, is

[$V,: Vi] = n(r,d, 3 (rd = s)) = n(r,d, 1 (rd —s) - 1).
Proof. Letd, r, s € Ny. The multiplicity [S?V; : V;] is the coefficient of g**! in the the product

(q-q") > n(r.d,n)-q "

(a—q9 Dxsav,(q)

n>0
_ Z ﬂ(r,d,n) . qrd—2n+1 _ z n(r,d, 1’1) . qrd—Zn—l
n>0 n>0
= > (n(r.d, 2(rd = n+1)) - n(r,d, 1 (rd - n-1)))q"
n>0
whichis 71(r,d, 5(rd = s)) — n(r,d, 3(rd — s) — 1), as the proposition claims. O

4.17. Using Proposition 4.16 we can compute —somewhat laboriously— the composition factors
for all $?V;. Looking at the results some patterns become evident, and with some ingenuity they
can be proved. For example, looking at the column with d = 2 in that table we notice that all the
multiplicites are zero or one and we can actually prove this:

Proposition. If r > 0, then

2 ~
Vi @ Varak.
0<k<?
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Proof. Lets > 0 and let us compute the multiplicity [S?V; : V;], which according to Proposi-
tion 4.16 is equal to

n(r,Z,%(Zr—s)) —7'[(1’,2,%(27’—5) -1). (39)

If s is odd or if s > 2r this is clearly equal to zero. We suppose that is not the case, so that s is
even and 0 < s < 2r. In that case we have %(Zr —s) =1 < r: it follows from this that if A is a
partition in II(r, 2, 1 (2r — s) — 1), then we can add 1 to the biggest part of A and obtain an element
of II(r,2, 5 (2r - 5)). This defines a function ¢ : I1(r, 2, 3 (2r —s) —1) - I1(r, 2, 3 (2r — 5)) which
is obviously injective. Moreover, a partition in II(r, 2, 3 (2r - 5))) is in the image of this function
exactly when it does not have two parts of the same length: only in that case we cannot shorten
the biggest part by I to obtain a preimage. Now II(r,2, 1 (2r — 5)) contains a partition with two
parts of equal length if and only if the number %(21’ — s) is even, that is, if 27 — s is a multiple of 4,
and when it does it obviously contains exactly one. We see in this way that
o if 2r — s is not divisible by 4, then the function ¢ is a bijection, and therefore its domain and
codomain have the same cardinal: this means precisely that the number (39) is 0.
o On the other hand, if 2r — s is divisible by 4, there is exactly one element in the codomain
of ¢ which is not in the image of that function. As the function is injective, this implies
that (39) is equal to 1.
In other words, the number (39) is equal to zero unless there exists a k € Ny with 0 < k < %r such
that s = 2r — 4k, in which case it equals 1. The result follows at once from this. O

4.18. Looking at the Table 2 we easily notice that it is symmetric with respect to its diagonal. This
result was obtained originally by Charles Hermite (1822-1901, France) in his work [Her1854] on
the invariant theory of binary forms, and is usually called Hermite reciprocity.

Proposition. If r and d are non-negative integers, there is an isomorphism of modules
SV, = 8%,

Proof. To show this, and thanks to Proposition 4.16, it is enough to show that n(r, d, n) = n(d, n, r)}}
forall r, d, n > 0, and to do that, that there is a bijection II(r,d, n) — I1(d, n, r).

Suppose that A = (Ay,...,1;) is an element of I1(7, d, n) of length I and largest part m = 1,.
For eachi € {1,...,m} we write 1} the number of parts of A which are not smaller than i, that is,

Mi=#{je{l,....I}: ;> i}

Clearly, we have A{ > --- > A} >1,so that ' = (1], ..., A},) is a partition. Counting the elements
of the set {(i,j) € {L,...,m} x{L,...,I} : A; > i} in two ways, we find that 3"}, 1] = Zj-zl)\j =n,
so that A’ is a partition of n. It has m parts and its largest part is A; = /, and this means that
A e TI(d,r,n). We call )’ the transpose of . For example, the transpose of the partition
(7,7,4,3,1,1,1) € 11(9,7,24) is (7,4,4,2,2,2) € [1(7,9,24). In terms of Young diagrams, this
construction corresponds exactly to transposition, that is, reflection with respect to the main
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diagonal:

-
> [ ] [ ]

I
’

Y

One sees easily that A" = A for all A € II(r,d, n), so that transposition is in fact a bijection
I1(r,d,n) - I1(d, n, r), like we wanted. O

4.19. A special case of Hermite reciprocity is:
Corollary. For all r > 0 we have V, = §"V;.

This is another manifestation of the idea that the whole finite-dimensional representation of
out Lie algebra is “contained” in its 2-dimensional simple module V}, as we noticed in 4.8.

Proof. If r > 0, then Hermite reciprocity tells us that S"V; = S'V;, and this last module is obviously
isomorphic to V; itself. d

Gaussian polynomials
4.20. An immediate consequence of Proposition 4.16 is that for all d, r, s > 0 the difference
n(r,d,(rd - s)) = n(r,d, 1 (rd - 5) - 1)

is a non-negative number: the proposition states that it is equal to the multiplicity with which a
simple module appears in another module, so it cannot be a negative number! While this seems at
first sight a rather inconsequential observation, it is the key ingredient of a proof of an important
result which we now describe.

