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§1. Lie algebras

Lie algebras

1.1. Proposition. Hello

1.1 on page 2

1.2. A Lie algebra is a vector space g endowed with a bilinear function [−,−] ∶ g × g → g, the
bracket of g, which is antisymmetric, so that

[y, x] = −[x , y] (1)

for all x, y ∈ g, and which satisûes Jacobi’s identity

[x , [y, z]] + [y, [z, x]] + [z, [x , y]] = 0 (2)

for all x, y, z ∈ g. In that case, a subalgebra of g is a subspace h ⊆ g such that [x , y] ∈ h whenever
x and y are elements of h.

1.3. An observation which is useful in checking that concrete examples are Lie algebras is the
following:

Proposition. Let g be a vector space and let [−,−] ∶ g × g→ g be a antisymmetric bilinear function.

(i) he function J ∶ g × g × g→ g such that

J(x , y, z) = [x , [y, z]] + [y, [z, x]] + [z, [x , y]]

for all x, y, z ∈ g is alternating.

(ii) If g is ûnite dimensional and (x1, . . . , xn) is a basis of g, then [−,−] turns g into a Lie algebra

if and only if we have J(xi , x j , xk) = 0 for all i, j, k ∈ {1, . . . , n} such that i < j < k.

Proof. (i) We have to check that J(x , x , y) = J(x , y, y) = 0 for all x and y in g, and this follows
from a direct calculation. For example, we have J(x , x , y) = [x , [x , y]] + [x , [y, x]] + [y, [x , x]]
and the ûrst two terms cancel each other because [x , y] = −[y, x] and the third term is zero.

(ii) To see that the bracket turns g into a Lie algebra we have to check that the function J of (i)
vanishes identically and, since that function is trilinear and alternating, that happens if and only if
J(xi , x j , x j) = 0 when 1 ≤ i < xi < x j < x j ≤ n.

1.4. It follows immediately from this proposition that if g is a vector space of dimension at most
two any bilinear function [−,−] ∶ g × g → g turns g into a Lie algebra. Indeed, in that case the
function J of the proposition vanishes identically simply because it is trilinear and anti-symmetric.

As a less trivial example of how this proposition can be used, let g = k3 and let [−,−] ∶ g×g→ g

be the cross product. If {x , y, z} is the standard basis of g, we then have

[x , y] = z, [y, z] = x , [z, x] = y.
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We claim that we obtain in this way a Lie algebra. As the cross product is bilinear and anti-
symmetric, Proposition 1.3 tells us that to check that Jacobi’s condition is satisûed we need only
compute that

J(x , y, z) = [x , [y, z]] + [y, [z, x]] + [z, [x , y]] = [x , x] + [y, y] + [z, z] = 0.

More generally, we have the following result:

Proposition. Let g be a vector space of dimension 3 and let [−,−] ∶ g × g→ g be an anti-symmetric

bilinear map. Let {x , y, z} be a basis of g and suppose that the scalars ai , bi , ci are such that

[y, z] = a 1x + b 1y + c 1z, [z, x] = a2x + b2y + c2z, [x , y] = a3x + b3y + c3z. (3)

he bracket [−,−] satisûes the Jacobi identity if and only if

∣a1 b1
a3 b3

∣ = ∣a1 c1
a2 c2

∣ , ∣b1 c1
b2 c2

∣ = ∣a2 b2
a3 b3

∣ , ∣b1 c1
b3 c3

∣ = ∣a2 c2
a3 c3

∣ .

Proof. he bracket satisûes the Jacobi condition if and only if the function J from Proposition 1.3
vanishes identically. Now g is 3-dimensional and J is alternating and bilinear, so this happens if
and only if J(x , y, z) = 0. Computing the le� hand side of this equation using the relations (3) one
ûnds that the condition is equivalent to the three equations given in the lemma.

1.5. If g and h are Lie algebras, a linear function f ∶ g→ h is amorphism of Lie algebras if

[ f (x), f (y)] = f ([x , y]) for all x, y ∈ g.

he brackets appearing here in the le� and right hand side are those of of h and of h, respectively.
It is immediate that the identity function of any Lie algebra is a morphism of Lie algebras, and

that the composition of morphisms of Lie algebras is again one: it follows from this that there is a
category Lie whose objects are Lie algebras and whose arrows are morphisms of Lie algebras.

1.6. An ideal of a Lie algebra g is a subspace i of g such that

[x , y] ∈ i for all x ∈ g and all y ∈ i.

In particular, an ideal is a subalgebra.
In every Lie algebra g the subspaces 0 and g are ideals. We say that g is simple if it has exactly

two ideals, which are then of course these two; the zero Lie algebra is thus not simple.

1.7. he ideals of Lie algebras play a role similar to that of ideals in rings:

Proposition. (i) he kernel of a morphism of Lie algebras f ∶ g→ h is an ideal of g.

(ii) If g is a Lie algebra and i is an ideal of g, then there is a unique Lie algebra structure on the

quotient space g/i such that the canonical function p ∶ g→ g/i is a morphism of Lie algebras.

If x and y are elements of g, then the bracket on g/i is such that

[x + i, y + i] = [x , y] + i.

3



Proof. (i) Let f ∶ g→ h be a morphism of Lie algebras. If x ∈ g and y ∈ ker f , then

f ([x , y]) = [ f (x), f (y)] = [ f (x), 0] = 0,

so that [x , y] ∈ ker f . his tells us that ker f is an ideal of g.
(ii) Let g be a Lie algebra and let i be an ideal of g.
Let x ∈ g. We consider the function cx ∶ y ∈ g↦ [x , y] + i ∈ g/i. It is clearly linear and maps i

to zero: if y ∈ i, then cx(y) = y + i = i. It follows from this that there exists a unique linear map
c̄x ∶ g/i→ g/i such that c̄x(y + i) = cx(y) + i for all y ∈ g.

here is a function c̄ ∶ g→ Endk(g/i) such that c̄(x) = c̄x for all x ∈ g. It is easy to see that it
is linear, and it maps i to zero: indeed, if x ∈ i, then for all y ∈ g we have

c̄(x)(y + i) = c̄x(y + i) = [x , y] + i = i,

since i is an ideal. It follows from this that there is a unique linear function ¯̄c ∶ g/i → End(g/i)
such that

¯̄c(x + i)(y + i) = c̄(x)(y) = [x , y] + i

for all x, y ∈ g. We may now deûne a bracket [−,−] ∶ g/i×g/i→ g/i so that [x + i, y+ i] = ¯̄c(x)(y)
for all x, y ∈ g or, in other words,

[x + i, y + i] = [x , y] + i. (4)

his bracket is anti-symmetric and satiaûes Jacobi’s identity —this follows immediately from
the last equation and the fact that g is a Lie algebra— so that it turns the quotient g/i into a Lie
algebra. he canonical function p ∶ x ∈ g↦ x + i ∈ g/i is a morphism of Lie algebras: this is just a
restatement of the equality (4).

To ûnish the proof of the proposition, we have to check the uniqueness claim. Suppose that
[−,−]′ ∶ g/i × g/i → g/i is a bracket on g/i such that the canonical function p is a morphism of
Lie algebras. If x and y are elements of д, then we have

[x , y] + i = p([x , y]) = [p(x), p(y)]′ = [x + i, y + i]′

and this tells us that in fact the bracket [−,−]′ coincides with the one we deûne before.

Examples

Abelian Lie algebras
1.8. If g is a vector space, the zero bilinear map [−,−] ∶ g × g → g turns g into a Lie algebra
—indeed, the two conditions (1) and (2) are trivially satisûed for this bracket. We say that a Lie
algebra is abelian if its bracket vanishes identically, as in this example. Every subspace of an abelian
Lie algebra is a subalgebra and even an ideal. Every linear map between abelian Lie algebras is a
morphism of Lie algebras and two abelian Lie algebras are isomorphic if and only if they have the
same dimension are vector spaces.
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Lie algebras associated to associative algebras
1.9. Let us recall that an associative algebra is a vector space A endowed with a bilinear multiplica-
tion ⋅ ∶ A× A→ Awhich is associative, in that x ⋅ (y ⋅ z) = (x ⋅ y) ⋅ z for all x, y, z ∈ A; as usual, we
will write xy instead of x ⋅ y whenever this is convenient and does does not cause any confusion.

From an associative algebra we can construct a Lie algebra, as follows:

Proposition. Let A be an associative algebra. he map [−,−] ∶ A× A→ A such that

[x , y] = xy − yx

for all x, y ∈ A turns A into a Lie algebra, which we denote Lie(A). his Lie algebra is abelian if and

only if the associative algebra A is commutative.

Proof. If x and y are elements of A, we have

[y, x] = yx − xy = −(xy − yx) = −[x , y]

so the bracket is anti-symmetric. On the other hand, let us ûx x, y and z in A. We have

[x , [y, z]] = [x , yz − zy] = x(yz) − x(zy) − (yz)x + (zy)x

and, similarly,

[y, [z, x]] = y(zx) − y(xz) − (zx)y + (xz)y
and

[z, [x , y]] = z(xy) − z(yx) − (xy)z + (yx)z.

If follows that the le� hand side in Jacobi’s condition (2) is

x(yz) − x(zy) − (yz)x + (zy)x + y(zx) − y(xz)
− (zx)y + (xz)y + z(xy) − z(yx) − (xy)z + (yx)z

and since A is an associative algebra the terms appearing in this expression cancel in pairs: x(yz)
with (xy)z, x(zy) with (xz)y, and so on. We see that Jacobi’s equation holds and that Lie(A) is
therefore a Lie algebra. he last claim of the proposition is immediate, in view of the deûnition of
the bracket of Lie(A).
1.10. he condition that the algebra A be associative was used in the proof the Proposition 1.9 but
it is not a necessary condition for the conclusion of that proposition to hold. If A is a possibly non-
associative algebra with multiplication ⋅ ∶ A× A→ Awe may deûne a bracket [−,−] ∶ A× A→ A

as before, putting [x , y] = xy − yx for all x, y ∈ A. his bracket is anti-symmetric but Jacobi’s
condition is no longer automatically satisûed. We say that the possibly non-associative algebra A
is Lie-admissible if [−,−] satisûes Jacobi’s condition. If that is the case, we write Lie(A) the
corresponding Lie algebra. In this language, Proposition 1.9 tells us that associative algebras are
Lie-admissible. On the other hand, it is immediate to check that a Lie algebra g is Lie-admissible.
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Let us give a genuinely new example of a class of Lie-admissible algebras. If A is a possibly
non-associative algebra, the associator of A is the function

αA ∶ (x , y, z) ∈ A× A× A↦ x(yz) − (xy)z ∈ A,

which is manifestly trilinear. It is clear that the algebra A is associative exactly when its asso-
ciator αA is identically zero, so we view αA as a measure of how badly associativity fails in A.
We say that the algebra A is alternative if its associator is anti-symmetric or, equivalently, if
αA(x , x , y) = αA(x , y, y) = 0 for all x, y ∈ A. We are interested in these notions because of the
following result:

Proposition. An alternative algebra is Lie-admissible.

Proof. Let A be an alternative algebra and let αA ∶ A× A× A→ A be its associator. We put on A
the bracket [−,−] ∶ (x , y) ∈ A× A↦ xy − yx ∈ A and consider the function J ∶ A× A× A→ A of
Proposition 1.3. Since [−,−] is anti-symmetric, to prove that A is Lie-admissible we have to show
that the function J is identically zero. As in the proof of Proposition 1.9, we ûnd that if x, y, z ∈ A,
then

J(x , y, z) = x(yz) − x(zy) − (yz)x + (zy)x + y(zx) − y(xz)
− (zx)y + (xz)y + z(xy) − z(yx) − (xy)z + (yx)z

and this can be written in terms of the associator as

αA(x , y, z) − αA(x , z, y) + αA(z, x , y) − αA(z, y, x) + αA(y, z, x) − αA(y, x , z).

As the associator is anti-symmetric, this is easily seen to be equal to zero.

Of course, this proposition is of interest only if we are able to exhibit Lie-admissible algebras
which are not associative. We refer the reader to the book [CS2003] by John H. Conway and Derek
Smith and to the survey [Bae2002] for information on the Cayley-Dickson algebraO of octonions,
an important and beautiful example of an alternative algebra which is not associative.

The general and special linear Lie algebra on a vector space
1.11. hemost important instance of the construction of Proposition 1.9 is the following. If V is a
vector space, then we have the associative algebra Endk(V) of all linear functions V → V , whose
multiplication is the composition of functions. We write gl(V) the Lie algebra Lie(Endk(V)) and
call it the Lie algebra of endomorphisms of V or the general linear Lie algebra on V .

Proposition. Let V be a vector space.
(i) he Lie algebra gl(V) is ûnite-dimensional if and only if V is ûnite-dimensional. If that is the

case and n = dimV, then dimgl(V) = n2.

(ii) he Lie algebra gl(V) is abelian if and only if V is of dimension zero or one

Proof. he ûrst part is clear. he second one follows at once from the fact that the associative
algebra Endk(V) is commutative if and only if V is of dimension at most one.
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1.12. Let V be now a ûnite-dimensional vector space, so that we have available trace function
tr ∶ Endk(V) → k. his is a linear function such that whenever f ∈ Endk(V) andB is an ordered
basis of V we have

tr f = tr[ f ]B ,

where on the right hand side of the equality [ f ]B denotes the matrix of the linear map f with
respect to the basis B and tr[ f ]B its trace. his trace function has the property that

tr idV = dimV

and

tr f д = tr д f (5)

whenever f and д are elements of Endk(V). Moreover, it is easy to see that these two properties
uniquely characterize it among linear maps from Endk(V) to k.

1.13. Proposition. Let V be a ûnite-dimensional vector space of dimension n. he subspace

sl(V) = { f ∈ gl(V) ∶ tr( f ) = 0}

of gl(V) is an ideal —and therefore a subalgebra— of gl(V) of dimension n2 − 1.

We call sl(V) the special linear Lie algebra on V .

Proof. If x and y are elements of gl(V), then the identity (5) tells us that tr( f д) = tr(д f ), so that

tr[ f , д] = tr( f д − д f ) = 0

and, in particular, [x , y] ∈ sl(V). his implies at once that sl(V) is a subalgebra of gl(V). he
linear function tr ∶ Endk(V) → k is not the zero function, so that its kernel —which is precisely
sl(V)— has codimension 1 in Endk(V) and, as Endk(V) has dimension n2, this tells us that we
have dim sl(V) = n2 − 1, as the proposition claims.

Lie algebras associated to bilinear forms
1.14. Let again V be a vector space and let us consider now a bilinear form β ∶ V × V → k on V .
We say that a linear map f ∶ V → V preserves β if for all x, y ∈ V we have that

β( f (x), y) + β(x , f (y)) = 0.

Proposition. Let V be a vector space and let β ∶ V × V → k be a bilinear form. he subset o(V , β)
of gl(V) of all linear maps which preserve β is a Lie subalgebra of gl(V).
Proof. An immediate veriûcation shows that o(V , β) is a subspace of gl(V). On the other hand,
if f and д are elements of o(V , β), since f preserves β we have that

β( f (д(x)), y) + β(д(x), f (y)) = 0, β( f (x), д(y)) + β(x , f (д(y))) = 0
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and since д preserves β that

β(д(x), f (y)) + β(x , д( f (y))) = 0, β(д( f (x)), y) + β( f (x), д(y)) = 0.

he sum of the le� hand sides of the ûrst two of these equations minus the sum of the le� hand
sides of the other two is then

β([ f , д](x), y) + β(x , [ f , д](y)) = 0,

so that [ f , д] ∈ o(V , β). his proves the proposition.

Lie algebras of derivations
1.15. Let A be a possibly non-associative algebra, that is, a vector space endowed with an arbitrary
bilinear map ⋅ ∶ A× A→ Awhich we view as a multiplication on A. A linear function f ∶ A→ A is
a derivation of A if for all x, y ∈ Awe have that

f (x ⋅ y) = f (x) ⋅ y + x ⋅ f (y).

Proposition. Let A be a possibly non-associative algebra. he subset Der(A) of gl(V) of all deriva-

tions of A is a Lie subalgebra of gl(A).

Proof. A straightforward computation proves that Der(A) is a subspace of gl(V). To see that it is
a subalgebra, let f and д be two elements of Der(A) and let us show that [ f , д] is also in Der(A).
If x and y are in A, then we have

д(x ⋅ y) = д(x) ⋅ y + x ⋅ д(y)

because f is a derivation, and then, since д is a derivation,

f (д(x ⋅ y)) = f (д(x)⋅ y)+ f (x ⋅ д(y)) = f (д(x))⋅ y+ д(x)⋅ f (y)+ f (x)⋅ д(y)+x ⋅ f (д(y)),

Reversing the roles of f and д, we also have that

д( f (x ⋅ y)) = д( f (x)) ⋅ y + f (x) ⋅ д(y) + д(x) ⋅ f (y) + x ⋅ д( f (y)).

and subtracting we ûnd that

[ f , д](x ⋅ y) = f (д(x ⋅ y)) − д( f (x ⋅ y))
= f (д(x)) ⋅ y + x ⋅ f (д(y)) − д( f (x)) ⋅ y − x ⋅ д( f (y))
= [ f , д](x) ⋅ y + x ⋅ [ f , д](y).

his tells us that [ f , д] ∈ Der(A), as we wanted.
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1.16. Let us compute as an example of this construction the Lie algebra of derivations of the
algebra k[X] of polynomials with coeõcients in k on the variable X. We start by obtaining a
description of all derivations of this algebra.

Lemma. For every p ∈ k[X] the function

dp ∶ f ∈ k[X] ↦ p f
′ ∈ k[X]

is a derivation of the algebra k[X]. Conversely, if d ∶ k[X] → k[X] is a derivation, then there is a

unique p ∈ k[X] such that d = dp.

Proof. Let p ∈ k[X]. If f , д ∈ k[X], then we have

dp( f д) = p( f д)′ = p f
′
д + p f д

′ = dp( f )д + f dp(д)

because the derivative satisûes Leibniz’s formula, and this tells us that dp is a derivation of k[X].
his proves the ûrst part of the lemma.

Suppose now that d ∶ k[X] → k[X] is a derivation and let p = d(X). We claim that for all
n ∈ N0 we have

d(Xn) = nX
n−1

p, (6)

and this implies that the function d coincides with the function dp, for it coincides with it on every
element of the basis {Xn ∶ n ∈ N0} of k[X].

We check (6) by induction on n. We have

d(1) = d(1 ⋅ 1) = d(1) ⋅ 1 + 1 ⋅ d(1) = 2d(1)

because d is a derivation, and therefore d(1) = 0. his means that the equality (6) holds when
n = 0. On the other hand, if n ∈ N0 and we suppose inductively that d(Xn) = nXn−1p, then we
have that

d(Xn+1) = d(Xn ⋅ X) = d(Xn) ⋅ X + X
n ⋅ d(X) = nX

n−1
pX + X

n
p = (n + 1)Xn

p.

he induction is thus complete.

For obvious reasons, if p ∈ k[X] we will write

p
d
dX

to denote the derivation dp ∶ k[X] → k[X] described in the lemma. It follows at once from it
that the function p ∈ k[X] ↦ p

d
dX ∈ k[X] is bijective, and it is easy to check that it is in fact an

isomorphism of vector spaces. To complete the description of the Lie algebra Der(k[X]) we need
to compute its bracket:

Proposition. If p, q ∈ k[X], the bracket in Der(k[X]) is such that

[p d
dX , p

d
dX ] = (p′q − pq

′) d
dX .
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Proof. If f ∈ k[X], then we have

dp(dq( f )) = dp(q f ′) = p(q f ′)′ = pq
′
f
′ + pq f

′′

and, similarly,

dp(dp( f )) = p
′
q f

′ + pq f
′′,

so that

[dp , dq]( f ) = dp(dp( f )) − dq(dp( f )) = pq
′
f
′ − p

′
q f

′ = dpq′−p′q( f ).