4.21. As usual, we fix a variable q. For each n > 0 the quantum integer [n], is the polynomial

"1
=1 RN B
[n]g=1+q+-+q P

and we define the quantum factorial to be the product

[”]q! = [l]q[z]q“'[”]q-

Since [n], has degree n — 1, [n],! has degree (1-1) + (2-1) + -+ (n—1) = 3n(n -1).
If n and m are non-negative integers such that 0 < m < n, we call the quotient

€Z[q],

n [n]g!
- SAEL M (40)
(), ~ Tt
a Gaussian polynomial —we will show below that it is indeed a polynomial— or, for obvious

reasons, a quantum binomial coefficient. If m < 0 or m > n, we make the convention that ( 7’:1 )q =0.
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4.22. These “quantum” versions of classical constructions behave similarly to their classical coun-
terparts in many ways. The simplest observation that one can make in that direction is that
the evaluating at g = 1 the polynomials [#]g, [#],! and (:1)4 we obtain the usual integers 7, n!

and (:1) This is the tip of an iceberg. A few more interesting results are contained in the following
proposition:
Proposition. (i) If n, m € Ny, then

[n+m]g=q"[n]g+[m]q.

(i) If n, m € Ny such that 0 < m < n, then

(0,0,
()",

A R R M

Proof. Let n, m € No. We have

and

q"[n]g+[mlg=q"(A+q+-+q"")+(1+q+-+q"")

n+m-1

=g+ g™+ g +1+q+---qm_1=[n]q

and this proves the first claim of the proposition. The equalities (41) and (42) follow immediately
from the definition of the Gaussian polynomials. If 1 = 1, then the first equality in (43) follows
from (41), and if instead we have that 0 < m < n, then

(::l)q " qmﬂ(mr:- l)q B % " [m + 1]q![[nn]q—! m—1]!

= [n]q' ( 1 m+1 1 )
lln-m-1 g \[n-ml, T [m+1],
[n]g! [m+1]g+ g™ [n-m],
[m]glln-m—-1],!  [n-m]g[m+1],
_ [Yl]q! [n+l]q n+1
: ()

[(mlln—m—-1] [n-ml[m+1], \m+1

The second equality in (43) can be proved in exactly the same way, or deduced from the first one
using (42). ]
4.23. An important corollary of this result is that Gaussian polynomials are polynomials with
integer coefficients:

Corollary. If n, m € Ny, then (::l)q is an element of Z[ q] of degree nm and its coefficients are
non-negative.
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n
m

Proof. That ( )q is a polynomial with non-negative coefficients follows by an obvious induction
with respect to #, using the equalities (41) and (43) of Proposition 4.22 above. Once we know that

it is a polynomial, its defining formula (40) implies that

deg(”) = deg[n],! — deg[m],! — deg[n — m],!
m/q
=in(n-1)-3im(m-1)-1(n-m)(n-m-1) = nm. O

4.24. Gaussian polynomials and partitions are closely related:

Proposition. If m, n > 0, then

(n " m)q = > n(n,m,i)- q'.

m i>0

Proof. We know that if n, m > 0, then there exist non-negative integers a(n, m, i), almost all of
which are zero and which are zero if i < 0, such that

(n ’ m)q =Y a(n,m,i)q'.

m i€Z

Proposition 4.22 tells us that (g)q =1for all n > 0, and this means that

1, ifi=0;
a(n,0,i)=a(0,n,i) = (44)

0, ifnot.

On the other hand, that proposition tells us that ("+m+l)q = (”+m)q + q’”“('”m)q forall m, n > 0,

m+l m m+1
and in terms of the coefficients this means that for all i > 0 we have

a(n,m+Li)=a(n,m,i)+a(n-1L,m+1,i-m-1).

We claim that we also have, for all m, n, i > 0, that

. . 1, ifi=0;
n(n,0,i) =n(0,n,i) = {O, if nots (45)
and
n(n,m+1,i)=n(n,m,i)+n(n-1L,m+1,i-m-1). (46)

The first equality is immediate: there are no partitions of a non-negative integer i with zero parts
or with parts of size zero, unless i itself is equal to zero. To prove (46) we observe that if A is an
element of IT1(n, m + 1, i), then
o either it has at most m parts, so that it is an element of I1(n, m, i),
« or it has exactly m + 1 parts, and then subtracting 1 to each part of A and removing any
leading zero that result from that we obtain a partition of i — m — 1 with at most m + 1 parts
all of which are at most equal to n — 1, that is, an element of [T(n — 1, m + 1,i — m — 1).
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Clearly, we account in this way for all elements of IT(#, m, i) and all those of [T(n—1, m+1,i—-m—1)
and, looking at the cardinals of these sets, we find that (46) holds.

We can now prove that a(n, m, i) = n(n, m, i) forall n, m, i > 0, and with that the proposition.
Suppose, in fact, that this is not true, and let (7, m) be the smallest element in Ny x Ny with respect
to the lexicographic order on this set such that there exists an i € Ny with a(n,m, i) # n(n,m, i).
In view of (44) and (45), we have n > 0 and m > 0, and the two pairs (n —1,m) and (n,m — 1)
both belong to Ny x Ny. Since they are strictly lexicographically smaller than (#, m), the way we
chose the latter implies that

a(n,m,i)=a(n,m-Li)+a(n-1Lm,i—-m)=n(n,m-1Li)+n(n-1,m,i—m)
=n(n,m,i),
and this is absurd. This completes the proof. O

4.25. A consequence of Proposition 4.24 is that we can express the characters of symmetric powers
in terms of Gaussian polynomials:

Corollary. If r, d > 0, then

Afr+d
Xst,(CI):qd( ) .
d )42

Proof. To prove this, we need only compare the expression (38) that we found in 4.15 for the
character of $?V, with the expression of Gaussian polynomials in terms of partitions given by
Proposition 4.24. O

4.26. We say that a finite sequence of real numbers ay, ay, ..., a, is unimodal if it first increases
and then decreases, that is, if there is an index ¢ € {0, ..., n} such that

a<ay<--<a15a 2 a1 200 2 Ay
Similarly, we say that a polynomial with real coefficients is unimodal if the sequence of its coeffi-
cients ordered accoding to degree is unimodal.