It follows from this that [dp , dq] = dpq′−p′q, and this is what the proposition claims.

1.17. Hacer: Perfection.
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§2. Representations of Lie algebras

Representations, modules and morphisms

2.1. Let g be a Lie algebra. A representation of g on a vector spaceM is a morphism of Lie algebras
ρ ∶ g→ gl(M) from g to the Lie algebra of endomorphisms of M. Explicitly, this means that the
function ρ is linear, that it maps each x ∈ g to an endomorphism ρ(x) ∶ M → M of the vector
space M, and that whenever x, y ∈ g we have that

[ρ(x), ρ(y)] = ρ([x , y]). (7)

If x ∈ g we o�en write xM instead of ρ(x), and in this notation the condition (7) says that for all
x, y ∈ g we have xM ○ yM − yM ○ xM = [x , y]M .

On the other hand, a g-module is a pair (M , ⋅) in which M is a vector space and ⋅ ∶ g×M → M

is a bilinear function such that

x ⋅ (y ⋅m) − y ⋅ (x ⋅m) = [x , y] ⋅m. (8)

whenever x, y ∈ g and m ∈ M. Usually we say that M is itself a g-module, leaving the action ⋅
implicit, and whenever the Lie algebra g about which we are talking can be determined from the
context, we speak simply of modules instead of g-modules.

he notion of representations of Lie algebras and that of their modules are related:
• If ρ ∶ g→ gl(M) is a representation of g on a vector space, we can construct an action

⋅ ∶ (x ,m) ∈ g ×M ↦ ρ(x)(m) ∈ M

of g on M. he fact that ρ is a linear map implies at once that this action is a bilinear function,
and from the condition that ρ satisûes (7) it follows that we in fact have a g-module (M , ⋅).

• Conversely, if we are given a g-module (M , ⋅), then we can construct a representation
ρ ∶ g→ gl(V) of g on M putting, for each x ∈ g and each m ∈ M, ρ(x)(m) = x ⋅m. hat ρ
is a linear function is a consequence of the bilinearity of the action ⋅ and, as is to be expected,
the condition (7) is a direct consequence of the condition (8).

hese two constructions are easily seen to be mutually inverse, and this shows that the two notions
presented above are in fact equivalent. We will switch from one point of view to the other whenever
we ûnd it convenient.

2.2. If M and N are two g-modules, then a linear map f ∶ M → N is amorphism of g-modules if
for all x ∈ g and all m ∈ M we have that

f (x ⋅m) = m ⋅ f (m).

We denote homg(M ,N) the set of all morphisms of g-modules M → N . It is easy to see that it is a
subspace of the space homk(M ,N) of all linear functions M → N .

he identity map of a g-module is a morphism of g-modules, and the composition of two
morphisms of g-modules is itself a morphism of g-modules: it follows from this that there is a
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category whose objects are the g-modules and whose arrows are the morphisms of g-modules.
We write it gMod and we let gmod be its full subcategory spanned by the g-modules which are
ûnite-dimensional as vector spaces.

2.3. As usual, if M is a g-module, we say that a subspace N of M is a submodule of M if x ⋅ n ∈ N

for all x ∈ g and all n ∈ N . In that case we can restrict the action ⋅ ∶ g ×M → M of g on M to an
action ⋅ ∶ g × N → N on N , and it is immediate that the latter turns N into a g-module. We will
always view submodules as g-modules in this way.

Proposition. (i) If f ∶ M → N is a morphism of g-modules, then the kernel of f is a submodule

of M and the image of f is a submodule of N.

(ii) If M is a g-module and N ⊆ M is a submodule of M, there is a unique g-module structure on

the quotient space M/N such that the canonical function p ∶ M → M/N is a morphism of

g-modules. With respect to that structure, we have

x ⋅ (m + N) = x ⋅m + N

for all x ∈ g and all m ∈ M.

Proof. (i) Let f ∶ M → N be a morphism of g-modules. If x ∈ g and m ∈ ker f , then we have
f (x ⋅ m) = x ⋅ f (m) = x ⋅ 0 = 0, so that m is in fact in ker. Similarly, if n ∈ im f and m ∈ M is
such that f (m) = n, we have that x ⋅ n = x ⋅ f (m) = f (x ⋅m) ∈ im f . his tells us that ker f is a
submodule of M and that im f is a submodule of N .

(ii) Let M be a g-module and let N be a submodule of M. Let ρM ∶ g → gl(M) be the
representation of g corresponding to M and let p ∶ M → M/N be the canonical function onto the
quotient vector space M/N . If x ∈ g, the linear function

m ∈ M ↦ ρM(x)(m) + N ∈ M/N

maps the subspace N to 0, so there exists a unique linear function ρM/N(x) ∶ M/N → M/N such
that

ρM/N(x)(m + N) = ρM(x)(m) + N

for all m ∈ M. In this way, we obtain a function ρM/N ∶ g→ gl(M/N). It is linear: if x, y ∈ g and
a, b ∈ k, we have for all m ∈ M that

ρM/N(ax + by)(m + N) = ρM(ax + by)(m) + N

= aρM(x)(m) + bρM(y)(m) + N

= aρM/N(x)(m) + bρM/N(y)(m),

so that ρM/N(ax + by) = aρM/N(x) + bρM/N(y). he action ⋅ ∶ g×M/N → M/N corresponding
to the function ρM/N is such that

x ⋅ (m + N) = x ⋅m + N (9)

12



for all x ∈ g and all m ∈ M, and then we can compute that for all x, y ∈ g and all m ∈ M we have

x ⋅ y ⋅ (m+N)− y ⋅ x ⋅ (m+N) = (x ⋅ y ⋅m− y ⋅ x ⋅m)+N = [x , y] ⋅m+N = [x , y] ⋅ (m+N).

it follows that ρM/N is a representation of g on M/N . With respect to this structure, the function
p ∶ M → M/N is a morphism of g-modules: indeed, the equation (9) means precisely that
x ⋅ p(m) = p(x ⋅m) for all x ∈ g and all m ∈ M.

2.4. Submodules of M/N .]
[

Examples and constructions

Trivial modules
2.5. IfM is a vector space, the zero bilinear function ⋅ ∶ g×M → M turns M into a g-module, and
we say that a g-module whose action is the zero function is trivial. In particular, if we endow the
vector space k with its trivial g-module structure we obtain a g-module which we call the trivial
g-module. Whenever we view k as a g-module it will be with respect to this trivial structure.

2.6. If M is a module, the invariant subspace of M is

M
g = {m ∈ M ∶ x ⋅m = 0 for all x ∈ g}.

he key properties of the invariant subspace are the following:

Proposition. (i) If M is a module, then the invariant subspace Mg is the unique maximal trivial

submodule of M.

(ii) If M and N are modules and f ∶ M → N is a morphism of modules, then f (Mg) ⊆ Ng and

the restriction f ∣Mg ∶ Mg → Ng is a morphism of modules.

(iii) if M is a g-module, a linear function f ∶ k → M is a morphism of g-modules if and only if

f (1) ∈ Mg. here is therefore a function

Φ ∶ f ∈ homg(k,M) ↦ f (1) ∈ M
g

and it is an isomorphism of vector spaces.

Proof. (i) Let M be a module. If m ∈ Mg, then for all x ∈ g we have x ⋅m = 0 ∈ M: this tells us
that Mg is a submodule of M. It is clear from this also that Mg is a trivial submodule. To show
it is the unique maximal one, let us suppose that N is a trivial submodule of M. If n ∈ N , then
the triviality of N means that x ⋅ n = 0 for all x ∈ g, and this tells us that n ∈ Mg: we thus see that
N ⊆ Mg, as we wanted.

(ii) In the situation of the proposition, if m ∈ M and x ∈ g we have x ⋅ f (m) = f (x ⋅m) = 0, so
that f (m) ∈ Ng. his shows that the ûrst claim is true, and the second one is then immediate.

(iii) Let M be a g-module and let f ∶ k→ M be a linear function. If f (1) is in Mg, then for all
m ∈ k we have f (m) = mf (1) ∈ Mg) and therefore f (x ⋅m) = 0 = x ⋅ f (m). his shows that f is
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a morphism of g-modules in that case. Conversely, if f is a morphism of g-modules, for all x ∈ g
we have that x ⋅ f (1) = f (x ⋅ 1) = f (0) = 0, so that f (1) ∈ Mg.

Let us now show that the function Φ deûned in the statement of the proposition, which is
easily seen to be linear, is an isomorphism. If f ∈ homk(k,M) is such that Φ( f ) = f (1) = 0, then
of course f is the function, since 1 generates k as a vector space: the function Φ is thus injective.
On the other hand, if m ∈ Mg then the linear function f ∶ λ ∈ k ↦ λm ∈ M is a morphism of
g-modules according to what we have already proved, and clearly Φ( f ) = m. his proves that Φ
is surjective.

2.7. If M is a g-module, we denote [g,M] the subspace of M generated by the set

M
′ = {x ⋅m ∶ x ∈ g,m ∈ M}.

We claim that [g,M] is a submodule of M. Indeed, since every element of M′ is a linear combina-
tion of elements of M′ and the action of g on M is linear, to see that [g,M] is a submodule it is
enough to check that for all x ∈ g and all m ∈ M′ we have x ⋅m ∈ [g,M], and this is immediate,
since in fact x ⋅m belongs to M′.

It follows from this that the quotient M/[g,M] has a canonical g-module structure. We call it
the space of coinvariants of M and denote it Mg. It has properties dual to the invariant subspace:

Proposition. (i) If M is a g-module, then the space of coinvariants Mд is a trivial g-module. he

subspace [g,M] is the unique minimal g-submodule N of M such that the quotient M/N is

trivial.

(ii) If f ∶ M → N is a morphism of g-modules, then f ([g,M]) ⊆ [g,N] and there is a unique

linear function fg ∶ Mg → Ng such that fg(m + [g,M]) = f (д) + [g,N] for all m ∈ M.

Proof. (i) If m ∈ M, then in Mg we have for all x ∈ g that

x ⋅ (m + [g,M]) = x ⋅m + [g,M] = [g,M],

which is the zero element of Mg, because x ⋅m ∈ [g,M]. his tells us that Mg is a trivial module.
Suppose now that N is a submodule of g such that the quotient M/M is a trivial g-module. If

x ∈ g and m ∈ M, we then have that

x ⋅ (m + N) = x ⋅m + N = N ,

so that in fact x ⋅m ∈ N . his tells us that the set M′ deûned above is contained in N and, therefore,
that the subspace [g,M] ofM, which is generated by M′, is also contained there. his proves what
we want.

(i) Let f ∶ M → N be a morphism of g-modules. To show that f ([g,M]) ⊆ [g,N] it is enough
that we show that f (M′) ⊆ [g,N], for the set M′ generates the subspace [g,M] and the function f
is linear. his is immediate: if x ∈ g and m ∈ M, then the fact that f is a morphism of g-modules
tells us that f (x ⋅m) = x ⋅ f (m) ∈ N ′ ⊆ [g,N]. he ûrst claim of (ii) is thus proved, and the second
one follows immediately from it.
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The adjoint representation
2.8. Let g be a Lie algebra. Since the bracket of g is a linear function, for each x ∈ g the function

ad(x) ∶ y ∈ g↦ [x , y] ∈ g

is linear, and there is therefore a function ad ∶ g → gl(g) such that ad(x)(y) = [x , y] for all
x, y ∈ g. It is itself a linear function and it is moreover a representation of g. To see this, let us
observe that the action ⋅ ∶ g × g→ g corresponding to the function ad is simply the bracket of g,
so that x ⋅ y = [x , y] whenever x, y ∈ g, and that this action satisûes condition (8): if x, y ∈ g and
z ∈ g, then

x ⋅ y ⋅ z − y ⋅ x ⋅ z = [x , [y, z]] − [y, [x , z],

and this is equal to

[[x , y], z] = [x , y] ⋅ z

precisely because Jacobi’s condition holds in g. We call the representation ad the adjoint represen-
tation of g and the corresponding g-module g the adjoint module of g.

Spaces of homomorphisms
2.9. If M and N are g-modules, there is a g-module structure on the vector space homk(M ,N)
of all linear maps M → N with action ⋅ ∶ g × homk(M ,N) → homk(M ,N) such that for all x ∈ g,
f ∈ homk(M ,N) and m ∈ M we have

(x ⋅ f )(m) = x ⋅ f (m) − f (x ⋅m). (10)

To see that this does deûne a g-module structure on homk(M ,N) we have to do the following
calculation: if x and y are elements of g and f is element of homk(M ,N), then for all m ∈ M we
have that

(x ⋅ y ⋅ f )(m) = x ⋅ (y ⋅ f )(m) − (y ⋅ f )(x ⋅m)
= x ⋅ y ⋅ f (m) − x ⋅ f (y ⋅m) − y ⋅ f (x ⋅m) + f (y ⋅ x ⋅m)

and, similarly,

(y ⋅ x ⋅ f )(m) = y ⋅ x ⋅ f (m) − f (x ⋅m) − x ⋅ f (y ⋅m) + f (x ⋅ y ⋅m),

so that

(x ⋅ y ⋅ f − y ⋅ x ⋅ f )(m) = x ⋅ y ⋅ f (m) − y ⋅ x ⋅ f (m) − f (x ⋅ y ⋅m − y ⋅ x ⋅m)
= [x , y] ⋅ f (m) − f ([x , y] ⋅m)
= ([x , y] ⋅ f )(m).

his tells us that in fact

x ⋅ y ⋅ f − y ⋅ x ⋅ f = [x , y] ⋅ f ,

which is the required compatibility relation.
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2.10. hemodule structure on hom-spaces described above is compatible with the usual operations
on these spaces. For example, maps induced by composition are morphisms of g-modules:

Proposition. Let M, N and P be g-modules. If f ∶ M → N is a morphism of g-modules, then the

linear maps

f
∗ ∶ д ∈ homk(N , P) ↦ д ○ f ∈ homk(M , P)

and

f∗ ∶ д ∈ homk(P,M) ↦ f ○ f ∈ homk(P,N)

are morphisms of g-modules.

Proof. Let f ∶ M → N be a morphism of g-modules. he ûrst map f ∗ described in the proposition
is a morphism of g-modules because for all x ∈ g and all д ∈ homk(N , P), we have that

f
∗(x ⋅ д)(m) = (x ⋅ д)( f (m))

= x ⋅ д( f (m)) − д(x ⋅ f (m))
= x ⋅ д( f (m)) − д( f (x ⋅m))
= x ⋅ f ∗(д)(m) − f ∗(д)(x ⋅m)
= (x ⋅ f ∗(д))(m)

for all m ∈ M, so that f ∗(x ⋅ д) = x ⋅ f ∗(д).
Similarly, the second map in the proposition is a morphism because for all x ∈ g and all

д ∈ homk(P,M) we have

f∗(x ⋅ д)(p) = f ((x ⋅ д)(p))
= f (x ⋅ д(p)) − f (д(x ⋅ p))
= x ⋅ f (д(p)) − f (д(x ⋅ p))
= x ⋅ f∗(д)(p) − f∗(д)(x ⋅ p)
= (x ⋅ f∗(д))(p)

for all p ∈ P, so that f∗(x ⋅ д) = x ⋅ f∗(д).

2.11. he following very simple observation is extremely useful:

Proposition. If M and N are g-modules, then we have homk(M ,N)g = homg(M ,N).
It is important to notice that the claimed equality makes sense: the space homg(M ,N) of

morphisms of g-modules is by deûnition a subspace of homk(M ,N).

Proof. A linear map f ∶ M → N is a morphism of g-modules if and only if for all x ∈ g and all
m ∈ M we have that x ⋅ f (m) = f (x ⋅m), and this condition clearly holds if and only if we have
x ⋅ f = 0 for all x ∈ g, that is, if f ∈ homk(M ,N)g.
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2.12. If M is a g-module, then we write M∗ its dual space, which is simply homk(M , k). Viewing
the vector spacek that appears here as endowedwith its trivial g-module structure, the construction
of 2.9 turns M∗ into a g-module. We call M∗ the dual g-module of M or the contragredient
representation. he action ⋅ ∶ g ×M∗ → M∗ is such that

(x ⋅ ϕ)(m) = −ϕ(m)

for all x ∈ g, all ϕ ∈ M∗ and all m ∈ M; this is simply what the formula (10) for the action tells us
in this case, since k is a trivial module.

As a speciûc example of this, we may consider the dual representation g∗ of the adjoint
representation of g that we described in 2.8. We call g∗ the coadjoint representation of g.

Tensor products
2.13. Let M and N be two g-modules, and let ρM ∶ g → gl(V) and ρN ∶ g → gl(N) be the
associated representations of g. If x ∈ g, then we may consider the linear map

ρ(x) = ρM(x) ⊗ idN + idM ⊗ ρN(x) ∶ M ⊗ N → M ⊗ N ,

and in this way we obtain a function ρ ∶ g → gl(M ⊗ N) which is easily seen to be linear. he
corresponding action of g on M ⊗ N is the unique bilinear map ⋅ ∶ g × (M ⊗ N) → M ⊗ N such
that for all x ∈ g, m ∈ M and n ∈ N has

x ⋅m ⊗ n = (x ⋅m) ⊗ n +m ⊗ (x ⋅ n).

We claim this turns M ⊗ N into a g-module. Indeed, if x, y ∈ g, m ∈ M and n ∈ N , then we have

x ⋅ y ⋅m ⊗ n = x ⋅ ((y ⋅m) ⊗ n +m ⊗ (y ⋅ n))
= (x ⋅ y ⋅m) ⊗ n + (y ⋅m) ⊗ (x ⋅ n) + (x ⋅m) ⊗ (y ⋅ n) +m ⊗ (x ⋅ y ⋅ n)

and, similarly,

y ⋅ x ⋅m ⊗ n = (y ⋅ x ⋅m) ⊗ n + (x ⋅m) ⊗ (y ⋅ n) + (y ⋅m) ⊗ (x ⋅ n) +m ⊗ (y ⋅ x ⋅ n).

Subtracting, we see that

x ⋅ y ⋅m ⊗ n − y ⋅ x ⋅m ⊗ n

= (x ⋅ y ⋅m) ⊗ n − (y ⋅ x ⋅m) ⊗ n +m ⊗ (x ⋅ y ⋅ n) −m ⊗ (y ⋅ x ⋅ n)
= (x ⋅ y ⋅m − y ⋅ x ⋅m) ⊗ n +m ⊗ (x ⋅ y ⋅ n − y ⋅ x ⋅ n)
= ([x , y] ⋅m) ⊗ n +m ⊗ ([x , y] ⋅ n)
= [x , y] ⋅m ⊗ n.

his means that the equality

x ⋅ y ⋅ t − y ⋅ x ⋅ t = [x , y] ⋅ t

for all x, y ∈ g and all elementary tensors t ofM⊗N . Since the elementary tensors generateM⊗N

as a vector space, this implies at once that the equation holds in fact for all t in M ⊗ N , an this
proves that we do have a g-module structure on M ⊗ N , as we claimed.
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2.14. he usual properties of the tensor product of vector spaces hold in the context of modules
over a Lie algebra:

Proposition. (i) If M, N and P are g-modules, then the linear map

α ∶ M ⊗ (N ⊗ P) → (M ⊗ N) ⊗ P

such that α(m⊗(n⊗p)) = α((m⊗n)⊗p) for all m ∈ M, n ∈ N and p ∈ P is an isomorphism

of g-modules.

(ii) If M and N are g-modules, then the linear map

β ∶ M ⊗ N → N ⊗M

such that β(m ⊗ n) = n ⊗m for all m ∈ M and all n ∈ N is an isomorphism of g-modules.

(iii) If M is a g-module, then the linear maps

λ ∶ m ∈ M ↦ 1⊗m ∈ k⊗M , ρ ∶ m ∈ M ↦ m ⊗ 1 ∈ M ⊗ k

are isomorphisms of g-modules.

Proof. We know from linear algebra that there are maps α, β, λ and ρ as described in these three
statements and that they are isomorphisms of vector spaces. In order to prove the proposition, we
need only show that they are morphisms of g-modules and this follows from a direct computation
in each case.

2.15. Similarly, the well-known adjoint relation between homk and ⊗ is compatible with module
structures:

Proposition. Let M, N and P be g-modules. he linear map

Φ ∶ homk(M ⊗ N , P) → homk(N , homk(M , P))

such that Φ( f )(n)(m) = f (m ⊗ n) for all f ∈ homk(M ⊗ N , P), n ∈ N and m ∈ M is an

isomorphism of g-modules.

Proof. We know from linear algebra that there is such a linear map Φ and that it is an isomorphism
of vector spaces, so we need only show that that map is a morphism of g-modules. Let x ∈ g and
f ∈ homk(M ⊗ N , P). If m ∈ M and n ∈ N , we have that

Φ(x ⋅ f )(n)(m) = (x ⋅ f )(m ⊗ n)
= x ⋅ f (m ⊗ n) − f (x ⋅m ⊗ n)
= x ⋅ f (m ⊗ n) − f ((x ⋅m) ⊗ n) − f (m ⊗ (x ⋅ n)). (11)

On the other hand,

(x ⋅Φ( f ))(n) = x ⋅Φ( f )(n) −Φ( f )(x ⋅ n),
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so that

(x ⋅Φ( f ))(n)(m) = (x ⋅Φ( f )(n))(m) −Φ( f )(x ⋅ n)(m)
= x ⋅Φ( f )(n)(m) −Φ( f )(n)(x ⋅m) −Φ( f )(x ⋅ n)(m)
= x ⋅ f (m ⊗ n) − f ((x ⋅m) ⊗ n) − f (m ⊗ (x ⋅ n)).

Comparing this with (11) we see that

Φ(x ⋅ f )(n)(m) = (x ⋅Φ( f ))(n)(m),

and this equality, which holds for all n ∈ N and all m ∈ M, implies at once that Φ(x ⋅ f ) = x ⋅Φ( f ).
his shows that Φ is a morphism of g-modules, as we wanted.
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§3. The Lie algebra sl2(k) and its finite-dimensional
representations

3.1. We ûx an algebraically closed ûeld k of characteristic zero and let sl2(k) be the Lie subalgebra
of gl2(k) consisting of those matrices with trace equal to zero. We put

E = (0 1
0 0

) , H = (1 0
0 −1) , F = (0 0

1 0
) .

he set {E ,H, F} is a basis for sl2(k) and a computation show that we have

[H, E] = 2E , [E , F] = H, [H, F] = −2E .

In this chapter we will work almost exclusively with this Lie algebra, which we will write simply
as g and to whom we will omit omit explicit references unless they are needed. In particular, we
will speak of modules instead of sl2(k)-modules, and so on.

Simple modules

3.2. Amodule is simple if it is nonzero and it does not have any non-zero proper submodules. Our
ûrst result is that somewhat miraculously we have a complete description of all ûnite-dimensional
simple modules over sl2(k). he basic observation that allows us to do this is the following:

Lemma. Let M be a module. If m ∈ M is an eigenvector for HM of eigenvalue λ ∈ k then

H ⋅ E ⋅m = (λ + 2)E ⋅m, H ⋅ F ⋅m = (λ − 2)F ⋅m.

In particular, if the vector E ⋅m is non-zero, then it is an eigenvector of HM of eigenvalue λ − 2 and if

the vector F ⋅m is non-zero, then it is an eigenvector of HM of eigenvalue λ − 2.

Proof. Let m ∈ M be a non-zero vector and let λ ∈ k be such that H ⋅m = λm. We have

H ⋅ E ⋅m = E ⋅H ⋅m + [H, E] ⋅m = λE ⋅m + 2E ⋅m = (λ + 2)E ⋅m

and, similarly, H ⋅ F ⋅m = (λ − 2)F ⋅m, as the lemma claims.

3.3. he lemma tells us that if M is a module, then the maps EM and FM interact in a very special
way with the eigenspaces of HM . Building up on this, we can completely describe simple modules:

Proposition. Let M be a ûnite-dimensional simple module of dimension r + 1. here exists a basis

{m0,m1, . . . ,mr} of M such that for each i ∈ {0, . . . , r} we have

E ⋅mi =
⎧⎪⎪⎨⎪⎪⎩

0, if i = 0;

(r − i + 1)mi−1, if 0 < i ≤ r;

H ⋅mi = (r − 2i)mi ;

F ⋅mi =
⎧⎪⎪⎨⎪⎪⎩

(i + 1)mi+1, if 0 ≤ i < r;

0, if i = r.
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Proof. Let M be a simple ûnite-dimensional module. We consider on our ground ûeld k the
partial order ≤ such that whenever λ and µ are elements of k we have

λ ≤ µ ⇐⇒ there exists an i ∈ N0 such that µ − λ = 2i.

Since k is algebraically closed, we know that the map HM ∶ M → M has eigenvalues and, since it
has ûnitely many, it is clear that there exists an eigenvalue λ of HM which is maximal with respect
to the order of k. Let m ∈ M be an eigenvector for HM corresponding to λ. As

H ⋅ E ⋅m = E ⋅H ⋅M + 2E ⋅m = (λ + 2)E ⋅m,

we must have that

E ⋅m = 0, (12)

for otherwise E ⋅m would be an eigenvector de HM corresponding to the eigenvalue λ + 2 and
λ < λ + 2 in k, contradicting the choice of λ.

If j ∈ N0 is such that F j ⋅m ≠ 0, then the j + 1 vectors

m, F ⋅m, F
2 ⋅m, . . . , F

j ⋅m (13)

are all non-zero. Since m is an eigenvector of HM of eigenvalue λ, a straightforward induction
using Lemma 3.2 shows that we more generally have that

H ⋅ F i ⋅m = (λ − 2i)F i ⋅m for all i ∈ {0, . . . , j}. (14)

It follows that the j + 1 vectors listed in (13) are eigenvectors of HM corresponding to distinct
eigenvalues and are therefore linearly independent. Of course, this implies that j + 1 is at most
equal to dimM. We thus see that we may consider the number

ℓ = max{ j ∈ N0 ∶ F j ⋅m ≠ 0},

for the set whose maximum we are taking is non-empty and bounded.
Let us write mi = 1

i!F
i ⋅m for each i ∈ {0, . . . , ℓ}. We want to see how the elements of g act on

these vectors.
• From their very deûnition and the choice of the number ℓ, it is clear that we have

F ⋅mi =
⎧⎪⎪⎨⎪⎪⎩

(i + 1)mi+1, if 0 ≤ i < ℓ;

0, if i = ℓ.
(15)

• On the other hand, the equalities (14) tell us that

H ⋅mi = (λ − 2i)mi for all i ∈ {0, . . . , ℓ}. (16)
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• Finally, we claim that

E ⋅mi =
⎧⎪⎪⎨⎪⎪⎩

0, if i = 0;

(λ − i + 1)mi−1, if 0 < i ≤ ℓ.
(17)

hat this holds when i = 0 is precisely the content of the equality (12). If instead i = 1, we
have

E ⋅m1 = E ⋅ F ⋅m = F ⋅ E ⋅m +H ⋅m = λm = 1(λ − 1 + 1)m,

so that (17) also holds in this case. Finally, if we suppose that 1 ≤ i < ℓ and that (17) holds
for i, we have

E ⋅mi+1 =
1

i + 1
E ⋅ F ⋅mi =

1
i + 1

F ⋅ E ⋅mi +
1

i + 1
H ⋅mi

= λ − i + 1
i + 1

F ⋅mi−1 +
λ − 2i
i + 1

mi

= (λ − i)mi .

We thus see that the subspace ⟨m0,m1, . . . ,mℓ⟩ is a submodule of M: indeed, the equalities (15),
(16) and (17) tell us that this subspace is preserved under the action of F, H and E, respectively.
Now, M does not have any proper non-zero submodules, so that subspace must coincide with M

itself. It follows that dimM = ℓ + 1 and, since

0 = E ⋅ Fℓ+1 ⋅m = ℓ! E ⋅ F ⋅mℓ = ℓ! F ⋅ E ⋅mℓ + ℓ!H ⋅mℓ = ℓ!(ℓ(λ − ℓ + 1) + λ − 2ℓ)mℓ

= (ℓ + 1)!(λ − ℓ)mℓ

andmℓ ≠ 0, that λ = ℓ. Using this last equality, we see at once that the identities that the proposition
claims are precisely those in (15), (16) and (17).

3.4. We can restate the description of simple modules provided by Proposition 3.3 in terms of
matrices: the proposition tells us that if M is a ûnite-dimensional simple module of dimen-
sion r + 1, then there exists an ordered basis B of M such that the matrices of the linear maps
EM , HM , FM ∶ M → M with respect to B are

∥EM∥B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 r 0 0
0 0 r − 1 0
0 0 0 r − 2
0 0 0 0

⋱
0 2 0
0 0 1
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,
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∥HM∥B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

r 0 0 0
0 r − 2 0 0
0 0 r − 4 0
0 0 0 r − 6

⋱
−r + 4 0 0

0 −r + 2 0
0 0 −r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and

∥FM∥B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0
1 0 0 0
0 2 0 0
0 0 3 0

⋱
0 0 0

r − 1 0 0
0 r 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

3.5. A direct consequence of Proposition 3.3 is the following:

Proposition. Two ûnite-dimensional simple modules of the same dimension are isomorphic.

Proof. Let us suppose that r ∈ N0 and that M and M′ are two simple modules of dimension r + 1.
According to Proposition 3.3, there exist bases B = {m0, . . . ,mr} andB′ = {m′

0, . . . ,m
′
r} of M

and M′ such that the action of E, H and F on the elements of B and of B′ are given by the
formulas given in that proposition. his implies at once that the linear map f ∶ M → M′ such that
f (mi) = m′

i for each i ∈ {0, . . . , r} is an isomorphism of modules.

3.6. On the other hand, the description of ûnite-dimensional simple modules provided by Propo-
sition 3.3 suggests a way of proving the existence of such modules:

Proposition. For each r ∈ N0 there exist simple modules of dimension r + 1.

Proof. Let r ∈ N0 and consider a vector space M of dimension r + 1 with an ordered basis
B = (m0, . . . ,mr). We deûne linear maps e, h, f ∶ M → M mimicking the formulas of Proposi-
tion 3.3, so that for each i ∈ {0, . . . , r} we have

e(mi) =
⎧⎪⎪⎨⎪⎪⎩

0, if i = 0;

(r − i + 1)mi−1, if 0 < i ≤ r;

h(mi) = (r − 2i)mi ;

f (mi) =
⎧⎪⎪⎨⎪⎪⎩

(i + 1)mi+1, if 0 ≤ i < r;

0, if i = r.
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We claim that these linear maps satisfy the relations

[h, e] = 2e , [e , f ] = h, [h, f ] = −2 f (18)

in the Lie algebra gl(M). To check this it is enough, in each case, to compute the result of
applying both sides of the equalities to each element of the basis B, and this can be done by direct
computation. For example, let us do this for the ûrst of the three equalities. Let i ∈ {0, . . . , r}.
We have

mi
ez→

⎧⎪⎪⎨⎪⎪⎩

0, if i = 0;

(r − i + 1)mi−1, if 0 < i ≤ r;

hz→
⎧⎪⎪⎨⎪⎪⎩

0, if i = 0;

(r − i + 1)(r − 2i + 2)mi−1, if 0 < i ≤ r;
and

mi
hz→ (r − 2i)mi

ez→
⎧⎪⎪⎨⎪⎪⎩

0, if i = 0;

(r − 2i)(r − i + 1)mi−1, if 0 < i ≤ r;

and then [h, e](m0) = 0 and if 0 < i ≤ r

[h, e](mi) = ((r − i + 1)(r − 2i + 2) − (r − 2i)(r − i + 1))mi−1 = 2(r − i + 1)mi−1

= 2e(mi−1).

It follows from this that [h, e] = 2e, as we wanted.
he fact that the equalities (18) are satisûed implies at once that the linear map ρ ∶ g→ gl(M)

such that ρ(E) = e, ρ(H) = h and ρ(F) = f is a morphism of Lie algebras, and this map ρ turns M
into a module over g. As dimM = r + 1, to prove the proposition it is enough that we show that M
is a simple module.

In order to do that, let us suppose that N is a non-zero submodule ofM and let n be a non-zero
element of N . As B is a basis ofM, there exist scalars a0, . . . , ar ∈ k such that n = a0m0+⋯+armr ,
and since N is a submodule of M for each i ∈ N0 we have that

a0r
i
m0 + a1(r − 2)i

m1 +⋯ + ar(−r)i
mr = a0H i ⋅m0 +⋯ + arH i ⋅mr = H

i ⋅ n ∈ N .

Since the r + 1 scalars r, r − 2, . . . , −r are distinct, this implies that for each i ∈ {0, . . . , r} we have
aimi ∈ N . Now n is not the zero element, so there exists a j ∈ {0, . . . , r} such that a j ≠ 0 and we
then have m j ∈ N . It follows from this that

m0 =
1
r!
E

j ⋅m j ∈ N

and, using again that N is a submodule, we see that for each i ∈ {0, . . . , r} we have

mi = i! F i ⋅m0 ∈ N .

he whole basis B is thus contained in N , so that, of course, N = M. his proves that M is simple,
as we wanted.
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3.7. It is useful to observe that using the same ideas as in the proof of Proposition 3.3we can obtain
the following slightly stronger result:

Proposition. Let M be a ûnite-dimensional module. If m ∈ M is a singular weight vector of weight λ,

then λ is a non-negative integer and there is a simple module S of M of dimension λ+ 1 containing m.

If we put mi = 1
i!F

i ⋅m for each i ∈ {0, . . . , λ}, the set {m0, . . . ,mλ} is a basis for S whose elements

are weight vectors, with

H ⋅mi = (λ − 2i)mi

for each i ∈ {0, . . . , λ}.

Proof. Using Lemma 3.2 and induction, we see at once that

H ⋅ F i ⋅m = (λ − 2i)F i ⋅m for all i ∈ N0.

As in the proof of Proposition 3.3, this implies that if j ∈ N0 is such that F j ⋅ m ≠ 0 then the
vectors m, F ⋅ M, . . . , F i ⋅ m are linearly independent. his, together with the fact that M is
ûnite-dimensional implies that we may consider the number

ℓ = max{ j ∈ N0 ∶ F j ⋅m ≠ 0}.

For each i ∈ {0, . . . , ℓ} we put mi = 1
i!F

i ⋅ m and let S be the subspace of M spanned by
B = {m0, . . . ,mℓ}. For each i ∈ {0, . . . , ℓ} we have

H ⋅mi = (λ − 2i)mi , F ⋅mi =
⎧⎪⎪⎨⎪⎪⎩

(i + 1)mi+1, if 0 ≤ i < ℓ;

0, if i = ℓ.

One the other hand, an induction just like the one we did in the proof of Proposition 3.3 shows
that

E ⋅mi =
⎧⎪⎪⎨⎪⎪⎩

0, if i = 0;

(r + 1 − i)mi−1, if 0 < i ≤ ℓ.

It follows from this formulas that S is a submodule of M, and it is obvious that S is isomorphic
to the simple module constructed in the proof of Proposition 3.6. his proves the proposition,
as m = m0 ∈ S.

Schur’s Lemma and the Casimir operator

3.8. If M is a module, the Casimir operator of M is the linear map

ΩM ∶ m ∈ M ↦ E ⋅ F ⋅m + F ⋅ E ⋅m + 1
2H ⋅H ⋅m ∈ M .

his map is a natural endomorphism of M, in the following sense:
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Proposition. (i) If M is a module, then ΩM ∶ M → M is a morphism of modules.

(ii) If f ∶ M → N is a morphism of modules, then the square

M N

M N

f

ΩM ΩN

f

commutes.

Proof. (i) Let M be a module. hat the map ΩM ∶ M → M is an endomorphism of modules
follows from a direct computation. We have

ΩM(E ⋅m) = E ⋅ F ⋅ E ⋅m + F ⋅ E ⋅ E ⋅m + 1
2H ⋅H ⋅ E ⋅m

= E ⋅ F ⋅ E ⋅m + (E ⋅ F ⋅ E ⋅m −H ⋅ E ⋅m) + 1
2(H ⋅ E ⋅H ⋅m + 2H ⋅ E ⋅m)

= E ⋅ F ⋅ E ⋅m + E ⋅ F ⋅ E ⋅m + 1
2H ⋅ E ⋅H ⋅m

= (E ⋅ E ⋅ F ⋅m − E ⋅H ⋅m) + E ⋅ F ⋅ E ⋅m + 1
2(E ⋅H ⋅H ⋅m + 2E ⋅H ⋅m)

= E ⋅ E ⋅ F ⋅m + E ⋅ F ⋅ E ⋅m + 1
2E ⋅H ⋅H ⋅m

= E ⋅ (E ⋅ F ⋅m + F ⋅ E ⋅m + 1
2H ⋅H ⋅m)

= E ⋅ΩM(m)

and similar computations show that ΩM(F ⋅ m) = F ⋅ ΩM(m) and ΩM(H ⋅ m) = H ⋅ ΩM(m).
hese equalities tell us that ΩM is a morphism of modules.

(ii) Let now f ∶ M → N be a morphism of modules. If m ∈ M, we have for all x and y in g that
f (x ⋅ y ⋅m) = x ⋅ y ⋅ f (m), and using this we see that

f (ΩM(m)) = f (E ⋅ F ⋅m + F ⋅ E ⋅m + 1
2H ⋅H ⋅m)

= E ⋅ F ⋅ f (m) + F ⋅ E ⋅ f (m) + 1
2H ⋅H ⋅ f (m)

= ΩN( f (m)),

and this equality es precisely what the proposition claims.

3.9. Since we have at this point a complete description of the ûnite-dimensional simple modules,
we are able to compute their Casimir operators. We start with the following famous observation
due to Issai Schur [Sch1904].

Lemma. If f ∶ M → M is an endomorphism of a ûnite dimensional simple module, then there exists

a scalar λ ∈ k such that f = λidM .

Proof. Since our ground ûeld is algebraically closed, we know that the linear map f admits an
eigenvalue λ ∈ k; in particular, there exists a non-zero vector m ∈ M such that f (m) = λm. he
linear function h = f −λidM ∶ M → M is a morphism ofmodules, so its kernel ker h is a submodule
of M. As h(m) = 0, this submodule is non-zero, and since M is simple it must coincide with M.
Of course, this means that the map h = f − λidM is the zero map, so that f = λidM .
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3.10. Proposition. If M is a ûnite-dimensional simple module of dimension r + 1, then the Casimir

operator of M is

ΩM = 1
2 r(r + 2)idM .

Proof. Let M be a ûnite-dimension ûnite module of dimension r+ 1. he linear map ΩM ∶ M → M

is an endomorphism of M, so Schur’s Lemma 3.9 tells us that there exists a scalar λ ∈ k such
that ΩM = λidM . Now, in view of Proposition 3.3 we know that there exists an ordered basis
{m0, . . . ,mr} of M such that the action of the generators E, H and F of g is as described there. In
particular, we have that

λm = ΩM(m0)
= E ⋅ F ⋅m0 + F ⋅ E ⋅m0 + 1

2H ⋅H ⋅m0

= E ⋅m1 + 1
2 r

2
m0

= rm0 + 1
2 r

2
m0

= 1
2 r(r + 2)m0

and this implies that we must have λ = 1
2 r(r + 2), because the vector m0 is not zero.

Semisimplicity

3.11. We want to analyze now the structure of an arbitrary ûnite-dimensional module and we will
do this by reducing the problem to the description we already have of simple modules. he key
tool in that reduction is the following deûnition.