Proposition. If n, m € Ny, then the Gaussian polynomial (”:nm)q is unimodal.

In view of Corollary 4.25, the character of $? V;, is also an unimodal polynomial for all 7, d > 0.

Proof. As we have shown above in Proposition 4.24, we have that
n+m ;
( ) =E7T(n,m,i)-q’.
m Jq i

It is clear this has degree nm and that it is a symmetric polynomial, since for all i € {0, ..., nm}
we have that n(n, m, i) = n(n, m, nm — i). To see that this polynomial is unimodal, it suffices to
show that 7(n, m, i) — m(n,m, i —1) > 0 for all integers i such that1 < i < nm. But for such an i
the number s = nm — 2i is non-negative and, using Proposition 4.16, we have that

m(n,m, i) —n(n,m,i-1) = n(n,m,1(nm=s)) - n(n,m,1(nm-s)-1)

=[S"V,: V] >0.
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This proves what we want. O]

4.27. The first proof of Proposition 4.26 was given by E. B. Elliott in 1895 in his book [Ell1895]
on the theory of invariants of forms, building up on the work Sylvester [Syl1974] on the subject
—who had proved, as we mentioned above, Proposition 4.16— and his argument was essentially
the same one we used. Since then, many alternative proofs have been provided, of analytical or
geometrical nature —the most elementary one being that of Robert Proctor presented in [Pro1982],
which depends only on linear algebra. Proctor’s paper describes the history of the problem and
explains why it is an important one. The first purely combinatorial proof of this result was given
by Kathleen O’Hara in [O'H1990], in a celebrated tour de force; an explanation of her argument
with some simplifications can be found in Doron Zeilberger’s paper [Zei1989].

The idea of using the representation theory of Lie algebras in order to prove unimodality
results is a very fuitful one. There is a whole family of results in this direction, which includes
Proposition 4.26 as its simplest example, starting from work of Eugene Dynkin [Dynigs0]. The
survey [Sta1980] of Richard Stanley explains this.

Invariants of symmetric powers

4.28. We now want to study the invariants of the symmetric powers of our simple modules. We
fix a non-negative integer r and intend to describe the invariant subspace of SV, for all d > 0 and,
in particular, the series

he(t) = dim(89V;)9 - 2. (47)
d>0

As we did for tensor powers, we consider first the formal series

fr(a:t) = X Xsav, () - t

d>0

This converges absolutely whenever (g, t) belongs to the set

Q:{(q,t)GCZZ|q|<1,|t|<ﬁ}

and does so uniformly on compact subsets contained in Q. Indeed, since ygay, (q) is a polynomial
with non-negative coefficients, we have for all g with |g| < 1 that

ltsev, (9)] < xsav, (1) = (’;d).

If additionally |¢] < ﬁ, then we have that

r+d
Z‘XSdV,(Q) : td‘ < Z( d )W

d>=0 d>0

and this last numerical series converges, as can be seen by an easy application of dAlembert’s ratio
test. Our claim about the convergence of the series f,(g, t) follows then from Weierstrass’s M-test.
We can in fact sum the series:
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Lemma. For each r > 0 we have
(1) = 1’1 = z,t (48)

for all (g, t) belonging to the set Q' = {(q,1) € C*: 1 <|q| <1,[t| < m}
Notice that Q' is contained in the set Q described above, so that the equality makes sense.
Since f, is a holomorphic function, it follows form the lemma that the equality (48) holds in fact

throughout () and that we can in fact continue analytically f, to a rational function on the whole
of C2.

Proof. Let us fix (g, t) in Q/, then we have |g"%t| < 1forall i € {0,...,r} and we can therefore
expand each factor appearing on the right in (48) into a geometric series, obtaining the equality

r

1 ‘
_ (r-2i)d d
PR P
i=0 q i=0 d>0

Each of the series appearing in this product converges absolutely, so we can distribute the product,
finding

Z qZ,f:O(r—Zi)di td0+~-+d, _ Z qr(do+~~~+d,)—2(0d0+1d1+-~-+rd,)tdo+~-~+d,) (49)

dos...,dr>0 dos...,dr>0
with the series converging absolutely. Grouping terms according to the values of the sums do+---+d,
and 0dy + 1d; + --- + rd,, we see that this is

rd—2n .d
Z an,dq t

n,d>0

with a,, ; the number of (r+1)-tuples (dy, . . ., d;) of non-negative integers such that d = do+---+d,
and n = 0dy + 1dy + --- + rd,. Now, from such an (7 + 1)-tuple we can construct a partition with d;
parts equal to 1, d, parts equal to 2 and so on, all the way to d, parts equal to r: this partitition
has at most d parts, all of which are at most equal to r, and sums to n: it is therefore an element
of II(r,d, n). It is clear that all the elements of this set are obtained in this way, each of them
exactly once: it follows from this that a,, 4 = 7(r, d, n), and thus

- n(r,d,d)qg™ "¢
[l = 2 n(ndd)g

r—2i
i=0 q t n,d>0

1

This series was obtained by grouping terms in (49), so it also converges absolutely, and we can can
again associate its terms in whatever way we want. In particular, its sum equals that of

Z (Z ﬂ(?,d, ”)qrd—Zn) . td,

d>0 \n>0

which is, according to the formula (38) that we obtained in 4.15, the same as f,(qg, t). This proves
the lemma. O
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4.29. Just as in 4.11, the series h, of (47) that we are trying to compute can be expressed as an
integral. Indeed, let us fix t € C such that 0 < |¢] < and let y be the circle of radius 1 > around
the origin in C. We know that

h(t) = Zd|m(8d 7)e - t—ZRes(q q )Xsdv,(‘J) t4
d>0 d>0 1

=2 5= fq g7 xsav,(q)dq - %,

d>0

2(r+1) +1)

2mi

because the Laurent polynomial (g~ - q) xsay, () is meromorphic in a open set containing the
closed interior of y, continuous on y and with exactly one pole in the interior, at 0. The last series
is equal to

27ri f(q _q)ZXSdV,(q) 1 dg

d>0

because the series appearing here converges absolutely and uniformly on y. In view of lemma, we
therefore have that for all ¢ such that 0 < |¢| <

h(t 2711er 0(1_ ert)dq

We are left with evaluating this integral. The poles of the integrand which are in the interior of y

3G +1) the function A, is given by

are the numbers

Suppose first that r is odd and at least 3, and that s € N is such that r = 25 + 1. We have that

r . S 2s+1 s ) s )
H(l _ qr—21 t) — H(l _ qr 21 H (1 r 21 _ H(l _ qr—21 t) H(l _ q—r+21t)
i=0 i=0 i=s+1 i=0 i=0

= =TI A=) [T(q7 - 1)
i=0 i=0
S 3 s .
= q—(s+1)2 H(l _ qr—Zzt) H(q21+1 — 1)
i=0 i=0

and it follows from this that
q—l —q _ q(s+1)2—1 _ q(s+1)2+1 .
Mico(1=¢%1)  Tlico(1=q"2') [Tioo(¢** ~ 1)
For each 7 € N let w, = exp(27y/~1/n) and let t'/" be any one of the nth roots of t. The poles of
this rational function inside the circle y are the numbers

jo @iy

Wy 0<i<s, 0<j<2i+1

and they are all simple. It follows that

h(t) = ii 4Res 1 1

i=0 j=0 q= w tl/(2'+1) Hl 0(1— r- 21t) I‘I{ (q21+1 )

(s+1)2-1 _ (s+1)%+1

62



The integrand has poles at the points of the set

r—2i

{geC:gq+0andq" ' =tforsomeic{0,...,r}}

and h,(t) is equal to the sum of the residules of that integrand at the poles which are in the interior
of y. Let us consider the first possible values of 7.
o If r = 0, we have can compute the integral immediately:

Ol BV a
ho(t):ﬁ/)}ﬁdq:m:;}t
>

This tells us that dim($?V,)? = 1for al d > 0. Of course, we already knew this, since
SV, =V, foralld > 0.
o Let now r = 1. The formula for h,(t) tells us that

q 1 l—q
(1) = meo—qt)(l— 04" 2 /<1—qt><q—t)d

The only pole of the last integrand in the interior of y is at g = ¢, and then

1- q2
hi(t) = Re B
=t (1-qt)(q-1t)
and, since the pole at g = ¢ is simple, this is
)
= lim 19 =
9=t (1-qt)

This means that 3450 dim(S9V;)8 - t4 = 1, so that

1, ifd=0;

dim(8%1;)? =
(s°W) {o, ifd>o0.

Agaln, we already knew this: as S 4y, = V,, the invariant subspace of S v is isomorphic to
d , which is the zero space if d > 0 and 1-dimensional if d = 0.
« Consider now the case in which r = 2. We have that

_q
ha(t) = me(l_ 2t)(1—t)(1— _Zt)

2711.[(1— 2t)(l—t)(q —t)

The poles of the integrand which are in the interior of y are at the square roots of ¢, so that if
we denote s on of them we have

q-q -7
ha(1) = Res S A=) (-1 S A== O(E =D
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and since the two poles are simple, this is equal to

i-q i-q

P CRr Yo TPy A LY Cupcrs T o AU
s—s° s -5
TU-20(1-D(s+s) Q-1 -1)(-s—3)
s—s° 1

T (1-s2)(1-t)s 1-t
We see in this way that

1, ifdiseven;

dim(8%1;)9 =
(8"W) {0, if it is odd.

o Letr =3, so that

q'-q
" 2 y (1- 3t)(1—qt)(1— q't)(1- —3t)

3

- ¢-q
_Zﬂi/y(l— 1) (1-qt)(q - t)(¢° ke

The integrand has simple poles at ¢ and at the three cube roots of t. At t the residue is

T-q
q (- 3t)(l—qt)(q—t)(q —t)
q _q (1) = B
q*t I-gn(-g0(q-0(@ -6 1 " a=-ma-2)(F-1)

S a-t)(2-1)

On the other hand, if s is a cube root of ¢, then

-7
= (1- 3t)(l—qt)(q—t)(q - t)
= lim i § (q-5)
a=>s (1-g’t)(1-qt)(q-t)(g> - t)
33—35 S2

T 1= )(1-s)(s-H)(1+s+s2) (1-s)(1-st)(1+s+s2)

and if w is one of the non-real cubic roots of 1,

Res -9
g-as (1- 3f)(1—qt)(q—t)(q - t)
= lim -4 (q- ws)
g-ws (1-g3t)(1-qt)(q-t)(¢> - 1)

B (1-s3t)(1- wst)(ws — t)(ws - t) (ws — w?s)
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Exterior powers

The Grothendieck ring

4.30. If M is a module, we denote [ M] its isomorphism class, and we write .# the set of all
isomorphism classes of finite-dimensional modules —it can be shown that this is indeed a set.