If M is a module, a composition series for M is a ûnite increasing sequence of submodules

M0 ⊆ M1 ⊆ ⋯ ⊆ Mt

ofM such that M0 = 0,Mt = M and for each i ∈ {1, . . . , t} the quotient moduleMi/Mi−1 is simple.
We call the quotients M1/M0, . . . , Mn/Mn−1 the factors of the composition series.

An important fact is that composition series exist in the situation which interests us:

Proposition. Every non-zero ûnite-dimensional module admits a composition series.

Proof. If M is simple, then

M0 ⊆ M1

is a composition series for M. If not, then among all the proper submodules of M we may pick
one of maximal dimension. Call it N . As dimN < dimM, we may suppose inductively that there
exists a composition series

N0 ⊆ N1 ⊆ ⋯ ⊆ Nt
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of N . Since N is a proper submodule of M of maximal dimension, the quotient M/N is a simple
module, and therefore

N0 ⊆ N1 ⊆ ⋯ ⊆ Nt ⊆ M

is a composition series for M.

3.12. he next step is to establish a key property of the trivial module:

Proposition. he trivial module k is projective relative to the class gmod of all ûnite-dimensional

modules.

Proof. According to Proposition 3.11, every module in gmod has a ûnite ûltration whose subquo-
tients are ûnite-dimensional simple modules. According to Proposition 5.12, then, to show that
the trivial module k is projective relative to gmod it is enough that we show that it is projective
relative to the class of all ûnite-dimensional simple modules. Let then

0 M E k 0
f д

(19)

be an extension of k by a ûnite-dimensional simple module M. We consider two cases now:
• First, let us suppose that M is not the trivial module, and let us write ℓ its dimension.
According to Proposition 3.8, we have a commutative diagram

0 M E k 0

0 M E k 0

f

ΩM

д

ΩEr̃
Ωk=0

f д

in which the vertical arrows are Casimir operators. Since Ωk = 0, this tells us that д○ΩE = 0
and the exactness of the bottom row implies then that there exists a morphism of modules
r̃ ∶ E → M such that f ○ r̃ = ΩE . As

f ○ r̃ ○ f = ΩE ○ f = f ○ΩM

and the morphism f is injective, we see that

r̃ ○ f = ΩM = 1
2 ℓ(ℓ + 2)idM .

It follows at once that the map r = 2
ℓ(ℓ+2) r̃ is a retraction of f and, as a consequence of this,

that the extension (19) is split.
• Let us next suppose that M is a trivial module. Let e ∈ E and let x, y ∈ g. We have

д(y ⋅ e) = y ⋅ д(e) = 0, because д(e) is an element of the trivial module k. his implies that
there exists an m ∈ M such that y ⋅ e = f (m). Now, as M is also a trivial module, we have

x ⋅ y ⋅ e = x ⋅ f (m) = f (x ⋅m) = 0.
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Of course, we also have y ⋅ x ⋅ e = 0 and then, in fact, we see that

[x , y] ⋅ e = 0

for all x, y ∈ g. Now the algebra g is perfect, so that [g, g] = g, and the last equality then
tells us that E is itself also a trivial module. In particular, if e is any element of E such that
д(e) = 1, then the linear map s ∶ λ ∈ k↦ λeE is a morphism of modules which is a section
of д. he extension (19) is therefore split also in this case.

In this way we conclude that every extension of k by a ûnite-dimensional simple module is split,
as we wanted.

3.13. Proposition. Every extension of ûnite-dimensional modules is split.

Proof. Let

0 M N P 0
f д

(20)

be a short exact sequence of ûnite-dimensional modules. Applying the functor homk(P,−) we
obtain another short exact sequence of modules,

0 homk(P,M) homk(P,N) homk(P, P) 0
f∗ д∗ (21)

Let us now consider the linear map

ϕ ∶ λk↦ λidP homk(P, P),

which is easily seen to be a morphism of modules. Since the three modules appearing in (21)
are ûnite-dimensional, it follows from Proposition 5.10 that there exists a morphism of modules
ϕ̄ ∶ k→ homk(P,N) such that д∗ ○ ϕ̄ = ϕ. In particular, the linear map s = ϕ̄(1) ∶ P → N is such
that

x ⋅ s = x ⋅ ϕ̄(1) = ϕ̄(x ⋅ 1) = 0

for all x ∈ g, so that s is in fact a morphism of modules, and

д ○ s = д∗(s) = д∗(ϕ̄(1)) = ϕ(1) = idP .

We see in this way that s is a section of the morphism д appearing in the short exact sequence (20)
and therefore that that short exact sequence is split.

3.14. We can now state the main result of this section:

heorem. Every ûnite-dimensional module is isomorphic to a direct sum of simple modules. In fact,

if M is a module and

M0 ⊆ M1 ⊆ ⋯ ⊆ Mn

is a composition series for M, then there exists an isomorphism

M ≅
n
⊕
i=1

Mi/Mi−1.
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Proof. Let M be a ûnite-dimensional module and let us consider a composition series like in the
statement of the theorem. We proceed by induction on its length n. We may suppose that M is
not the zero module, as otherwise there is nothing to prove, and then we have n ≥ 1.

If n = 1, then M is simple, and the result is clear. If n ≥ 2, then

M0 ⊆ M1 ⊆ ⋯ ⊆ Mn−1

is a composition series for Mn−1, and therefore the inductive hypothesis tells us that

Mn−1 ≅
n−1
⊕
i=1

Mi/Mi−1, (22)

a direct sum of simple modules. On the other hand, we have a short exact sequence

0 Mn−1 Mn Mn/Mn−1 0

and it is, according to Proposition 3.13, split, so that

M = Mn ≅ Mn−1 ⊕Mn/Mn−1.

Putting together this isomorphism with (22), we see that there is an isomorphism as the one whose
existence the theorem claims.

Multiplicities

3.15. We have shown that every ûnite-dimensional module is isomorphic to a direct sum of simple
ones. We now propose to prove that this isomorphism is essentially unique. We start with a simple
result, which is really a continuation of Schur’s Lemma 3.9.

Lemma. If S and T are ûnite-dimensional simple modules, then we have

dimhomg(S , T) =
⎧⎪⎪⎨⎪⎪⎩

1, if S and T are isomorphic modules;

0, if not.

Proof. Let S and T be ûnite-dimensional simple modules. If there is an isomorphism of modules
f ∶ S → T , then the function

f
∗ ∶ д ∈ homg(S , S) ↦ f ○ д ∈ homg(S , T)

is linear and an isomorphism, with inverse the function

( f −1)∗ ∶ д ∈ homg(S , T) ↦ f
−1 ○ д ∈ homg(S , S).

It follows from this that the vector spaces homg(S , T) and homg(S , S) have the same dimension,
and we know from Lemma 3.9 that homg(S , S) is one dimensional, since it is generated by its
non-zero element idS ∶ S → S. his proves the ûrst claim.
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Suppose next that S and T are not isomorphic and, to reach a contradiction and prove the
second claim, that there is a non-zero morphism of modules f ∶ S → T . Since f is not the zero
map, its kernel is a proper submodule of S: as S is simple, it follows then that ker f = 0, so that f
is injective. Similarly, the image of f is a non-zero submodule of T , which is also simple, so that
im f = T . We see in this way that f is in fact a isomorphism, and this is impossible in view of our
hypothesis.

3.16. Our ûrst uniqueness result is that the number of times a simple module appears —up to
isomorphism— in a direct sum decomposition of a ûnite-dimensional modules is independent of
the particular decomposition under consideration:

Proposition. Let M be a module and let S be a simple module. If n ∈ N0 and S1, . . . ,Sn are simple

modules such that M ≅ ⊕n
i=1 Si , then

#{i ∈ {1, . . . , n} ∶ Si ≅ S} = dimhomg(S ,M), (23)

so that the number appearing in the le� hand side of the equality depends only on M and S, and not

on the choice of n and the simple modules S1, . . . , Sn.

In view of this, we may denote that number [M ∶ S]. We call it themultiplicity of S in M.

Proof. Let n ∈ N and let S1, . . . , Sn be simple modules as in the statement. We have

homg(S ,M) ≅ homg(S ,
n
⊕
i=1

Si) ≅
n
⊕
i=1

homg(S , Si),

so that

dimhomд(S ,M) =
n
∑
i=1

dimhomg(S , Si).

Using Lemma 3.15 we see immediately that this sum is equal to the number of elements of the set
{i ∈ {1, . . . , n} ∶ Si ≅ S}, and this proves the (23) of the proposition.

3.17. Using the well-deûnedness of themultiplicity of direct summands, we can prove the following
precise form of the uniqueness of direct sum decompositions:

Proposition. Let M be a ûnite-dimensional module, and suppose that m, n ∈ N0 and that S1, . . . , Sm,

T1, . . . , Tn are simple modules. If M ≅ ⊕m
i=1 Si and M ≅ ⊕n

j=1 Tj, then m = n and there is a bijection

σ ∶ {1, . . . , n} → {1, . . . , n} such that for all i ∈ {1, . . . , n} we have Si ≅ Tσ(i).

Proof. Let m, n ∈ N0 and let S1, . . . , Sm and T1, . . . , Tn be simple modules such that M ≅ ⊕m
i=1 Si

and M ≅ ⊕n
j=1 Tj. he set

I = {i ∈ {1, . . . ,m} ∶ Si ≠ S j for all j ∈ {1, . . . , i − 1}}

contains 1, so that it is not empty: let k ∈ N be its cardinal and let j1, . . . , jk be its elements.
We know from Proposition 3.16 that for each l ∈ {1, . . . , k} there exists a bijective function

πl ∶ {i ∈ {1, . . . ,m} ∶ Si ≅ S j l } → {i ∈ {1, . . . , n} ∶ Ti ≅ S j l }
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and we use this to deûne a function π ∶ {1, . . . ,m} → {1, . . . , n} as follows: if i ∈ {1, . . . ,m}, it is
clear from the deûnition of the set I that there exists a unique l ∈ {1, . . . , k} such that Si ≅ S j l , and
we may therefore set π(i) = πl(i). We have that Si ≅ Tπ(i) for all i ∈ {1, . . . ,m}.

his function is surjective. Indeed, let t ∈ {1, . . . , n}. Proposition 3.16 implies that the set
{i ∈ {1, . . . ,m} ∶ Si ≅ Tt} is not empty and it is easy to see that its minimum element is equal to jl
for some l ∈ {1, . . . , k}. It follows immediately from this that π(π−1l (t)) = t. It follows, of course,
that m ≥ n. Now, reversing the roles of the two direct sum decompositions in all that we have
done, can can obtain the reverse inequality in the same way, and therefore we actually have that
n = m and, in particular, that the function π is a bijection, and as it has the required property, this
proves the proposition.

3.18. If n ∈ N0 and S is a module, we write nS the module

S ⊕⋯⊕ S
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n summands

.

Proposition. If M is a ûnite-dimensional module M, then there exist k ≥ 0 and simple modules

S1, . . . , Sk such that for all i, j ∈ {1, . . . , k} we have Si ≅ S j exactly when i = j, and

M ≅
k
⊕
i=1

[M ∶ Si]Si .

Proof. his follows immediately from the results above.

3.19. A consequence of the caracterization of multiplicity given in Proposition 3.16 is that it is
monotone for inclusions:

Proposition. If M is a ûnite-dimensional module and N is a submodule of M, then [N ∶ S] ≤ [M ∶ S]
for every simple module S.

Proof. Let M be a ûnite-dimensional module, let N be a submodule of M and let S be a ûnite-
dimensional simple module. If ι ∶ N → M is the inclusion, we have a linear map

ι∗ ∶ f ∈ homg(S ,N) ↦ ι ○ f ∈ homg(S ,M)

and it is injective, so that in particular dimhomg(S ,N) ≤ dimhomg(S ,M). he desired conclusion
follows from this using Proposition 3.16.

3.20. Proposition. Let M be a ûnite-dimensional module and let n ∈ N0 and S1, . . . , Sn be simple

modules such that M ≅ ⊕n
i=1 Si . If N is a submodule of N, then there exists a subset I ⊆ {1, . . . , n}

such that N ≅ ⊕i∈I Si .

Proof. Hacer
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Isotypic components

3.21. IfM is a ûnite-dimensional module, we know at this point that there exist n ∈ N0 and simple
modules S1, . . . , Sn such that there is an isomorphism ϕ ∶ ⊕n

i=1 Si → M. As a consequence of this,
if for each i ∈ {1, . . . , n} we let Ti = ϕ(Si) then we have an internal decomposition

M =
n
⊕
i=1

Ti

as a direct sum of simple submodules. It is important to remark that, in contrast to the uniqueness
results that we have obtained so far, it is not true that the submodules T1, . . . , Tn are well-determined
by the module M: it is only on their isomorphism classes that we have information. his is in the
nature of things, and we cannot do better. For example, if M is a 2-dimensional trivial module
and T1 and T2 are any two 1-dimensional subspaces such that T1 ∩ T2 = 0 then we have an internal
direct sum decomposition M = T1 ⊕ T2 of M as amodule— as there are inûnitely many choices
for the pair (T1, T2), uniqueness obviously fails.

here is a way to partially ûx this lack of uniqueness, at the cost of considering coarser
decompositions. Doing this will be our next task.

3.22. We start with the following auxiliary result, which is a generalization of Schur’s Lemma that
tells us that a non-zero morphism with simple domain is injective.

Lemma. Let M and S be ûnite-dimensional modules and suppose that S is simple. If n ∈ N and
f1, . . . , fn ∶ S → M are morphisms of modules which are linearly independent elements of the vector

space homg(S ,M), then the submodules f1(S), . . . , fn(S) of M, all of which are isomorphic to S, are

independent and we therefore have that⊕n
i=1 fi(S) ⊆ M.

Proof. We proceed by induction on the number n of morphisms. Since the morphisms are linearly
independent, they are non-zero and, as S is simple, they are injective: this implies that for each
i ∈ {1, . . . , n} we have fi(S) ≅ S. In particular, the lemma holds if n = 1.

Let us now suppose that n > 1 and show that the submodules f1(S), . . . , fn(S) are independent:
this will prove the lemma. In fact, we will only verify that

f1(S) ∩ ( f2(S) + ⋯ + fn(S)) = 0,

as the rest of what there is to be done is similar. We assume, in order to reach a contradiction, that
this intersection is not zero: as it is then a non-zero submodule of the simple submodule f1(S),
it cannot be a proper one and it follows from this that we in fact have that

f1(S) ⊆ f2(S) +⋯ + fn(S).

Of course, the morphisms f2, . . . , fn are linearly independent, so we inductively know that
the submodules f2(S), . . . , fn(S) of M are independent and that their sum is direct. In particular,
for each j ∈ {2, . . . , n} there is a morphism of modules p j ∶ f2(S) + ⋯ + fn(S) → f j(S) whose

33



restriction to f j(S) is the identity of f j(S) and which vanishes on fk(S) for all k ∈ {2, . . . , k}∖{ j},
and we have

n
∑
j=2

p j(t) = t for all t ∈ f2(S) +⋯ + fn(S). (24)

If now j ∈ {2, . . . , n}, using the fact that the functions f1 and f j are injective, it is easy to see that
there is unique endomorphism дj ∶ S → S such that the diagram

S S

f1(S) f2(S) +⋯ + fn(S) f j(S)

дj

f1 f j
p j

commutes and, since S is simple, Schur’s Lemma 3.9 tells us that there exists a scalar λ j ∈ k such
that дj = λidS . We have thus found scalars λ2, . . . , λn such that for each j ∈ {2, . . . , n} we have

p j( f1(s)) = λ j f j(s)

for all s ∈ S. In view of (24), we then have that

f1(s) =
n
∑
j=2

p j( f1(s)) =
n
∑
j=2

λ j f j(s)

for all s ∈ S, that is, that f1 = ∑n
j=2 λi fi : this is absurd, because the morphisms f1, . . . , fn are linearly

independent. his contradition is the one we wanted.

3.23. If M is a ûnite-dimensional module and S is a simple module, then the isotypic component
of M of type S is the submodule MS obtained as the sum of all submodules of M which are
isomorphic to S:

MS = ∑
N⊆M
N≅S

N .

It is obvious, in view of the formof this deûnition, that MS = MS′ whenever S and S′ are isomorphic
simple modules: this means that the component MS depends only on the isomorphism class of S.

3.24. Isotypic components generalize a construction we have already considered in 2.6:

Proposition. If M is a ûnite-dimensional module, the isotypic component of trivial type Mk coincides

with the invariant subspace Mg.

Proof. Hacer
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3.25. In Proposition 2.6(iii) we described the invariant subspace of a module M in terms of
morphisms k→ M. his generalizes to the other isotypic components as follows:

Proposition. Let M be a ûnite-dimensional module and let S be a ûnite-dimensional simple module.

(i) here is a linear function ϕS ∶ S ⊗ homg(S ,M) → M such that ϕS(s ⊗ f ) = f (s) for all s ∈ S

and all f ∈ homg(S ,M). his function is an injective homomorphism of modules, provided

that we view the vector space homg(S ,M) as a trivial module, and its image is exactly the

isotypic component MS . In particular, it corestricts to an isomorphism S⊗homg(S ,M) → MS .

In particular, we have that dimMS = [M ∶ S] ⋅ dim S.

(ii) If n = [M ∶ S] and { f1, . . . , fn} is a basis of homg(S ,M), then for each i ∈ {1, . . . , n} the

submodule fi(S) of M is isomorphic to S and there is an internal direct sum decomposition

MS =
n
⊕
i=1
fi(S).

Proof. It is easy to check that there is a linear map as in (i), and that it is a morphism of modules
is a consequence of the fact that for each x ∈ g, s ∈ S and f ∈ homg(S ,M) we have

ϕS(x ⋅ s ⊗ f ) = ϕS((x ⋅ s) ⊗ f ) = f (x ⋅ s) = x ⋅ f (s) = x ⋅ ϕS(s ⊗ f ).

he second equality here is due to the fact that we are viewing homg(S ,M) as a trivial module.
Let n = [M ∶ S] and letB = { f1, . . . , fn} be a basis of homg(S ,M). We know fromLemma 3.22

that the submodules f1(S), . . . , fn(S) are all isomorphic to S and independent, so that their sum,
which we will denote M′

S , is direct and contained in MS . We claim that in fact MS = M′
S and that

therefore (ii) holds. To see this it is enough that we show that if N is a submodule of M which is
isomorphic to S, we then have N ⊆ M′

S , as MS is the sum of all such submodules.
Let N be a submodule of M isomorphic to S. here is then an injective morphism f ∶ S → M

whose image is N and, since B is a basis of homg(S ,M), scalars λ1, . . . , λn ∈ k such that
f = ∑n

i=1 λi fi . For each s ∈ S we have that

f (s) =
n
∑
i=1

λi fi(s) ∈
n
∑
i=1

λi fi(S) = M
′
S ,

and this tells us that N is contained in M′
S , as we wanted.

Now that we know that (ii) holds, in particular we have that

dimMS = [M ∶ S] ⋅ dim S = dim S ⊗ homg(S ,M).

he domain and codomain of the map ϕ thus have the same ûnite dimension: as it is a surjection,
it is necessarily an isomorphism. his completes the proof of the proposition.

3.26. We can now describe the direct sum decomposition in which we are interested:

Proposition. Let M be a ûnite-dimensional module. here are ûnitely many non-zero isotypic

components in M and M is their direct sum.
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his means that if M is a ûnite-dimensional module, then there exist n ∈ N0 and simple mod-
ules S1, . . . , Sn, pairwise non-isomorphic, such that MS i ≠ 0 for all i ∈ {1, . . . , n} andM = ⊕n

i=1 MS i .
his internal direct sum decomposition of M is canonical, in that up to permutation it is well-
determined by M. We call it the isotypic decomposition of M.

Proof. Let S be a set of representatives for the isomorphism classes of ûnite-dimensional simple
modules. We want to prove ûrst that whenever n ∈ N and S1, . . . , Sn are pairwise distinct elements
of S , then the isotypic components MS1 , . . . , MSn are independent, and we do it by induction
on n. Of course, if n = 1 there is nothing to do.

Let then n > 1 and let S1, . . . , Sn be pairwise distinct elements of S . To show that the
corresponding isotypic components are independent it will be enough to show that

MS1 ∩ (MS2 +⋯ +MSn) = 0.

Let I be the intersection in question. As I is a submodule of MS1 and MS1 ≅ [M ∶ S1]S1, it follows
from Proposition 3.20 that I ≅ k1S1 for some integer k1 such that 0 ≤ k1 ≤ [M ∶ S1]. On the other
hand, we know inductively that the direct sum MS2 +⋯ +MSn is direct and isomorphic to

[M ∶ S2]S2 ⊕⋯⊕ [M ∶ Sn]Sn ,

and that same proposition tells us that there are integers k2, . . . , kn such that 0 ≤ ki ≤ [M ∶ Si] for
each i ∈ {2, . . . , n} and I ≅ ⊕n

i=2 kiSi . We have thus proved that there is an isomorphism

k1S1 ≅
n
⊕
i=2

kiSi .

Since S1 /≅ S j for all j ∈ {2, . . . , n}, computing the multiplicity of S1 on both sides of this isomor-
phism we ûnd that k1 = 0, so that in fact I = 0.

As every ûnite set of isotypic components is independent, it follows that the set of all isotypic
components is independent, and their sum M′ = ⊕S∈S MS is direct. his is a submodule of M,
so its dimension is ûnite: this implies that the set SM = {S ∈ S ∶ MS ≠ 0} is ûnite. To ûnish the
proof, we have to show that M = M′.

here is a short exact sequence

0 M′ M M/M′ 0
д

and, as all exact sequences of ûnite-dimensional modules, it is split: there is then a section
σ ∶ M/M′ → M of д. Suppose that M′ ⊊ M, so that the quotient M/M′ is non-zero and has a
simple submodule T . he intersection M′ ∩ σ(T) is a submodule of σ(T) contained in the kernel
of д, and since the restriction of д to the image of σ is injective, this implies that M′ ∩ σ(T) = 0.
his is absurd: we have 0 ≠ σ(T) ⊆ MT ⊆ M′ We must therefore that M = M′, as we wanted.
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3.27. he isotypic decomposition of a ûnite-dimensional module is canonical and natural, in that
it is preserved by all homomorphisms. his is the generalization of Proposition 2.6(ii) to isotypic
components of non-trivial type.

Proposition. Let S be a ûnite-dimensional simple module. If д ∶ M → N is a morphism of ûnite-

dimensional modules, then we have д(MS) ⊆ NS , so that д restricts to a morphism of modules

дS ∶ MS → NS .

Proof. Let д ∶ M → N be morphism of ûnite-dimensional modules. In order to prove that
д(MS) ⊆ NS it is enough that we show that if T is a submodule of M which is isomorphic to S,
then we have д(T) ⊆ NS . But this is clear: the restriction д∣T ∶ T → N is either zero or injective,
because T is simple: in the ûrst case we have д(T) = 0 and in the second one д(T) is a submodule
of N isomorphic to S, so that it is contained in NS .

Characters

3.28. Let M be a ûnite-dimensional module. A consequence of the information we have thus far
is that

the linear map HM ∶ M → M is diagonalizable and that it has integer eigenvalues. (25)

Indeed, we know that there exist n ∈ N0 and simple submodules S1, . . . , Sn of M such that
M = ⊕n

i=1 Si , and this implies in particular that for each i ∈ {1, . . . , n} the subspace Si ofM is HM-
invariant and HM ∣S i = HS i . It follows from this that HM is diagonalizable if for all i ∈ {1, . . . , n}
the map HS i is diagonalizable, and we know from Proposition 3.3 that this holds. Moreover, it is
clear from this that a scalar is an eigenvalue of HM if and only if it is an eigenvalue of one of the
maps HS i , and the latter have integer eigenvalues.

For each λ ∈ k, we denote Mλ the eigenspace of the linear map HM ∶ M → M corresponding
to the eigenvalue λ and call this subspace the weight subspace of M of weight λ. he non-zero
elements of Mλ are the weight vectors of M of that weight. In view of our observation (25) above,
we have that M = ⊕λ∈Z Mλ and, since M is ûnite-dimensional, that Mλ = 0 for all λ ∈ k except
ûnitely many,

We denote Z[q±1] the ring of Laurent polynomials with integer coeõcients and we refer to its
elements simply as polynomials —this should not be cause for any confusion. he character of
the module M is the polynomial

χM = ∑
λ∈Z

dimM
λ
q
λ .

his makes sense: as we have observed, we have Mλ = 0 for almost all λ ∈ k, so the sum is ûnite.

3.29. he following is o�en a useful rephrasing of this deûnition:

Lemma. Let M be a ûnite-dimensional module of dimension r. IfB = {m1, . . . ,mr} is a basis of M

whose elements are eigenvectors of HM , so that for each i ∈ {1, . . . , r} there is a scalar λi ∈ k (which
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is necessarily an integer, as we know) such that H ⋅mi = λimi , then we have

χM =
r
∑
i=1

q
λ i .

Proof. Grouping terms, we see that

r
∑
i=1

q
λ i = ∑

λ∈Z

⎛
⎜⎜⎜
⎝
∑

i∈{1,...,r}
λ i=λ

q
λ i

⎞
⎟⎟⎟
⎠
= ∑

λ∈Z
#{i ∈ {1, . . . , r} ∶ λi = λi} q

λ

and, since the set {mi ∶ i ∈ {1, . . . , r} ∶ λi = λ} is a basis of the weight space Mλ
i , this is

= ∑
λ∈Z

dimM
λ
q
λ = χM .

3.30. As we will amply demonstrate in what follows, the characters of modules are actually quite
amenable to computation. he key properties that enable that are codiûed in the following result:

Proposition. (i) If

0 M E N 0
f д

is a short exact sequence of ûnite-dimensional modules, then χE = χM + χN . In particular, if

M and N are ûnite-dimensional modules, then χM⊕N = χM + χM .

(ii) If M and N are ûnite-dimensional modules, then χM⊗N = χM ⋅ χN .

(iii) If M is a ûnite-dimensional simple module of dimension r + 1, then

χM = qr+1 − q−r−1

q − q−1
.

Proof. (i) Let r = dimM and s = dimN . As HM and HN are diagonalizable maps, there exist
ordered bases B′ = (m1, . . . ,mr) and B′′ = (n1, . . . , ns) of M and of N , respectively, whose
elements are eigenvectors of HM and of HN . here exist ñ1, . . . , ñr ∈ E such that д(ñi) = ni for
each i ∈ {1, . . . , s}, and it is easy to see that B = (m1, . . . ,mr , ñ1, . . . , ñs) is an ordered basis of E
and that the matrix of HE with respect to B is a upper triangular block matrix of the form

∥HE∥B = (∥HM∥B′ ∗
0 ∥HN∥B′′

) .

It follows immediately from this that the multiplicity of a scalar as an eigenvalue of HE is the sum
of its multiplicity as an eigenvalue of HM and its multiplicity as an eigenvalue of HN , that is, that
for all λ ∈ k we have

dim Eλ = dimM
λ + dimN

λ .
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hat χE = χM + χN follows immediately from this.
To prove the second claim of (i) we need only observe that if M and N are ûnite-dimensional

modules, then there is a short exact sequence of the form

0 M M ⊕ N N 0
( idM

0 ) ( 0 idN )

and that what we have already proved therefore tells us that χM⊕N = χM + χN .
(ii) Let M and N be ûnite-dimensional modules of dimensions r and s, respectively, and

let B′ = (m1, . . . ,mr) and B′′ = (n1, . . . , ns) be ordered bases of M and of N whose elements
are eigenvectors of HM and of HN . here are then integers λ1, . . . , λr and µ1, . . . , µs such that
H ⋅mi = λimi for all i ∈ {1, . . . , r} and H ⋅ n j = µ jn j for all j ∈ {1, . . . , s}.

We know from linear algebra that the set B = {mi ⊗ n j ∶ i ∈ {1, . . . , r}, j ∈ {1, . . . , s}} is basis
of the vector space M ⊗ N . We claim that its elements are weight vectors. Indeed, if i ∈ {1, . . . , r}
and j ∈ {1, . . . , s}, we have

H ⋅mi ⊗ n j = (H ⋅mi) ⊗ n j +mi ⊗ (H ⋅ n j) = λimi ⊗ n j +mi ⊗ µ jn j

= (λi + µ j)mi ⊗ n j .

so that the elementary tensor mi ⊗ n j is an weight vector of M ⊗ N of weight λi + µ j. It follows
from this and from the lemma above that

χM⊗N = ∑
1≤i≤r
1≤ j≤s

q
λ i+µ j =

r
∑
i=1

q
λ i ⋅

s
∑
j=1

q
µ j = χM ⋅ χN .

(iii) IfM is a ûnite-dimensional simple module of dimension r+ 1, then Proposition 3.3 tells us
that the eigenvalues of HM are precisely the numbers of the form r − 2i with i ∈ {1, . . . , r}, so that

χM =
r
∑
i=0

q
r−2i = qr+1 − q−r−1

q − q−1
.

his completes the proof of the proposition.

3.31. he usefulness of the character of a module is that while it is an object of a much simpler
nature than a representation it allows us to recover information about it:

Proposition. If M be a ûnite-dimensional module, then χM(1) = dimM and for all r ≥ 0 we have

[M ∶ Vr] = Res
q=0

(q−1 − q)qr
χM(q). (26)

Proof. Let M be a ûnite-dimensional module. It follows immediately from the deûnition that

χM(1) = ∑
λ∈Z

dimM
λ ,
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and this is equal to dimM because the linear map HM ∶ M → M is diagonalizable. Let, on the
other hand, r ∈ N0. We know that there exists a d ≥ 0 such that M = ⊕di=0[M ∶ Vi]Vi , so that

(q−1 − q)qr
χM(q) =

d
∑
i=0

[M ∶ Vi](q−1 − q)qr
χVi(q) =

d
∑
i=0

[M ∶ Vi]qr(qi+1 − q
−i−1),

and the coeõcient of q−1 in this polynomial is precisely [M ∶ Vr]. his is the meaning of the
equality (26) that appears in the proposition.

3.32. An immediate corollary of Proposition 3.31 is the following fundamental observation:

Proposition. Two ûnite-dimensional modules with the same character are isomorphic.

In other words, we do not lose any information about the isomorphism class of a module if
you pass to its character.

Proof. If M and N are two ûnite-dimensional modules which have the same character, then
Proposition 3.31 tells us that for all simple modules S we have [M ∶ S] = [N ∶ S], so that, according
to Proposition 3.18, M ≅ N .
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§4. Some applications

Tensor products and the Clebsch–Gordan formula

4.1. he following result is due to Alfred Clebsch (1833–1872, Germany) and Paul Gordan (1837–
1912, Germany):

Proposition. If r, s ∈ N0 are such that 0 ≤ s ≤ r, then there is an isomorphism

Vr ⊗ Vs ≅ Vr+s ⊕ Vr+s−2 ⊕ Vr+s−3 ⊕⋯⊕ Vr−s . (27)

Since the tensor product of modules is commutative —this is what Proposition 2.14(ii) states—
and distributes over direct sums, the above result allows us to describe the tensor product of two
arbitrary ûnite-dimensional modules, at least in principle.

Proof. Let r and s be as in the statement of the proposition. In order to prove that there is an
isomorphism (27) it is enough, in view of Proposition 3.32, to show that the twomodules appearing
there have the same character, and this just a matter of a simple computation in Z[q±1]:

χVr⊗Vs = χVr ⋅ χVs =
qr+1 − q−r−1

q − q−1
⋅ q

s+1 − q−s−1

q − q−1

= 1
q − q−1

(qr+s+2 − qr−s

q − q−1
− q−r+s − q−r−s−2

q − q−1
)

= 1
q − q−1

((qr+s+1 + q
r+s−1 +⋯ + q

r−s+1) − (q−r+s−1 +⋯ + q
−r−s+1 + q

−r−s−1))

= qr+s+1 − q−r−s−1

q − q−1
+ sr+s−1 − q−r−s+1

q − q−1
+⋯ + qr−s+1 − q−r+s−1

q − q−1

= χVr+s + χVr+s−2 +⋯ + χVr−s

= χVr+s⊕Vr+s−2⊕⋯⊕Vr−s .

4.2. he proposition we have just proved describes the structure of tensor products of simple
modules as a direct sum but does not tell us what the actual submodules that appear in that
decomposition are. In many situations we need this ûner information, and that is provided by the
following result:

Proposition. Let M and N be two ûnite dimensional modules, and let m and n be singular weight

vectors of weights λ and µ in M and in N, respectively, so that in particular λ and µ are non-negative

integers. If p is a integer such that 0 ≤ p ≤ min{λ, µ}, then

p
∑
i=0

(−1)i (λ − i)!(µ − p + i)!
(λ − p)!µ!

F i ⋅m
i!

⊗ F p−i ⋅ n
(p − i)!

is a singular weight vector of weight λ + µ − 2p in M ⊗ N.
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Proof. Let p be a non-negative integer such that 0 ≤ p ≤ min{λ, µ}. For each i ∈ {0, . . . , p} let us
put mi = 1

i!F
i ⋅m and ni = 1

i!F
i ⋅n. We know from Proposition 3.7 that mi and ni are weight vectors

of weights λ−2i and µ−2i, respectively, and that the vectors m0, . . . ,mp and the vectors n0, . . . , np
are linearly independent. It follows from this, in particular, that the vector —let us denote it w—
that appears in the statement of the proposition is non-zero and, since each summand mi ⊗ np−i
is a weight vector of weight (λ − 2i) + (µ − 2(p − i)) = λ + µ − 2p in M ⊗ N , that so is w.

To complete the proof, then, we need only show that E ⋅w = 0. For this, we write

ai =
(λ − i)!(µ − p + i)!

(λ − p)!µ!
and compute that

E ⋅w =
p
∑
i=0

(−1)i
ai ((E ⋅mi) ⊗ np−i +mi ⊗ (E ⋅ np−i))

=
p
∑
i=1

(−1)i
ai(λ + 1 − i)mi−1 ⊗ np−i +

p−1
∑
i=0

(−1)i
ai(µ + 1 − p + i)mi ⊗ np−i−1

=
p−1
∑
i=0

(−1)i(−ai+1(λ − i) + ai(µ + 1 − p + i))mi ⊗ np−i−1

= 0,

since for each i ∈ {0, . . . , p − 1} we have that ai+1(λ − i) = ai(µ + 1 − p + i).

Invariant bilinear forms

4.3. Let M be a vector space. A bilinear form on M is a bilinear map β ∶ M ×M → k. Such a thing,
as we know, can be identiûed to a linear map M ⊗M → k, and we will usually switch from one
point of view to the other without mention. In terms of this identiûcation, the set of all bilinear
forms on M is simply homk(M ⊗M , k), the dual space of M ⊗M.

We say that a bilinear form β ∶ M ×M → k is non-degenerate if
• for all m ∈ M there exists an n ∈ M such that β(m, n) ≠ 0, and
• for all n ∈ M there exists an m ∈ M such that β(n,m) ≠ 0.

On the other hand, we say that β is symmetric if β(m, n) = β(n,m) for all m, n ∈ M, and that it
is anti-symmetric if β(m, n) = −β(n,m) for all m, n ∈ M.

4.4. If M is a module, then we say that a bilinear form β ∶ M ×M → k is invariant if for all x ∈ g
and all m, n ∈ M we have that

β(x ⋅m, n) + β(m, x ⋅ n) = 0.

If we view β as a linear map M ⊗M → k, this means precisely that it is a morphism of modules
—provided that we put on k the trivial module structure— and therefore the set of invariant
bilinear forms on M is the subspace homg(M ⊗M , k) of homk(M ⊗M , k). We have shown that
homg(M ⊗M , k) coincides with the subspace of invariants homk(M ⊗M , k): a bilinear form is
invariant if and only if it is an invariant element of the space of bilinear forms.
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4.5. An easy consequence of the Clebsch–Gordan Formula is that we can describe the invariant
bilinear forms on ûnite-dimensional modules:

Proposition. Let M be a ûnite-dimensional simple module. he vector space homg(M ⊗M , k) of

invariant bilinear forms on M is 1-dimensional. If β ∶ M ×M → k is a non-zero invariant bilinear

form on M, then β is non-degenerate, and it is symmetric or anti-symmetric if dimM is odd or even,

respectively.

Proof. Let r ∈ N0 be such that dimM = r+1. As we know, this implies that there is an isomorphism
of modules M ≅ Vr , and we may just as well suppose that M is Vr for the purpose of this proof.
From the Clebsch–Gordan Formula 4.1 we know that there is an isomorphism of modules

Vr ⊗ Vr ≅
r
⊕
i=0

V2i

and then we have an isomorphism of vector spaces

homg(Vr ⊗ Vr , k) ≅
r
⊕
i=0

homg(V2i , k).

As k ≅ V0, we know from Lemma 3.15 that homg(V2i , k) = 0 if i ≠ 0 and that dimhomg(V0, k) = 1.
his proves the ûrst part of the proposition.

Let us now ûx an non-zero invariant bilinear form β ∶ M ×M → k on our ûnite-dimensional
simple module M, and let us consider the set

M
′ = {m ∈ M ∶ β(m, n) = 0 for all n ∈ M}.

It is easy to see that M′ is a subspace of M and it is a submodule, because if x ∈ g and m ∈ M′

we have for all n ∈ M that β(x ⋅m, n) = −β(m, x ⋅ n) = 0, so that x ⋅m ∈ M′. As M is simple, it
follows from this that M′ is either the zero subspace of M or equal to M itself, and the second
possibility cannot occur, since β is not the zero bilinear form. A similar argument shows that the
set M′′ = {n ∈ M ∶ β(m, n) = 0 for all m ∈ M} is also the zero subspace of M and, in conclusion,
that the form β is non-degenerate.

Let us denote S and A the sets of symmetric and anti-symmetric invariant bilinear forms on M,
respectively. hese are subspaces of homg(M ⊗M , k), as one can readily check, and in fact we
have a direct sum decomposition

homg(M ⊗M , k) = S ⊕ A. (28)

Indeed, a bilinear form β ∶ M ⊗M → k which is in S ∩ A is necessarily zero, as for all m, n ∈ M

we have that

β(m ⊗ n) = −β(n ⊗m) = −β(m ⊗ n),

with the ûrst equality coming from the anti-symmetry and the second one from symmetry. On the
other hand, if β ∶ M ⊗M → k is an invariant bilinear form on M, then there are invariant bilinear
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forms βs, βa ∶ M ⊗M → k such that for all m, n ∈ M we have

βs(m ⊗ n) = 1
2(β(m ⊗ n) + β(n ⊗m))

and

βa(m ⊗ n) = 1
2(β(m ⊗ n) − β(n ⊗m)),

they are symmetric and anti-symmetric, respectively, and β = βs + βa.
In view of the decomposition (28) and the fact that the vector space homg(M ⊗ M , k) is

1-dimensional, we see immediately that we have in fact that homg(M ⊗M , k) is equal to one of A
or S. his is what the proposition claims.

4.6. he proposition we have just proved tells us that each ûnite-dimensional module can be
canonically endowed with a non-degenerate bilinear form, uniquely determined up to a scalar,
and that it is either symmetric or anti-symmetric. It does not tell us what this form is, nor does
the argument we have used allow us to decide if it is symmetric of anti-symmetric. Let us show
how we can use the precise form of the Clebsch–Gordan Formula provided by Proposition 4.2 to
actually construct the form.