Let G(g) be the free abelian group with basis .. Its elements are formal linear combinations
of elements of .# with coefficients in Z. As G(g) is free, it is easy to show that there is a unique
Z-bilinear function - : G(g) x G(g) — G(g) such that

[M]-[N] = [M®N]

for all finite-dimensional modules M and N. Endowed with this map as multiplication, the abelian
group G(g) becomes a commutative ring:
o The multiplication distributes over addition simply because the map - is Z-bilinear.
« To show that - is an associative operation it is enough —thanks to distributivity and the fact
that every element of G(g) is a Z-linear combination of elements of .#Z — to show that for
all finite-dimensional modules M, N and P we have [M]- ([N]-[P]) = ([M]-[N]) - [P].
The definition of the product implies that the left and right hand sides of this equations are
[M® (N®P)]and [(M ® N) ® P], respectively, and these two classes are equal because,
according to Proposition 2.14(i), there is an isomorphism M ® (N® P) 2 (M ® N) ® P
o The isomorphism class [k] of the trivial module is a unit element in G(g). Indeed, if M is a
finite-dimensional module, then Proposition 2.14(iii) tells us that there are isomorphisms of
modules M @k = M =2k ® M, so that

[M]-[k] = [Mek] = [M]=[ke M] = [k]-[M],

and then bilinearity of the product implies that ¢ - [k] = ¢ = [k] - ¢ for all ¢ € G(g).
o Finally, if M and N are finite-dimensional modules, Proposition 2.14(ii) tells us that there is
an isomorphisms of modules M ® N = N ® M, so that

[M]-[N]=[M®N]=[NeM]=[N]-[M],
and it follows from this that in fact c- d = d - c for all ¢, d € G(g).
4.31. If & is a short exact sequence

0 M-t 3 E_9 N

~
o

we consider the element
ce = [M] - [E] +[N] € G(g),

and let I(g) be the subgroup of G(g) generated by all elements of this form. This subgroup is in
fact an ideal of G(g). To see this, we notice that if & is a short exact sequence of modules as above
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and P is a finite-dimensional module, then we can construct a new exact sequence of modules

d
0— s peM 2 pop %, peN — 5 0

which we denote P ® &, whose corresponding element in G(g) is
[P M]-[PQE]+[P®N]
[P]-[M]-[P]-[E]+[P]-[N]

[P]-([M] - [E]+[N])
=[

P] Cg,

Cpes =

so that [P]-cg € I(g). As the elements of .# generate G(g) as an abelian group, this is enough to
prove that I(g) is an ideal.
We may therefore consider the quotient

K(g) = G(9)/1(9)

which is a ring and which we call the Grothendieck ring of our Lie algebra. If M is a finite-
dimensional module, we will write [M] the class [M] + I(g) of [M] in K(g).

4.32. As an immediate consequence of the way we constructed the Grothendieck ring, we have
the following result:

Proposition. (i) If

0— s M-—L g9

> N > 0
is a short exact sequence of finite-dimensional modules, then in K(g) we have that
[E] = [M] + [N (50)
(ii) If M and N are finite-dimensional modules, we have that
[M e N] = [M] +[N] (51)
and
[M®N] = [M]-[N]. (52)

Proof. (i) If we have a short exact sequence of modules as in the statement, then we know that
[M] - [E] + [N] is an element of the ideal I(g), so that its image in K(g) is equal to zero. As this
image is clearly [M] — [E]] + [N], we have the equality (50).

(ii) Let M and N be two finite-dimensional modules. As we have the split short exact sequence

idy
0 >M(O)>MEBN Oidv), N g

the first part of the proposition tells us that the equality (51) holds. On the other hand, the
equality (52) follows immediately form the fact that the projection function p : G(g) - K(g) isa
morphism of rings. O]
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4.33. Since K(g) is defined as a quotient of a free abelian group, it is not obvious what its group
structure is. A direct consequence of our results on semisimplicity, we can prove that it is in fact
free.

Proposition. The set . = {[V;] : r € No} of classes in K(g) corresponding to the simple modules is
a basis of K(g) as an abelian group.

Proof. If M is a finite-dimensional module, Theorem 3.14 tells us that there exist n € Ny and
simple modules S;, ..., S, such that M = @7, S; and using Proposition 4.32(ii) we see from that
that [M] = X1, [Si], which is in the subgroup of K(g) generated by .#”. This clearly implies that
the set .#” generates K(g) as an abelian group. To prove the proposition, then, we need to show
that the set . is linearly independent.

Let P be a finite-dimensional module. Since the abelian group G(g) is free in the set .#,
there exists a morphism of groups ép : G(g) — Z such that ép([M]) = dim homy (P, M) for all
finite-dimensional modules M. If now & is a short exact sequence

f g

0 > M > E > N > 0
of finite-dimensional modules, then it follows from Proposition 5.1 that we also have a short exact
sequence of finite-dimensional vector spaces

0 —— homg(P, M) —— homy(P,E) —%— homg(P,N) — 0

and then, of course, we have that
dim homgy(P, M) — dim homy(P, E) + dim homgy(P,N) = 0.

The left hand side in this equality is ép(cg): we see in this way that the morphism ép maps the
ideal I(g) to zero, because it maps each of its generators to zero. This implies that there is a
morphism of groups ep : K(g) — Z such that

ep([M]) = ép([M]) = dimhomy(P, M)

for all finite-dimensional modules M. In particular, if S and T are finite-dimensional simple
modules, we have —in view of Lemma 3.15— that

1, if S and T are isomorphic;

es([T]) ={ . (53)

0, ifnot.