Let us ûx r ≥ 0 and let V be a simple module of dimension r+ 1. We want to exhibit a non-zero
vector in homg(V ⊗ V , k), which, as we know, is the invariant subspace of hom(V ⊗ V , k), the
dual space (V ⊗V)∗ of V ⊗V . here is a linear function Φ ∶ V∗ ⊗V∗ → (V ⊗V∗) such that for
each ϕ, ψ ∈ V∗ and each v, w ∈ V we have Φ(ϕ ⊗ ψ)(v ⊗w) = ϕ(v)ψ(w), and this map Φ is an
isomorphism of modules. We can therefore look for an non-zero invariant element of V∗ ⊗ V∗.

here is a basis B = {m0, . . . ,mr} of V whose elements are weight vectors, with

H ⋅mi = (r − 2i)mi

for each i ∈ {0, . . . , r} and

E ⋅mi =
⎧⎪⎪⎨⎪⎪⎩

0, if i = 0;

(r − i + 1)mi−1, if 0 < i ≤ r;
F ⋅mi =

⎧⎪⎪⎨⎪⎪⎩

(i + 1)mi+1, if 0 ≤ i < r;

0, if i = r.

Let B∗ = {ϕ0, . . . , ϕr} be the basis of V∗ dual to B, so that ϕi(m j) = δi, j for all i, j ∈ {0, . . . , n}.
One sees at once, using the deûnition of the action g on V∗, that

H ⋅ ϕi = (2i − r)ϕi

for each i ∈ {0, . . . , n}, and that

E ⋅ ϕi =
⎧⎪⎪⎨⎪⎪⎩

−(r − i + 1)ϕi+1, if 0 ≤ i < r;

0, if i = r;
F ⋅ ϕi =

⎧⎪⎪⎨⎪⎪⎩

0, if i = 0;

−(i + 1)ϕi−1, if 0 < i ≤ r.

In particular, the vector ϕr is a singular weight vector of weight r and for each i ∈ {0, . . . , r} we
have,

F
i ⋅ ϕr = (−1)i (r + 1)!

(r + 1 − i)!ϕr−i . (29)
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It follows from Proposition 4.2 that

1
r!

r
∑
k=0

(−1)k (Fk ⋅ ϕr) ⊗ (Fr−k ⋅ ϕr)

is a weight vector of V∗ ⊗ V∗ of weight 0, and using (29) this is easily seen to be a scalar multiple
of

ω =
r
∑
k=0

(−1)k(r + 2
k + 1

)ϕr−k ⊗ ϕk .

Proposition. Let V be a ûnite-dimensional simple module of dimension r + 1 and let {m0, . . . ,mr}
be a basis of V as in Proposition 3.3. here is a non-degenerate invariant bilinear form β ∶ V⊗V → k
such that

β(mi ,m j) = (−1) j(r + 2
j + 1

)δi+ j,r

for all i, j ∈ {0, . . . , r}, and it is symmetric if r is even, and anti-symmetric if r is odd.

Proof. Our observations above imply that Φ(ω) is an invariant bilinear form on V , and it is
manifestly non-zero. If i, j ∈ {0, . . . , r}, then

Φ(ω)(mi ⊗m j) =
r
∑
k=0

(−1)k(r + 2
k + 1

)ϕr−k(mi)ϕk(m j) = (−1) j(r + 2
j + 1

)δr− j,i ,

and this has the same evalue as the expression given in the proposition. Using that formula, it is
immediate to see that β(mi ,m j) = (−1)rβ(m j ,mi) for all i, j ∈ {0, . . . , r}, and the last claim of
the statement follows at once from this.

Tensor powers

4.7. Inmany contexts it is useful to understand the structure of the tensor powers of representations
and this can be done using the Clebsch–Gordan Formula. he simplest non-trivial example of
this is that of the powers of the 2-dimensional simple representation:

Proposition. If d, r ≥ 0, then the multiplicity of Vr as a direct summand of the dth tensor power

V⊗r
1 is

[V⊗d
1 ∶ Vr] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

( dd+r
2

) 2(r + 1)
d + r + 2

, if d + r is even;

0, it it is not.

(30)

We have computed some of these multiplicities in Table 1 on the following page.
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r

d 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1
1 1
2 1 1
3 2 1
4 2 3 1
5 5 4 1
6 5 9 5 1
7 14 14 6 1
8 14 28 20 7 1
9 42 48 27 8 1
10 42 90 75 35 9 1
11 132 165 110 44 10 1
12 132 297 275 154 54 11 1

Table 1. he multiplicites [V⊗d1 ∶ Vr], with the zeroes omitted. hese numbers can be
computed very eõciently using the recurrence relation found in the proof of Proposition 4.7.

Proof. Let us write adr = [V⊗d
1 ∶ Vr] for each d, r ≥ 0. If d ≥ 0, then we have V⊗d

1 = ⊕r≥0 a
d
r Vr

and using the Clebsch–Gordan Formula we see that

V
⊗(d+1)
1 = V

⊗d
1 ⊗ V1 ≅⊕

r≥0
a
d
r Vr ⊗ V1 ≅⊕

r≥1
a
d
r (Vr+1 ⊕ Vr−1) ⊕ ad0V1

≅⊕
r≥1
a
d
r Vr+1 ⊕⊕

r≥1
a
d
r Vr−1 ⊕ ad0V1 ≅⊕

r≥2
a
d
r−1Vr ⊕⊕

r≥0
a
d
r+1Vr ⊕ ad0V1

≅⊕
r≥1

(adr−1 + adr+1)Vr ⊕ ad1 V0.

his tells us that for all r, d ≥ 0 we have

a
d+1
r =

⎧⎪⎪⎨⎪⎪⎩

ad1 , if r = 0;

adr−1 + adr+1, if r ≥ 1.
(31)

It is clear that V⊗0
1 ≅ V0, so that a00 = 1 and a0r = 0 for all r > 0: this means that the equation (30)

holds if d = 0. Let us now ûx d ∈ N0, suppose that for all r ≥ 0 we have

a
d
r =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

( d
d+r
2
) 2(r+1)
d+r+2 , if d + r is even;

0, if it is not.
(32)
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and show that

a
d+1
r =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(d + 1
d+1+r

2
) 2(r + 1)
d + r + 3

, if d + r + 1 is even;

0, if it is not.
(33)

for all r ≥ 0. To do this we consider two cases:
• Suppose ûrst that the number d + r is even. According to the recurrence relations (31) we

have that ad+10 = ad1 and ad+1r = adr−1 + adr+1 for all r > 0, and the right hand sides of these
equalities vanish in view of our hypothesis (32): this proves (33) in this case.

• Suppose next that d + r is an odd number. As d + r − 1 and d + r + 1 are even, from the
recurrence (31) and the inductive hypothesis (32) we see that

a
d+1
r = adr−1 + adr+1 = ( d

d+r−1
2

) 2r
d + r + 1

+ ( d

d+r+1
2

) 2(r + 2)
d + r + 3

= d!
d+r−1

2 ! d−r+12 !
2r

d + r + 1
+ d!
d+r+1

2 ! d−r−12 !
2(r + 2)
d + r + 3

= d!
d+r−1

2 ! d−r−12 !

⎛
⎝

2r
d−r+1

2 (d + r + 1)
+ 2(r + 2)
d+r+1

2 (d + r + 3)
⎞
⎠

= d!
d+r+1

2 ! d−r−12 !
( 2r
d − r + 1

+ 2(r + 2)
d + r + 3

) = d!
d+r+1

2 ! d−r−12 !
4(d + 1)(r + 1)

(d − r + 1)(d + r + 3)

= (d + 1)!
d+r+1

2 ! d−r+12 !
2(r + 1)

(d + r + 3) = (d + 1
d+r+1

2
) 2(r + 1)
d + r + 3

,

his is exactly what (33) claims in this case.
he proposition is thus proved.

4.8. An interesting observation that one can make is that Proposition 4.7 implies that the whole
ûnite-dimensional representation theory of sl2(k) can be “reconstructed” from its 2-dimensional
simple module V1, in the sense that all simple modules appear as direct summands of its tensor
powers. In fact, an immediate consequence of that proposition is that for all r ≥ 0 the sum of the
isotypic components of V⊗r

1 with composition factors in the set {V0, . . . ,Vr−1} is a submodule R

which allows us to ûnd the simple module Vr , up to isomorphism, as the quotient V⊗r
1 /R: this

provides a recursive construction of all simple modules starting from V1.

4.9. As a special case of Proposition 4.7, we have:

Corollary. For all d ≥ 0,

dim(V⊗d
1 )g = [V⊗d

1 ∶ V0] =
⎧⎪⎪⎨⎪⎪⎩

0, if d is odd;

C d
2
, if d is even;

(34)

where for each n ∈ N0 we are writing Cn the nth Catalan number,

Cn = (2n
n
) 1
n + 1

.

47



hese numbers, named a�er the mathematician Eugène Charles Catalan (1814–1894, France
and Belgium), are very well-known in combinatorics and famously count many diòerent types of
objects. Richard Stanley’s beautiful monograph [Sta2015] provides a wealth of information about
these numbers and describes, in particular, over 200 types of combinatorial objects which are
enumerated by them.

4.10. Let us show another argument which also proves the formula (34) of Corollary 4.9 and
which is of a rather diòerent nature. Since χV1(q) = q + q−1, we know from Proposition 3.30(ii)
that for each d ≥ 0 we have

χV⊗d
1

(q) = (q + q
−1)d .

Let us consider the series

f (q, t) = ∑
d≥0

χV⊗d
1

(q)td = ∑
d≥0

(q + q
−1)d td = 1

1 − (q + q−1)t ,

with converges absolutely for all pairs (q, t) in the open set

Ω = {(q, t) ∈ C2 ∶ q ≠ 0, ∣(q + q
−1)t∣ < 1}

of C2 and uniformly on compact sets contained there. Let ρ ∈ (0, 1
4), let Q = B(0, 1) and

T = B(0, ρ) be the closed discs in C centered at the origin and of radii 1 and ρ, respectively, and
let S1 ⊆ C be the unit circle. We have for all t ∈ T that S1 × {t} is contained in Ω, so that it makes
sense to consider the integral

1
2πi
∫

S1
(q−1 − q) f (q, t)dq = 1

2πi
∫

S1
(q−1 − q) ∑

d≥0
χV⊗d

1
(q)td dq.

Since the series converges uniformly on S1 × T , this is

= ∑
d≥0

1
2πi
∫

S1
(q−1 − q)χV⊗d

1
(q)td dq

= ∑
d≥0

Res
q=0

(q−1 − q)χV⊗d
1

(q) ⋅ td

= ∑
d≥0

[V⊗d
1 ∶ V0] ⋅ td .

Let us now ûx t ∈ T ∖ {0}. We have

1
2πi
∫

S1
(q−1 − q) f (q, t)dq = 1

2πi
∫

S1

q−1 − q

1 − (q + q−1)t dq =
1

2πi
∫

S1

q2 − 1
q2t − q + t

dq.

he integrand in this last integral is a meromorphic function on C whose only poles are at the
points

A(t) = 1 +
√

1 − 4t2

2t
, B(t) = 1 −

√
1 − 4t2

2t
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and are both simple; indeed, we have

q
2
t − q + t = t(q − A(t))(q − B(t))

and A(t) − B(t) =
√

1 − 4t2/2t ≠ 0. As limt→0∣A(t)∣ = ∞ and limt→0∣B(t)∣ = 0, we can choose ρ

small enough in (0, 1
4) so that the only pole in Q is B(t) and belongs to the interior. Choosing ρ

in that way, we have that for each t ∈ T ∖ {0}

1
2πi
∫

S1

q2 − 1
q2t − q + t

dq = Res
q=B(t)

q2 − 1
q2t − q + t

= lim
q→B(t)

q2 − 1
q2t − q + t

(q − B(t))

= lim
q→B(t)

q2 − 1
t(q − A(t)) = B(t)2 − 1

t(B(t) − A(t)) = 2
1 +

√
1 − 4t2

.

We can therefore conclude that for all t ∈ T we have

∑
d≥0

[V⊗d
1 ∶ V0] ⋅ td =

2
1 +

√
1 − 4t2

= 1 −
√

1 − 4t2

2t2

which, according to Newton’s generalized binomial formula, is

= 1
2t2

⎛
⎝
1 − ∑

k≥0
(

1
2
k
)4k

t
2k⎞
⎠
= ∑

k≥0
(2k
k
) t2k

k + 1
.

his recovers the result of Corollary 4.9.
A nice observation to make at this point is that if we put

hTV1(t) = ∑
d≥0

[V⊗d
1 ∶ V0] ⋅ td =

1 −
√

1 − 4t2

2t2
,

then we have that

t
2
hTV1(t)2 − hTV1(t) + 1 = 0. (35)

As ThV1(t) = ∑d≥0 Cd t2d , replacing in this equation we ûnd that

1 − C0∑
d≥2

+
⎛
⎝ ∑

i+ j=d−1
CiC j − Cd

⎞
⎠
t
2d = 0,

so that C0 = 1 and

Cd = ∑
i+ j=d−1

CiC j

for all d ≥ 1. his recurrence relation for the Catalan numbers is o�en used as their deûnition and
is a key fact in many of their combinatorial interpretations.

49



On the other hand, we can rewrite the equation (35) in the form

hTV1(t) =
1

1 − t2hTV1(t)
,

and iterating this formula —a�er making sure the right hand side makes sense— we can obtain
the following expression in terms of a continued fraction:

hTV1(t) = ∑
d≥0

[V⊗d
1 ∶ V0] ⋅ td =

1

1 −
t2

1 −
t2

1 −
t2

1 −⋯

.

4.11. While this alternative proof of Corollary 4.9 may seem complicated, it diòers from the
original way we obtained that proposition in that it does not depend on knowing previously the
multiplicities, and this is quite signiûcant. In principle, the same idea can be used to compute the
series

hTM(t) = ∑
d≥0

[M⊗d ∶ V0] ⋅ td

for all ûnite-dimensional modules M. In practice, though, this requires solving certain equations
which are not easy. Let us consider in detail the case of the 3-dimensional simple module V2.

As before, we consider the series

f (q, t) = ∑
d≥0

χV⊗d
2

(q) ⋅ td = ∑
d≥0

(q2 + 1 + q
−1)d td = 1

1 − (q2 + 1 + q−2)t ,

which converges absolutely and uniformly on every compact subset of

Ω = {(q, t) ∈ C2 ∶ q ≠ 0, ∣(q2 + 1 + q
−2)t∣ < 1}.

For each t in a neighborhood of 0, we have

∑
d≥0

[V⊗d
2 ∶ V0] ⋅ td =

1
2πi
∫

S1
(q−1 − q) f (q, t)dq,

by essentially the same calculation that we did for V1, and we are le� with computing this integral.
It is immediately seen to be equal to

1
2πi
∫

S1

q3 − q

q3t + q2(t − 1) + t
dq. (36)

We restrict our attention to small but non-zero t. he denominator of this integrand factors as

t(q2 − A(t))(q2 − B(t)),
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with

A(t) = 1 − t +
√

1 − 2t − 3t2

2t
, B(t) = 1 − t −

√
1 − 2t − 3t2

2t
.

As limt→0 A(t) = ∞, limt→0 B(t) = 0, and B(t) ≠ 0 for t ≠ 0, for t suõciently small the integrand
has in the interior of S1 two simple poles at the square roots of B(t) and is holomorphic in the
closed unit disc. If we denote one of those two square roots C(t), it follows from all this that the
integral (36) is equal to

Res
q=C(t)

q3 − q

q3t + q2(t − 1) + t
+ Res

q=−C(t)

q3 − q

q3t + q2(t − 1) + t
,

which in turn, since the two poles are simple, is the same as

lim
q→C(t)

q3 − q

q3t + q2(t − 1) + t
(q − C(t)) + lim

q→−C(t)

q3 − q

q3t + q2(t − 1) + t
(q + C(t))

= C(t)3 − C(t)
2C(t)(C(t)2 − A(t)) +

−C(t)3 + C(t)
−2C(t)(C(t)2 − A(t)) = B(t) − 1

B(t) − A(t) .

Simplifying this last expression, we conclude that

hTV2(t) = ∑
d≥0

[V⊗d
2 ∶ V0] ⋅ td =

2
1 + t +

√
1 − 2t − t3

.

Let us denote Rd the coeõcient [V⊗d
2 ∶ V0] with which the monomial td appears in this series, so

that hTV2(t) = ∑d≥0 Rd td . A straighforward computation shows that

t(t + 1)hTV2(t)2 − (t + 1)hTV2(t) + 1 = 0.

his implies that

0 = thTV2(t)2 − hTV2(t) +
1

1 + t
= 1 − R0 +∑

d≥1

⎛
⎝ ∑

i+ j=d−1
RiR j − Rd + (−1)d

⎞
⎠
t
d ,

so that R0 = 1 and

Rd = ∑
i+ j=d−1

RiR j + (−1)d

for all d ≥ 1. Using this recurrence relation —which is remarkably similar to the one for Catalan
numbers— it is very easy to compute these numbers: the sequence starts with

1, 0, 1, 1, 3, 6, 15, 36, 91, 232, 603, 1 585, 4 213, 11 298, 3 0537, 83 097, 227 475,

625 992, 1 730 787, 4 805 595, 13 393 689, 37 458 330, 105 089 229, 295 673 994, . . .

hese are the Riordan numbers—in honor of the combinatorialist John F. Riordan (1903–1988,
United States)— and their sequence appears as the entry A005043 in the OEIS [Slo2017].
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Symmetric powers

4.12. Let us now consider symmetric powers. If M and N are ûnite-dimensional modules, then
for all d ≥ 0 there is an isomorphism of modules

S
d(M ⊕ N) ≅ ⊕

i+ j=d
S
i
M ⊗ S

j
N ,

and the Clebsch–Gordan Formula 4.1 therefore reduces, in principle, the description of the
structure of the symmetric powers of an arbitrary module to that of the symmetric powers of
simple ones. It makes sense, then, that we concentrate on these.

4.13. Let us ûx d, r ≥ 0, and let Vr be a ûnite-dimensional simple module of dimension r. We
want to describe the dth symmetric power SdVr . According to Proposition 3.3, there is a basis
B = {m0, . . . ,mr} of Vr such that, among other things,

H ⋅mi = (r − 2i)mi for all i ∈ {0, . . . , r}.

Let I = {0, . . . , r} and let I(d) be the set of all d-tuples i = (i1, . . . , id) in Id that are non-
decreasing, so that 1 ≤ i1 ≤ ⋯ ≤ id ≤ r. For each i = (i1, . . . , id) ∈ I(d), we consider the element
mi = mi1 ⊙⋯⊙mid ∈ SdVr . As we know, the set B(d) = {mi ∶ i ∈ I(d)} is a basis of the dth sym-
metric power SdVr . he elements of this basis are weight vectors: indeed, if i = (i1, . . . , id) ∈ I(d),
then we have

H ⋅mi = H ⋅mi1 ⊙⋯⊙mid =
d
∑
j=1

mi1 ⊙⋯(H ⋅mi j) ⊙⋯⊙mid

=
d
∑
j=1

(r − 2i j)mi1 ⊙⋯mi j ⊙⋯⊙mid =
⎛
⎝
d
∑
j=1

(r − 2i j)
⎞
⎠
mi

so that mi is a weight vector of weight

d
∑
j=1

(r − 2i j) = rd − 2(i1 +⋯ + id).

It follows then from Lemma 3.29 that the character of SdVr is

χSdVr(q) = ∑
i∈I(d)

q
rd−2(i1+⋯+id). (37)

We have to understand this sum, and to do that it will be convenient to use the language of
partitions.