With this at hand, we can easily prove that the set . is linearly independent. Suppose that n € N,
that ry, ..., r, € Ny are n distinct non-negative integers, and that ay, ..., a, € Z are such that
Y7, ai[V;,] =0in K(g). If jis an element of {1, ..., n}, applying the morphism e, to both sides
of this equality and using (53) we find at once that a; = 0. This establishes the linear independence
of ., and completes the proof. d
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§5. Appendix: Extensions of modules

Extensions

5.1. If P and N are modules, an extension of P by N is a short exact sequence

f g

& 0 > N > M > P > 0

of modules and morphisms of modules which starts at P and ends at N. If

& 0 s N f>M’

!

94 p ' 0

is another extension of P by N, then we say that a morphism of modules ¢ : M — M’ is a morphism
of extensions from & to &' if the diagram

0 sy N om—2p s 0
.
0 y N L m 2 p > 0

is commutative.
5.2. An important observation is the following result, known as the Short Five Lemma:

Lemma. If & and &' are extensions of P by N as above and the morphism of modules ¢ : M — M’
is a morphism of extensions from & to &', then ¢ is an isomorphism of modules and its inverse
morphism ¢~' : M' — M is a morphism of extensions from &' to &.

In view of this, we say that the two extensions & and &’ of P by N are isomorphic if there is
a morphism of extensions from & to &”. It is easy to see, using the lemma, that this defines an
equivalence relation among extensions of P by N.

Proof. 1f m € M is such that ¢(m) = 0, then g(m) = g'(¢(m)) = 0 and therefore there exists an
n € N such that m = f(n). Now f'(n) = ¢(f(n)) = ¢(m) = 0 and, since f is injective, n = 0. Of
course, this tells us that m = f(n) = 0 and we see that the morphism ¢ is injective.

Let now m’ € M'. Since the morphism g is surjective, there exists an m € M such that
g(m) = g’'(m") and we have

g'(m'=¢(m)) = g'(m') - g'(¢(m)) = g(m) - g'(¢(m)) = 0.

By exactness of &”, there exists an n € N with f'(n) = m’ — ¢(m). Since

¢(m + f(n)) = ¢(m) + ¢(f(n)) = $(m) + f'(n) = m’,

we see that the element m' is in the image of ¢. This tells us that the map ¢ is surjective and we may
conclude that it is in fact an isomorphism. Finally, since ¢ is a morphism of extensions from &
to &', wehave g = g’ o ¢ and ¢ o f = f’, and composing on the right with ¢! in the first equality
and on the right in the second one we see that go ¢! = g’ and f = ¢~ o f’. These two equations
tell us that ¢! is a morphism of extensions from &” to &. O]

68



Split extensions

5.3. If P and N are modules, The split extension of P by N is the extension

idy
id
0—>NM>N@P (0ide), p

> 0

and, more generally, we say that an extension of P by N splits if it is isomorphic to the split
extension of P by N. Of course, the split extension of P by N is split.

5.4. The main reason that explains our interest in split extensions is the following:

Proposition. Let P and N be modules. If

0 s N L m

> P > 0

is an extension of P by N which is split, then there exists an isomorphism M = N & P.

Proof. Let & be an extension of P by N as in the statement. If it is split, then there exists a morphism
¢: M — N & M of modules which is a morphism of extensions from & to the split extension &g
of N by N. According to Lemma 5.2, this morphism ¢ is then an isomorphism. O]

5.5. It is useful to be able to recognize split extensions easily, and the following proposition helps
in doing that:

Proposition. Let

& 0 > N > M > P > 0

be an extension. The following three statements are equivalent:

(a) The extension & is split.

(b) There exists a morphism of modules r : M — N such that r o f = idy.

(c) There exists a morphism of modules s : P — M such that g o s = idp.
If they hold, then the morphisms s and r appearing in (b) and (c), respectively, can be chosen in such
awaythatros=0.

We call a morphism r with the property described in () a retraction of the morphism f, and

a morphism s with the property described in (c) a section of the morphism g.

Proof. Let us write &g the split extension of P by N.
Suppose first that the extension & is split, so that there is a morphism of extensions ¢ : & — &,
that is, a morphism ¢ : M — N @ P making the diagram

f g

> M
I#

0 —— N—N@P —P ——=0
('dON) (0idp)

0 > N > P > 0
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commutative. The map r = (idy 0) o ¢ : M — N is a retraction of f, since
rsz(idM 0)o¢of:(idM O)O(i%N)zidN,

and the maps = ¢ o ( igp ) : P — M is a section of s, since

_ 0 . 0 .
gos:g0¢10(idp):(0 Idp)O(idp)Zldp.
This shows that the condition (a) implies both (b) and (c). Moreover, since we have
ros=(idM 0)0(/>0¢_10 0 =(idM 0)0 0 =0,
idp idp

when the condition (a) holds we can choose the retraction r of f and the section s of g so that
ros = 0, as the last sentence of the proposition claims.

Let us suppose now that the condition (b) holds, so that there is a retraction r : M — N of f.
The morphism ¢ = () : M - N & P is such that

(0 idp)og=(0 wﬁo(;)=g

oot (0)or-(20)-()

and is therefore a morphism of extensions ¢ : & — &g. The extension & is thus split in this

and

situation.
Finally, let us suppose that condition (c) holds, and let s : P — M be a section of g. The
morphism h =idy —so g : M — M is such that

goh=g-gosog=g-g=0
and, since f is a kernel of g, this implies that there exists a morphism r : M — N such that
for=h=idpy —sog. Now,as

forof=f-sogof=foidy

and the morphism f is injective, we have that r o f = idy, that is, that r is a retraction of f and,
then, that the condition (b) holds. This completes the proof. O

Filtrations
5.6. If M is a module and ¢ € N, a filtration of length t on M is a sequence
MycE Myc--cM,;
of submodules of M such that My = 0 and M; = M, and the quotient modules M; /Mo, ..., M/ M4

are the subquotients of the filtration.
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5.7. Proposition. Let M and P be modules and let
MycS Myc--SM,;

be a filtration of length t € N of M. If every extension of O by one of the subquotients of this filtration
splits, then every extension of P by M splits.

Proof. We proceed by induction on the length of the filtration. If ¢ = 1, then there is nothing to
prove, as the unique subquotient of the filtration is then M;/Mq = M, so the conclusion coincides
with the hypothesis.

Suppose next that ¢ > 2. Since

MycS Myc-- S M

is a filtration of length ¢ — 1 of M;_; and since every extension of P by one of its subquotients
splits —simply because its subquotients are some of the subquotients of the filtration of M— the
inductive hypothesis tells us that every extension of P by M;_; splits.

We have a short exact sequence of the form

0 > M s M; > My/M;-y — 0

and we know that every extension of P by M;_; or by M;/M;_; splits, so Proposition 5.8 tells us
that every extension of P by M; splits. As M = M;, this proves what we want.

Suppose finally that ¢ = 2. In that case, the filtration amounts to a choice of a submodule M;
in M, = M, and the hypothesis is that in the exact sequence

0 > M s M > M/M; —— 0

every extension of P by either M; or M/M; splits. That every extension of P by M splits is then a
consequence of Proposition 5.8 that we will now prove. O

5.8. Proposition. Let Q be a module and let

0 s N s M2, p s 0

be a short exact sequence of modules. If every extension of Q by N or by P splits, then every extension
of Q by M splits.
Proof. Let us suppose that every extension of Q by N or by P splits, and let

0 sy M 23 E—>5Q s 0 (54)

be an extension of Q by M. Let us consider the map a = (g) : M - E & P, let E’ be its cokernel
andlet f = (g’ «') : E®P — E’ be the canonical projection, so that we have a short exact sequence

+(5)

0 s M yEop -9, g

~
(=

(55)
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and, in particular,
goutu og=0. (56)

The morphismy = (v0): E®P — Qissuchthatyoa = (vo0)o(g)=vou=0,so the universal
property of the cokernel tells us that it factors through E’, that is, that there exists a morphism
v': E' > Q such that y = v/ o 8, which means that

viog =v (57)
and
viou =0. (58)
Let us check that
0 N LN -/ No) ) (59)

is an extension of Q by P.
o Suppose that p € P is such that u’(p) = 0. It follows then that ,3( g ) = 0 and the exactness
of (55) tells us that there is an m € M such that

(5) =0 =(56)

Since u is an injective function, we see that n = 0, and therefore that p = g(n) = 0. This
means that the morphism ' is injective.

o According to (58), we have v/ o u’ = 0. Suppose that ¢’ € E’ is such that v/(e") = 0. Since the
map f in (55) is surjective, there exist e € E and p € P such that

¢=p(0) -0 v, (60)
It follows from this that

0=v'(e") =v'(g'(e)) +v'(u'(p)) = v(e),

in view of (57) and (58) and, since (54) is exact, that there exists an m € M such that u(m) = e.
Now

u'(p-g(m))=u'(p)-u'(g(m))
=u'(p) + g’ (u(m)) because of (56)
=u'(p) +4'(e) because of (60)

!
=e€

and this shows that e’ is in the image of u’. We thus see that the sequence (59) is exact at E’.
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o Finally, if g € Q, from the exactness of the sequence (57) it follows that there exists an e € E
such that v(e) = ¢ and then, using (57), that

g=v(e)=v'(g'(e))

is in the image of v'. The morphism v’ is thus surjective.
This completes the proof of exactness of the sequence (59), which is therefore an extension of Q
by P. The hypothesis then tells us that this extension splits and, according to Proposition 5.5, this
implies that there exists morphisms r: E' - P and s’ : Q — E’ such that

rou’ =idp, (61)
v os=idg

and
ros=0.

Let now E” be the kernel of r o g’ and let f’ : E” — E be the inclusion. Of course, we have that
rogiof =0. (62)
As
rogouof=—rouogof=0
there exists a morphism u”" : N — E’ such that
flou" =uof. (63)

We put v’ =vo f': E” - Q and consider the sequence

0 s N s g Y > 0 (64)

This is also an exact sequence:
« Since u and f are injective morphisms, the equality (63) implies immediately that 4"’ is also
injective.
« Using that same equality (63) we see that

" 144 ! 14
viou =vof ou =vouof=0.

Let ¢” € E" be such that v"/(e’") = v(f’(e”)) = 0. Since the sequence (54) is exact, there
exists an m € M such that u(m) = f'(e”"). We can now compute that

g(m) =r(u'(g(m))) because of (61)
=-r(g'(u(m)) because of (56)
=-r(g'(f'(e")) in view of the choice of e”’
=0 because of (62).
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Using the exactness of the short exact sequence that appears in the statement of the proposi-
tion we see that there exists an n € N such that f(n) = m. Now

f(W"(n)) = u(f(n)) = u(m) = f'(e")

and since the morphism [ is injective this implies that u”’(n) = e’’. The sequence (64) is
therefore exact at E”.

« Finally, let g € Q. Since the morphism v is surjective, there is an e € E such thatv(e) = ¢,
and since the morphism g is surjective, an m € M such that g(m) = r(g'(e)). As

r(g'(e—u(m)) =r(g'(e)) —r(g'(u(m)))
=r(g'(e)) - r(u'(g(m)))
=g(m)-g(m) =0

the definition of E" and the morphism f’ implies that there exists an e’ € E” such that
f'(e") = e—-u(m),and then

vi(e") =v(f'(e")) = v(e) —v(u(m)) = q.