4.14. A partition is an ordered sequence λ = (λ1, . . . , λl) of integers such that λl ≥ ⋯ ≥ λ1 ≥ 1;
if n = λ1 + ⋯ + λl we say that λ is a partition of n. he integers λi that appear in the partition
are its parts and the number l of parts is the length of the partition; the length can be zero, and
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in that case the partition is necessarily a partition of 0, which is its only partition. For example,
(7, 6, 4, 4, 2, 1, 1) is a partition of 25 into 7 parts, and the û�een partitions of 7 are

(7) (6, 1) (5, 2) (5, 1, 1) (4, 3)
(4, 2, 1) (4, 1, 1, 1) (3, 3, 1) (3, 2, 2) (3, 2, 1, 1)
(3, 1, 1, 1, 1) (2, 2, 2, 1) (2, 2, 1, 1, 1) (2, 1, 1, 1, 1, 1) (1, 1, 1, 1, 1, 1, 1)

We will represent a partition graphically using Young diagrams: if (λ1, . . . , λl) is a partition,
then the corresponding Young diagram is a ûnite collection of boxes, arranged in le�-justiûed
rows, the length of which are, from top to bottom, the parts of the partition. An example is worth
a thousand words: the diagram corresponding to the partition (7, 6, 4, 3, 1, 1) is

For each choice of r, d, n ∈ N0 we let Π(r, d , n) be the set of all partitions of n into at most d parts
all of which are not larger than r, and write π(r, d , n) the cardinal of the set Π(r, d , n). In terms
of diagrams, this means that a partition is in Π(r, d , n) if the corresponding diagram has n boxes
in total and ûts in a rectangle of height d and width r. Among the partitions of 7 that we listed
above, the elements of Π(3, 4, 7) are

(3, 3, 1) (3, 2, 2) (3, 2, 1, 1) (2, 2, 2, 1)

and therefore π(3, 4, 7) = 4. We make the convention that if n is non-integral, then Π(r, d , n) is
the empty set.

4.15. Let us go back to the expresion (37) for the character of SdVr . Grouping terms in the sum
according to the exponent of q, we ûnd immediately that

χSdVr(q) = ∑
i∈I(d)

q
rd−2(i1+⋯+id) = ∑

n≥0
#I(d)(n) ⋅ qrd−2n

with I(d)(n) = {i ∈ I(d) ∶ i1 +⋯ + id = n} for each n ∈ N0. Now, the sets I(d)(n) and Π(r, d , n)
are in bijection. If i = (i1, . . . , id) is an element of I(d)(n), then dropping all the trailing zeros
from the sequence (id , . . . , i1) obtained by reversing i we obtain a partition of n which has at most
d parts, all of which are not larger than r, and such a thing is an element of Π(r, d , n). Conversely,
if λ = (λ1, . . . , λl) is an element of Π(r, d , n), then adding d − l zeros to end of the reversed
sequence (λl , . . . , λ1) we obtain an element (0, . . . , 0, λl , . . . , λ1) of I(d)(n). It is clear that these
two constructions are mutually inverse.

We conclude in this way that

χSdVr(q) = ∑
n≥0

π(r, d , n) ⋅ qrd−2n . (38)
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d

r 0 1 2 3 4

0 01 01 01 01 01

1 01 11 21 31 41

2 01 21 0141 2161 014181

3 01 31 2161 315191 01416181121

4 01 41 014181 01416181121 014282101121161

5 01 51 2161101 31517191111151 01426182101122141161201

6 01 61 014181121 216281101121141181 02426183101123141162181201241

Table 2. he composition factors of the symmetric powers SdVr . Here the expression
01234152 denotes the module V0 ⊕ 3V1 ⊕ V4 ⊕ 2V5, and so on.

4.16. From this it is a simple matter to obtain the multiplicities of the composition factors of SdVr .
he following result was announced by Arthur Cayley in 1856 [Cay1889] and proved for the ûrst
time by Joseph Sylvester in 1878 [Syl1974].

Proposition. If d, r and s are non-negative integers, then the multiplicity of Vs as a composition

factor of SdVr is

[SdVr ∶ Vs] = π(r, d , 1
2(rd − s)) − π(r, d , 1

2(rd − s) − 1).

Proof. Let d, r, s ∈ N0. he multiplicity [SdVr ∶ Vs] is the coeõcient of qs+1 in the the product

(q − q
−1)χSdVr(q) = (q − q

−1) ∑
n≥0

π(r, d , n) ⋅ qrd−2n

= ∑
n≥0

π(r, d , n) ⋅ qrd−2n+1 − ∑
n≥0

π(r, d , n) ⋅ qrd−2n−1

= ∑
n≥0

(π(r, d , 1
2(rd − n + 1)) − π(r, d , 1

2(rd − n − 1)))qn

which is π(r, d , 1
2(rd − s)) − π(r, d , 1

2(rd − s) − 1), as the proposition claims.

4.17. Using Proposition 4.16 we can compute —somewhat laboriously— the composition factors
for all SdVr . Looking at the results some patterns become evident, and with some ingenuity they
can be proved. For example, looking at the column with d = 2 in that table we notice that all the
multiplicites are zero or one and we can actually prove this:

Proposition. If r ≥ 0, then

S
2
Vr ≅ ⊕

0≤k≤ r
2

V2r−4k .
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Proof. Let s ≥ 0 and let us compute the multiplicity [S2Vr ∶ Vs], which according to Proposi-
tion 4.16 is equal to

π(r, 2, 1
2(2r − s)) − π(r, 2, 1

2(2r − s) − 1). (39)

If s is odd or if s > 2r this is clearly equal to zero. We suppose that is not the case, so that s is
even and 0 ≤ s ≤ 2r. In that case we have 1

2(2r − s) − 1 < r: it follows from this that if λ is a
partition in Π(r, 2, 1

2(2r − s) − 1), then we can add 1 to the biggest part of λ and obtain an element
of Π(r, 2, 1

2(2r − s)). his deûnes a function ϕ ∶ Π(r, 2, 1
2(2r − s) − 1) → Π(r, 2, 1

2(2r − s)) which
is obviously injective. Moreover, a partition in Π(r, 2, 1

2(2r − s))) is in the image of this function
exactly when it does not have two parts of the same length: only in that case we cannot shorten
the biggest part by 1 to obtain a preimage. Now Π(r, 2, 1

2(2r − s)) contains a partition with two
parts of equal length if and only if the number 1

2(2r − s) is even, that is, if 2r − s is a multiple of 4,
and when it does it obviously contains exactly one. We see in this way that

• if 2r − s is not divisible by 4, then the function ϕ is a bijection, and therefore its domain and
codomain have the same cardinal: this means precisely that the number (39) is 0.

• On the other hand, if 2r − s is divisible by 4, there is exactly one element in the codomain
of ϕ which is not in the image of that function. As the function is injective, this implies
that (39) is equal to 1.

In other words, the number (39) is equal to zero unless there exists a k ∈ N0 with 0 ≤ k ≤ 1
2 r such

that s = 2r − 4k, in which case it equals 1. he result follows at once from this.

4.18. Looking at the Table 2 we easily notice that it is symmetric with respect to its diagonal. his
result was obtained originally by Charles Hermite (1822–1901, France) in his work [Her1854] on
the invariant theory of binary forms, and is usually called Hermite reciprocity.

Proposition. If r and d are non-negative integers, there is an isomorphism of modules

S
r
Vd ≅ S

d
Vr .

Proof. To show this, and thanks to Proposition 4.16, it is enough to show that π(r, d , n) = π(d , n, r)
for all r, d, n ≥ 0, and to do that, that there is a bijection Π(r, d , n) → Π(d , n, r).

Suppose that λ = (λ1, . . . , λl) is an element of Π(r, d , n) of length l and largest part m = λl .
For each i ∈ {1, . . . ,m} we write λ′i the number of parts of λ which are not smaller than i, that is,

λ
′
i = #{ j ∈ {1, . . . , l} ∶ λ j ≥ i}.

Clearly, we have λ′1 ≥ ⋯ ≥ λ′m ≥ 1, so that λ′ = (λ′1, . . . , λ′m) is a partition. Counting the elements
of the set {(i , j) ∈ {1, . . . ,m} × {1, . . . , l} ∶ λ j ≥ i} in two ways, we ûnd that∑m

i=1 λ
′
i = ∑l

j=1 λ j = n,
so that λ′ is a partition of n. It has m parts and its largest part is λ1 = l , and this means that
λ′ ∈ Π(d , r, n). We call λ′ the transpose of λ. For example, the transpose of the partition
(7, 7, 4, 3, 1, 1, 1) ∈ Π(9, 7, 24) is (7, 4, 4, 2, 2, 2) ∈ Π(7, 9, 24). In terms of Young diagrams, this
construction corresponds exactly to transposition, that is, re�ection with respect to the main
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diagonal:

One sees easily that λ′′ = λ for all λ ∈ Π(r, d , n), so that transposition is in fact a bijection
Π(r, d , n) → Π(d , n, r), like we wanted.
4.19. A special case of Hermite reciprocity is:

Corollary. For all r ≥ 0 we have Vr ≅ SrV1.

his is another manifestation of the idea that the whole ûnite-dimensional representation of
out Lie algebra is “contained” in its 2-dimensional simple module V1, as we noticed in 4.8.

Proof. If r ≥ 0, then Hermite reciprocity tells us that SrV1 ≅ S1Vr , and this last module is obviously
isomorphic to Vr itself.

Gaussian polynomials

4.20. An immediate consequence of Proposition 4.16 is that for all d, r, s ≥ 0 the diòerence

π(r, d , 1
2(rd − s)) − π(r, d , 1

2(rd − s) − 1)

is a non-negative number: the proposition states that it is equal to the multiplicity with which a
simple module appears in another module, so it cannot be a negative number! While this seems at
ûrst sight a rather inconsequential observation, it is the key ingredient of a proof of an important
result which we now describe.

4.21. As usual, we ûx a variable q. For each n ≥ 0 the quantum integer [n]q is the polynomial

[n]q = 1 + q +⋯ + q
n−1 = qn − 1

q − 1
∈ Z[q],

and we deûne the quantum factorial to be the product

[n]q! = [1]q[2]q⋯[n]q .

Since [n]q has degree n − 1, [n]q! has degree (1 − 1) + (2 − 1) +⋯ + (n − 1) = 1
2n(n − 1).

If n and m are non-negative integers such that 0 ≤ m ≤ n, we call the quotient

(n

m
)
q
=

[n]q!
[m]q![n −m]q!

(40)

a Gaussian polynomial —we will show below that it is indeed a polynomial— or, for obvious
reasons, a quantum binomial coeõcient. Ifm < 0 or m > n, wemake the convention that (n

m)q = 0.
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4.22. hese “quantum” versions of classical constructions behave similarly to their classical coun-
terparts in many ways. he simplest observation that one can make in that direction is that
the evaluating at q = 1 the polynomials [n]q, [n]q! and (n

m)q we obtain the usual integers n, n!

and (n
m). his is the tip of an iceberg. A few more interesting results are contained in the following

proposition:

Proposition. (i) If n, m ∈ N0, then

[n +m]q = q
m[n]q + [m]q .

(ii) If n, m ∈ N0 such that 0 ≤ m ≤ n, then

(n
0
)
q
= (n

n
)
q
= 1, (41)

(n

m
)
q
= ( n

n −m
)
q

(42)

and

(n + 1
m + 1

)
q
= (n

m
)
q
+ q

m+1( n

m + 1
)
q
= q

n−m(n

m
)
q
+ ( n

m + 1
)
q
. (43)

Proof. Let n, m ∈ N0. We have

q
m[n]q + [m]q = q

m(1 + q +⋯ + q
n−1) + (1 + q +⋯ + q

m−1)
= q

m + q
m+1 +⋯q

n+m−1 + 1 + q +⋯q
m−1 = [n]q

and this proves the ûrst claim of the proposition. he equalities (41) and (42) follow immediately
from the deûnition of the Gaussian polynomials. If m = n, then the ûrst equality in (43) follows
from (41), and if instead we have that 0 ≤ m < n, then

(n

m
)
q
+ q

m+1( n

m + 1
)
q
=

[n]q!
[m]q![n −m]q!

+ q
m+1 [n]q!

[m + 1]q![n −m − 1]q!

=
[n]q!

[m]q![n −m − 1]q!
( 1
[n −m]q

+ q
m+1 1

[m + 1]q
)

=
[n]q!

[m]q![n −m − 1]q!
[m + 1]q + qm+1[n −m]q

[n −m]q[m + 1]q

=
[n]q!

[m]q![n −m − 1]q!
[n + 1]q

[n −m]q[m + 1]q
= (n + 1

m + 1
)
q
.

he second equality in (43) can be proved in exactly the same way, or deduced from the ûrst one
using (42).

4.23. An important corollary of this result is that Gaussian polynomials are polynomials with
integer coeõcients:

Corollary. If n, m ∈ N0, then (n
m)q is an element of Z[q] of degree nm and its coeõcients are

non-negative.
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Proof. hat (n
m)q is a polynomial with non-negative coeõcients follows by an obvious induction

with respect to n, using the equalities (41) and (43) of Proposition 4.22 above. Once we know that
it is a polynomial, its deûning formula (40) implies that

deg (n

m
)
q
= deg[n]q! − deg[m]q! − deg[n −m]q!

= 1
2n(n − 1) − 1

2m(m − 1) − 1
2(n −m)(n −m − 1) = nm.

4.24. Gaussian polynomials and partitions are closely related:

Proposition. If m, n ≥ 0, then

(n +m

m
)
q
= ∑

i≥0
π(n,m, i) ⋅ qi .

Proof. We know that if n, m ≥ 0, then there exist non-negative integers a(n,m, i), almost all of
which are zero and which are zero if i < 0, such that

(n +m

m
)
q
= ∑

i∈Z
a(n,m, i)qi .

Proposition 4.22 tells us that (n
0)q = 1 for all n ≥ 0, and this means that

a(n, 0, i) = a(0, n, i) =
⎧⎪⎪⎨⎪⎪⎩

1, if i = 0;

0, if not.
(44)

On the other hand, that proposition tells us that (n+m+1
m+1 )q = (n+m

m )q + qm+1(n+m
m+1)q for all m, n ≥ 0,

and in terms of the coeõcients this means that for all i ≥ 0 we have

a(n,m + 1, i) = a(n,m, i) + a(n − 1,m + 1, i −m − 1).

We claim that we also have, for all m, n, i ≥ 0, that

π(n, 0, i) = π(0, n, i) =
⎧⎪⎪⎨⎪⎪⎩

1, if i = 0;

0, if not;
(45)

and

π(n,m + 1, i) = π(n,m, i) + π(n − 1,m + 1, i −m − 1). (46)

he ûrst equality is immediate: there are no partitions of a non-negative integer i with zero parts
or with parts of size zero, unless i itself is equal to zero. To prove (46) we observe that if λ is an
element of Π(n,m + 1, i), then

• either it has at most m parts, so that it is an element of Π(n,m, i),
• or it has exactly m + 1 parts, and then subtracting 1 to each part of λ and removing any

leading zero that result from that we obtain a partition of i −m − 1 with at most m + 1 parts
all of which are at most equal to n − 1, that is, an element of Π(n − 1,m + 1, i −m − 1).
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Clearly, we account in this way for all elements of Π(n,m, i) and all those of Π(n−1,m+1, i−m−1)
and, looking at the cardinals of these sets, we ûnd that (46) holds.

We can now prove that a(n,m, i) = π(n,m, i) for all n,m, i ≥ 0, and with that the proposition.
Suppose, in fact, that this is not true, and let (n,m) be the smallest element inN0×N0 with respect
to the lexicographic order on this set such that there exists an i ∈ N0 with a(n,m, i) ≠ π(n,m, i).
In view of (44) and (45), we have n > 0 and m > 0, and the two pairs (n − 1,m) and (n,m − 1)
both belong to N0 ×N0. Since they are strictly lexicographically smaller than (n,m), the way we
chose the latter implies that

a(n,m, i) = a(n,m − 1, i) + a(n − 1,m, i −m) = π(n,m − 1, i) + π(n − 1,m, i −m)
= π(n,m, i),

and this is absurd. his completes the proof.

4.25. A consequence of Proposition 4.24 is that we can express the characters of symmetric powers
in terms of Gaussian polynomials:

Corollary. If r, d ≥ 0, then

χSdVr(q) = q
rd(r + d

d
)
q−2

.

Proof. To prove this, we need only compare the expression (38) that we found in 4.15 for the
character of SdVr with the expression of Gaussian polynomials in terms of partitions given by
Proposition 4.24.

4.26. We say that a ûnite sequence of real numbers a1, a2, . . . , an is unimodal if it ûrst increases
and then decreases, that is, if there is an index t ∈ {0, . . . , n} such that

a1 ≤ a2 ≤ ⋅ ⋅ ⋅ ≤ at−1 ≤ at ≥ at+1 ≥ ⋯ ≥ an .

Similarly, we say that a polynomial with real coeõcients is unimodal if the sequence of its coeõ-
cients ordered accoding to degree is unimodal.

Proposition. If n, m ∈ N0, then the Gaussian polynomial (n+m
m )q is unimodal.

In view of Corollary 4.25, the character of SdVr is also an unimodal polynomial for all r, d ≥ 0.

Proof. As we have shown above in Proposition 4.24, we have that

(n +m

m
)
q
= ∑

i≥0
π(n,m, i) ⋅ qi .

It is clear this has degree nm and that it is a symmetric polynomial, since for all i ∈ {0, . . . , nm}
we have that π(n,m, i) = π(n,m, nm − i). To see that this polynomial is unimodal, it suõces to
show that π(n,m, i) − π(n,m, i − 1) ≥ 0 for all integers i such that 1 ≤ i ≤ 1

2nm. But for such an i

the number s = nm − 2i is non-negative and, using Proposition 4.16, we have that

π(n,m, i) − π(n,m, i − 1) = π(n,m, 1
2(nm − s)) − π(n,m, 1

2(nm − s) − 1)
= [Sm

Vn ∶ Vs] ≥ 0.
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his proves what we want.

4.27. he ûrst proof of Proposition 4.26 was given by E. B. Elliott in 1895 in his book [Ell1895]
on the theory of invariants of forms, building up on the work Sylvester [Syl1974] on the subject
—who had proved, as we mentioned above, Proposition 4.16— and his argument was essentially
the same one we used. Since then, many alternative proofs have been provided, of analytical or
geometrical nature —the most elementary one being that of Robert Proctor presented in [Pro1982],
which depends only on linear algebra. Proctor’s paper describes the history of the problem and
explains why it is an important one. he ûrst purely combinatorial proof of this result was given
by Kathleen O’Hara in [O’H1990], in a celebrated tour de force; an explanation of her argument
with some simpliûcations can be found in Doron Zeilberger’s paper [Zei1989].

he idea of using the representation theory of Lie algebras in order to prove unimodality
results is a very fuitful one. here is a whole family of results in this direction, which includes
Proposition 4.26 as its simplest example, starting from work of Eugene Dynkin [Dyn1950]. he
survey [Sta1980] of Richard Stanley explains this.

Invariants of symmetric powers

4.28. We now want to study the invariants of the symmetric powers of our simple modules. We
ûx a non-negative integer r and intend to describe the invariant subspace of SdVr for all d ≥ 0 and,
in particular, the series

hr(t) = ∑
d≥0

dim(SdVr)g ⋅ td . (47)

As we did for tensor powers, we consider ûrst the formal series

fr(q, t) = ∑
d≥0

χSdVr(q) ⋅ t
d .

his converges absolutely whenever (q, t) belongs to the set

Ω = {(q, t) ∈ C2 ∶ ∣q∣ < 1, ∣t∣ < 1
2(r+1)}

and does so uniformly on compact subsets contained in Ω. Indeed, since χSdVr(q) is a polynomial
with non-negative coeõcients, we have for all q with ∣q∣ < 1 that

∣χSdVr(q)∣ ≤ χSdVr(1) = (r + d
d

).

If additionally ∣t∣ < 1
2(r+1) , then we have that

∑
d≥0

∣χSdVr(q) ⋅ t
d ∣ ≤ ∑

d≥0
(r + d
d

) 1
2d(r+1)d

and this last numerical series converges, as can be seen by an easy application of d’Alembert’s ratio
test. Our claim about the convergence of the series fr(q, t) follows then from Weierstrass’s M-test.
We can in fact sum the series:
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Lemma. For each r ≥ 0 we have

fr(q, t) =
r
∏
i=0

1
1 − qr−2i t

(48)

for all (q, t) belonging to the set Ω′ = {(q, t) ∈ C2 ∶ 1
2 < ∣q∣ < 1, ∣t∣ < 1

2r(r+1)}.
Notice that Ω′ is contained in the set Ω described above, so that the equality makes sense.