As the sequence (64) is an extension of Q by N, it is split by hypothesis and, as before, there exist
morphisms 7’ : E” - N and s’ : Q — E” such that

! 144 .
rou’ =idy,

v o' =idg

r'os’ =0.

We now consider the sequence

:—u”
0 >N¢(f)>E”eaM

=(f"u)
v, g (65)

~
(e

and —for the last time!— show that it is exact:
« Since the morphism 1"’ is injective, it is clear that the morphism ¢ appearing here is injective.
« We have

/i
vop=(r w)o( W)= -seur s fou-o
Let, on the other hand, e” € E” and m € M be such that y( ¢ ) = f'(e”) + u(m) = 0. As

V(") =v(f'(e")) = —v(u(m)) =0,
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the exactness of the sequence (64) implies that there exists an n € N such that u”'(n) = —e”,
and then

u(f(n)) = f'(u'(n)) = f'(=€") = u(m),

so that (1) = m, because the morphism u is injective. It follows that ¢(n) = (

4

e ) and, as

a consequence of this, that the sequence (65) is exact at E” & M.
o Finally, let e € E. Since the morphism g is surjective, there exists an m € M such that
g(m) =r(g'(e)), and then

r(g'(e-u(m))) =r(g'(e))-r(g'(u(m))) = g(m)-r(u'(g(m)) = g(m)-g(m) = 0,

so that there exists an e” € E” such that f'(e”") = e — u(m). Then

1//(;,:) = f'(e") +u(m) =e.

This shows that the morphism y is surjective.
Let us now consider the morphism

w=(for idy):E'®@M->M

Sincewo ¢ = —ror’ ou’ + f =0, the exactness of the sequence (65) implies that there exists a
morphism o : E - M such that w = ¢ o y, and this means that

(for idu)=(cof oou)

and, in particular, idy; = 0 o u. We conclude in this way that the morphism o is a retraction for
the map u appearing in the extension (55) and that the latter is therefore split. This proves the
proposition. O

Projectivity

5.9. If ¢ is a class of modules, we say that a module P is projective relative the class ¢ if every
extension of P by a module belonging to ¢’ is split.

5.10. Projectivity is usually presented in a slightly different but equivalent way:

Proposition. Let ¢ be a class of modules. A module P is projective relative to the class € if and only
if for each short exact sequence

0 > M > N > Q > 0 (66)

in which the module M belongs to € we have that

if ¢ : P — Q is a morphism of modules, then there exists a morphism of modules
¢: P — N suchthat go ¢ = g.
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Proof. Let us suppose first that P is projective relative to the class ¢, let us consider a short exact
sequence as in (66) with the the module M belonging to ¢ and let ¢ : P - Q be a morphism.

Letf=(9¢): NP — Q,let E be the kernel of  and let « = (ﬁ:) : E - N @ P be the
inclusion, so that we have a short exact sequence

B=(g ¢)

~
o

0 > E > No P (67)

Q

and, in particular,

go¢'+¢og’=0.

Themap y = (5 ) :M - N@Pissuchthat foy =go f =0, so that the universal property of the
kernel tells us that there exists a morphism f’: M — E such that a o f’ = y, that is, such that

¢'of =f (68)
and
gof =o0. (69)

Let us show that the sequence

0 sM -1 v E -9 p

v
(e}

(70)

is exact.
o Since the morphism f is injective, the equality (68) implies at once that so is the morphism f".
o The equation (69) tells us that g’ o f’ = 0. Suppose that e € E is such that g’(e) = 0. Since
g(¢'(e)) =-¢(g'(e)) = 0, the exactness of the sequence (66) tells us that there exists an
m € M such that f(m) = ¢/(e). Now

ooy (S =) (0
a(f'(m) - e) (g/(ff(m»—g'(e)) (0)

and the morphism « is injective, so that f’(m) = e.
« If p € P, then —since the morphism g is surjective— there exists an n € N such that
g(n) = —¢(p) and therefore

g (P) _ g(n)+9(p) = 0.

The exactness of the sequence (67) implies then that there is an e € E such that

W\ (#0)
(3)- == (565)
and, in particular, ¢’(e) = p.
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Since M belongs to the class €, the extension (70) if P by M is split, and there exists a section
s: P — Eof g/, sothat g’ os = idp. Using this, we see at once that the morphism ¢ = ¢’ o s
satisfies the desired condition:

gog=go(-¢'os)=-gog'os=¢ogos=¢.

This shows that the condition in the proposition is necessary.
Let us now suppose that that condition is satisfied, and let us show that the module is then
projective relative to the class €. Suppose for this that

0 s M sy E—J2 5 p ) (71)

is an extension of P by a module M belonging to the class €. By hypothesis, there exists a
morphism s : P — E such that g o s = idp. This means precisely that s is a section of g, and then
the extension (71) is split. This shows that P is projective relative to the class &, as we wanted. [

5.11. Proposition. Let € be a class of modules and let P be a module which is projective relative to € .

If

0 > M > E > N > 0

is a short exact sequence of modules in €, then the sequence of vector spaces

0 —— homy(P, M) —2~ homy(P,E) —2— homy(P,N) —— 0

is also exact.
Proof. HACER O
5.12. Proposition. Let € be a class of modules and let € be the class of all modules which admit a

filtration of finite length whose subquotients all belong to the class €. A module is projective relative
to the class € if and only if it is projective relative to the class €.

Proof. The necessity of the condition is the content of Proposition 5.7 and its sufficiency is evident
since ¢ ¢ €. O
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