Since fr is a holomorphic function, it follows form the lemma that the equality (48) holds in fact
throughout Ω and that we can in fact continue analytically fr to a rational function on the whole
of C2.

Proof. Let us ûx (q, t) in Ω′, then we have ∣qr−2i t∣ < 1 for all i ∈ {0, . . . , r} and we can therefore
expand each factor appearing on the right in (48) into a geometric series, obtaining the equality

r
∏
i=0

1
1 − qr−2i t

=
r
∏
i=0
∑
d≥0

q
(r−2i)d

t
d .

Each of the series appearing in this product converges absolutely, so we can distribute the product,
ûnding

∑
d0 ,...,dr≥0

q∑
r
i=0(r−2i)d i t

d0+⋯+dr = ∑
d0 ,...,dr≥0

q
r(d0+⋯+dr)−2(0d0+1d1+⋯+rdr)td0+⋯+dr , (49)

with the series converging absolutely. Grouping terms according to the values of the sums d0+⋯+dr
and 0d0 + 1d1 +⋯ + rdr , we see that this is

∑
n,d≥0

an,dq
rd−2n

t
d

with an,d the number of (r+1)-tuples (d0, . . . , dr) of non-negative integers such that d = d0+⋯+dr
and n = 0d0 + 1d1 +⋯+ rdr . Now, from such an (r + 1)-tuple we can construct a partition with d1
parts equal to 1, d2 parts equal to 2 and so on, all the way to dr parts equal to r: this partitition
has at most d parts, all of which are at most equal to r, and sums to n: it is therefore an element
of Π(r, d , n). It is clear that all the elements of this set are obtained in this way, each of them
exactly once: it follows from this that an,d = π(r, d , n), and thus

r
∏
i=0

1
1 − qr−2i t

= ∑
n,d≥0

π(r, d , d)qrd−2n
t
d .

his series was obtained by grouping terms in (49), so it also converges absolutely, and we can can
again associate its terms in whatever way we want. In particular, its sum equals that of

∑
d≥0

(∑
n≥0

π(r, d , n)qrd−2n) ⋅ td ,

which is, according to the formula (38) that we obtained in 4.15, the same as fr(q, t). his proves
the lemma.
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4.29. Just as in 4.11, the series hr of (47) that we are trying to compute can be expressed as an
integral. Indeed, let us ûx t ∈ C such that 0 < ∣t∣ < 1

2(r+1) and let γ be the circle of radius 1
2 around

the origin in C. We know that

hr(t) = ∑
d≥0

dim(SdVr)g ⋅ t = ∑
d≥0

Res
q=0

(q − q
−1)χSdVr(q) ⋅ t

d

= ∑
d≥0

1
2πi
∫

γ
(q − q

−1)χSdVr(q)dq ⋅ t
d ,

because the Laurent polynomial (q−1 − q)χSdVr(q) is meromorphic in a open set containing the
closed interior of γ, continuous on γ and with exactly one pole in the interior, at 0. he last series
is equal to

1
2πi
∫

γ
(q−1 − q) ∑

d≥0
χSdVr(q) ⋅ t

d dq

because the series appearing here converges absolutely and uniformly on γ. In view of lemma, we
therefore have that for all t such that 0 < ∣t∣ < 1

2(r+1) the function hr is given by

hr(t) = 1
2πi ∫γ

q−1 − q

∏r
i=0(1 − qr−2i t) dq.

We are le� with evaluating this integral. he poles of the integrand which are in the interior of γ
are the numbers

Suppose ûrst that r is odd and at least 3, and that s ∈ N is such that r = 2s + 1. We have that
r
∏
i=0

(1 − q
r−2i

t) =
s
∏
i=0

(1 − q
r−2i

t)
2s+1
∏
i=s+1

(1 − q
r−2i

t) =
s
∏
i=0

(1 − q
r−2i

t)
s
∏
i=0

(1 − q
−r+2i

t)

= q∑
s
i=0(−r+2i)

s
∏
i=0

(1 − q
r−2i

t)
s
∏
i=0

(qr−2i − t)

= q
−(s+1)2

s
∏
i=0

(1 − q
r−2i

t)
s
∏
i=0

(q2i+1 − t)

and it follows from this that

q−1 − q

∏r
i=0(1 − qr−2i t) = q(s+1)

2−1 − q(s+1)
2+1

∏s
i=0(1 − qr−2i t)∏s

i=0(q2i+1 − t) .

For each n ∈ N let ωn = exp(2π
√
−1/n) and let t1/n be any one of the nth roots of t. he poles of

this rational function inside the circle γ are the numbers

ω
j
2i+1t

1/(2i+1), 0 ≤ i ≤ s, 0 ≤ j < 2i + 1

and they are all simple. It follows that

hr(t) =
s
∑
i=0

2i
∑
j=0

Res
q=ω j

2i+1 t1/(2i+1)

q(s+1)
2−1 − q(s+1)

2+1

∏s
i=0(1 − qr−2i t)∏s

i=0(q2i+1 − t)
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he integrand has poles at the points of the set

{q ∈ C ∶ q ≠ 0 and q
r−2i = t for some i ∈ {0, . . . , r}}

and hr(t) is equal to the sum of the residules of that integrand at the poles which are in the interior
of γ. Let us consider the ûrst possible values of r.

• If r = 0, we have can compute the integral immediately:

h0(t) = 1
2πi ∫ γ

q−1 − q

1 − t
dq = 1

1−t = ∑
d≥0

t
d .

his tells us that dim(SdV0)g = 1 for al d ≥ 0. Of course, we already knew this, since
SdV0 ≅ V0 for all d ≥ 0.

• Let now r = 1. he formula for hr(t) tells us that

h1(t) =
1

2πi
∫

γ

q−1 − q

(1 − qt)(1 − q−1t) dq =
1

2πi
∫

γ

1 − q2

(1 − qt)(q − t) dq.

he only pole of the last integrand in the interior of γ is at q = t, and then

h1(t) = Res
q=t

1 − q2

(1 − qt)(q − t)

and, since the pole at q = t is simple, this is

= lim
q→t

1 − q2

(1 − qt) = 1.

his means that∑d≥0 dim(SdV1)g ⋅ td = 1, so that

dim(SdV1)g =
⎧⎪⎪⎨⎪⎪⎩

1, if d = 0;

0, if d > 0.

Again, we already knew this: as SdV1 ≅ Vr , the invariant subspace of SdV1 is isomorphic to
V

g
d , which is the zero space if d > 0 and 1-dimensional if d = 0.

• Consider now the case in which r = 2. We have that

h2(t) =
1

2πi
∫

γ

q−1 − q

(1 − q2t)(1 − t)(1 − q−2t) dq

= 1
2πi
∫

γ

q − q3

(1 − q2t)(1 − t)(q2 − t) dq

he poles of the integrand which are in the interior of γ are at the square roots of t, so that if
we denote s on of them we have

h2(t) = Res
q=s

q − q3

(1 − q2t)(1 − t)(q2 − t) + Res
q=−s

q − q3

(1 − q2t)(1 − t)(q2 − t)

63



and since the two poles are simple, this is equal to

lim
q→s

q − q3

(1 − q2t)(1 − t)(q2 − t)(q − s) + lim
q→−s

q − q3

(1 − q2t)(1 − t)(q2 − t)(q + s)

= s − s3

(1 − s2t)(1 − t)(s + s) +
−s − s3

(1 − s2t)(1 − t)(−s − s)

= s − s3

(1 − s2t)(1 − t)s =
1

1 − t

We see in this way that

dim(SdV1)g =
⎧⎪⎪⎨⎪⎪⎩

1, if d is even;

0, if it is odd.

• Let r = 3, so that

h3(t) =
1

2πi
∫

γ

q−1 − q

(1 − q3t)(1 − qt)(1 − q−1t)(1 − q−3t) dq

= 1
2πi
∫

γ

q3 − q5

(1 − q3t)(1 − qt)(q − t)(q3 − t) dq

he integrand has simple poles at t and at the three cube roots of t. At t the residue is

Res
q=t

q3 − q5

(1 − q3t)(1 − qt)(q − t)(q3 − t)

= lim
q→t

q3 − q5

(1 − q3t)(1 − qt)(q − t)(q3 − t)(q − t) = t3 − t5

(1 − t4)(1 − t2)(t3 − t)

= t2

(1 − t4)(t2 − 1) .

On the other hand, if s is a cube root of t, then

Res
q=s

q3 − q5

(1 − q3t)(1 − qt)(q − t)(q3 − t)

= lim
q→s

q3 − q5

(1 − q3t)(1 − qt)(q − t)(q3 − t)(q − s)

= s3 − s5

(1 − s3t)(1 − st)(s − t)(1 + s + s2) = s2

(1 − s6)(1 − s4)(1 + s + s2) ,

and if ω is one of the non-real cubic roots of 1,

Res
q=ωs

q3 − q5

(1 − q3t)(1 − qt)(q − t)(q3 − t)

= lim
q→ωs

q3 − q5

(1 − q3t)(1 − qt)(q − t)(q3 − t)(q − ωs)

= s3 − ω2s5

(1 − s3t)(1 − ωst)(ωs − t)(ωs − t)(ωs − ω2s)
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Exterior powers

The Grothendieck ring

4.30. If M is a module, we denote [M] its isomorphism class, and we write M the set of all
isomorphism classes of ûnite-dimensional modules —it can be shown that this is indeed a set.

Let G(g) be the free abelian group with basis M . Its elements are formal linear combinations
of elements ofM with coeõcients in Z. As G(g) is free, it is easy to show that there is a unique
Z-bilinear function ⋅ ∶ G(g) ×G(g) → G(g) such that

[M] ⋅ [N] = [M ⊗ N]

for all ûnite-dimensional modules M and N . Endowed with this map as multiplication, the abelian
group G(g) becomes a commutative ring:

• he multiplication distributes over addition simply because the map ⋅ is Z-bilinear.
• To show that ⋅ is an associative operation it is enough —thanks to distributivity and the fact

that every element of G(g) is a Z-linear combination of elements ofM— to show that for
all ûnite-dimensional modules M, N and P we have [M] ⋅ ([N] ⋅ [P]) = ([M] ⋅ [N]) ⋅ [P].
he deûnition of the product implies that the le� and right hand sides of this equations are
[M ⊗ (N ⊗ P)] and [(M ⊗ N) ⊗ P], respectively, and these two classes are equal because,
according to Proposition 2.14(i), there is an isomorphism M ⊗ (N ⊗ P) ≅ (M ⊗ N) ⊗ P

• he isomorphism class [k] of the trivial module is a unit element in G(g). Indeed, if M is a
ûnite-dimensional module, then Proposition 2.14(iii) tells us that there are isomorphisms of
modules M ⊗ k ≅ M ≅ k⊗M, so that

[M] ⋅ [k] = [M ⊗ k] = [M] = [k⊗M] = [k] ⋅ [M],

and then bilinearity of the product implies that c ⋅ [k] = c = [k] ⋅ c for all c ∈ G(g).
• Finally, if M and N are ûnite-dimensional modules, Proposition 2.14(ii) tells us that there is
an isomorphisms of modules M ⊗ N ≅ N ⊗M, so that

[M] ⋅ [N] = [M ⊗ N] = [N ⊗M] = [N] ⋅ [M],

and it follows from this that in fact c ⋅ d = d ⋅ c for all c, d ∈ G(g).
4.31. If E is a short exact sequence

0 M E N 0
f д

we consider the element

cE = [M] − [E] + [N] ∈ G(g),

and let I(g) be the subgroup of G(g) generated by all elements of this form. his subgroup is in
fact an ideal of G(g). To see this, we notice that if E is a short exact sequence of modules as above
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and P is a ûnite-dimensional module, then we can construct a new exact sequence of modules

0 P ⊗M P ⊗ E P ⊗ N 0
idP⊗ f idP⊗д

which we denote P ⊗ E , whose corresponding element in G(g) is

cP⊗E = [P ⊗M] − [P ⊗ E] + [P ⊗ N]
= [P] ⋅ [M] − [P] ⋅ [E] + [P] ⋅ [N]
= [P] ⋅ ([M] − [E] + [N])
= [P] ⋅ cE ,

so that [P] ⋅ cE ∈ I(g). As the elements ofM generate G(g) as an abelian group, this is enough to
prove that I(g) is an ideal.

We may therefore consider the quotient

K(g) = G(g)/I(g),

which is a ring and which we call the Grothendieck ring of our Lie algebra. If M is a ûnite-
dimensional module, we will write JMK the class [M] + I(g) of [M] in K(g).
4.32. As an immediate consequence of the way we constructed the Grothendieck ring, we have
the following result:

Proposition. (i) If

0 M E N 0
f д

is a short exact sequence of ûnite-dimensional modules, then in K(g) we have that

JEK = JMK + JNK. (50)

(ii) If M and N are ûnite-dimensional modules, we have that

JM ⊕ NK = JMK + JNK (51)

and

JM ⊗ NK = JMK ⋅ JNK. (52)

Proof. (i) If we have a short exact sequence of modules as in the statement, then we know that
[M] − [E] + [N] is an element of the ideal I(g), so that its image in K(g) is equal to zero. As this
image is clearly JMK − JEK + JNK, we have the equality (50).

(ii) Let M and N be two ûnite-dimensional modules. As we have the split short exact sequence

0 M M ⊕ N N 0
( idM

0 ) ( 0 idN )

the ûrst part of the proposition tells us that the equality (51) holds. On the other hand, the
equality (52) follows immediately form the fact that the projection function p ∶ G(g) → K(g) is a
morphism of rings.
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4.33. Since K(g) is deûned as a quotient of a free abelian group, it is not obvious what its group
structure is. A direct consequence of our results on semisimplicity, we can prove that it is in fact
free.

Proposition. he set S = {JVrK ∶ r ∈ N0} of classes in K(g) corresponding to the simple modules is

a basis of K(g) as an abelian group.

Proof. If M is a ûnite-dimensional module, heorem 3.14 tells us that there exist n ∈ N0 and
simple modules S1, . . . , Sn such that M ≅ ⊕n

i=1 Si and using Proposition 4.32(ii) we see from that
that JMK = ∑n

i=1JSiK, which is in the subgroup of K(g) generated by S . his clearly implies that
the set S generates K(g) as an abelian group. To prove the proposition, then, we need to show
that the set S is linearly independent.

Let P be a ûnite-dimensional module. Since the abelian group G(g) is free in the set M ,
there exists a morphism of groups є̄P ∶ G(g) → Z such that є̄P([M]) = dimhomg(P,M) for all
ûnite-dimensional modules M. If now E is a short exact sequence

0 M E N 0
f д

of ûnite-dimensional modules, then it follows from Proposition 5.11 that we also have a short exact
sequence of ûnite-dimensional vector spaces

0 homg(P,M) homg(P, E) homg(P,N) 0
f∗ д∗

and then, of course, we have that

dimhomg(P,M) − dimhomg(P, E) + dimhomg(P,N) = 0.

he le� hand side in this equality is є̄P(cE): we see in this way that the morphism є̄P maps the
ideal I(g) to zero, because it maps each of its generators to zero. his implies that there is a
morphism of groups єP ∶ K(g) → Z such that

єP(JMK) = є̄P([M]) = dimhomg(P,M)

for all ûnite-dimensional modules M. In particular, if S and T are ûnite-dimensional simple
modules, we have —in view of Lemma 3.15— that

єS(JTK) =
⎧⎪⎪⎨⎪⎪⎩

1, if S and T are isomorphic;

0, if not.
(53)

With this at hand, we can easily prove that the set S is linearly independent. Suppose that n ∈ N,
that r1, . . . , rn ∈ N0 are n distinct non-negative integers, and that a1, . . . , ar ∈ Z are such that
∑n

i=1 aiJVr i K = 0 in K(g). If j is an element of {1, . . . , n}, applying the morphism єVr j
to both sides

of this equality and using (53) we ûnd at once that a j = 0. his establishes the linear independence
ofS , and completes the proof.
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§5. Appendix: Extensions of modules

Extensions

5.1. If P and N are modules, an extension of P by N is a short exact sequence

E ∶ 0 N M P 0
f д

of modules and morphisms of modules which starts at P and ends at N . If

E ′ ∶ 0 N M′ P 0
f ′ д′

is another extension of P byN , then we say that amorphism ofmodules ϕ ∶ M → M′ is amorphism
of extensions from E to E ′ if the diagram

0 N M P 0

0 N M′ P 0

f д

ϕ
f ′ д′

is commutative.

5.2. An important observation is the following result, known as the Short Five Lemma:

Lemma. If E and E ′ are extensions of P by N as above and the morphism of modules ϕ ∶ M → M′

is a morphism of extensions from E to E ′, then ϕ is an isomorphism of modules and its inverse

morphism ϕ−1 ∶ M′ → M is a morphism of extensions from E ′ to E .

In view of this, we say that the two extensions E and E ′ of P by N are isomorphic if there is
a morphism of extensions from E to E ′. It is easy to see, using the lemma, that this deûnes an
equivalence relation among extensions of P by N .

Proof. If m ∈ M is such that ϕ(m) = 0, then д(m) = д′(ϕ(m)) = 0 and therefore there exists an
n ∈ N such that m = f (n). Now f ′(n) = ϕ( f (n)) = ϕ(m) = 0 and, since f ′ is injective, n = 0. Of
course, this tells us that m = f (n) = 0 and we see that the morphism ϕ is injective.

Let now m′ ∈ M′. Since the morphism д is surjective, there exists an m ∈ M such that
д(m) = д′(m′) and we have

д
′(m′ − ϕ(m)) = д

′(m′) − д
′(ϕ(m)) = д(m) − д

′(ϕ(m)) = 0.

By exactness of E ′, there exists an n ∈ N with f ′(n) = m′ − ϕ(m). Since

ϕ(m + f (n)) = ϕ(m) + ϕ( f (n)) = ϕ(m) + f ′(n) = m
′,

we see that the element m′ is in the image of ϕ. his tells us that the map ϕ is surjective and wemay
conclude that it is in fact an isomorphism. Finally, since ϕ is a morphism of extensions from E

to E ′, we have д = д′ ○ ϕ and ϕ ○ f = f ′, and composing on the right with ϕ−1 in the ûrst equality
and on the right in the second one we see that д ○ ϕ−1 = д′ and f = ϕ−1 ○ f ′. hese two equations
tell us that ϕ−1 is a morphism of extensions from E ′ to E .
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Split extensions

5.3. If P and N are modules, he split extension of P by N is the extension

0 N N ⊕ P P 0
( idN

0 ) ( 0 idP )

and, more generally, we say that an extension of P by N splits if it is isomorphic to the split
extension of P by N . Of course, the split extension of P by N is split.

5.4. hemain reason that explains our interest in split extensions is the following:

Proposition. Let P and N be modules. If

0 N M P 0
f д

is an extension of P by N which is split, then there exists an isomorphism M ≅ N ⊕ P.

Proof. LetE be an extension of P byN as in the statement. If it is split, then there exists amorphism
ϕ ∶ M → N ⊕M of modules which is a morphism of extensions from E to the split extension E⊕
of N by N . According to Lemma 5.2, this morphism ϕ is then an isomorphism.

5.5. It is useful to be able to recognize split extensions easily, and the following proposition helps
in doing that:

Proposition. Let

E ∶ 0 N M P 0
f д

be an extension. he following three statements are equivalent:

(a) he extension E is split.

(b) here exists a morphism of modules r ∶ M → N such that r ○ f = idN .

(c) here exists a morphism of modules s ∶ P → M such that д ○ s = idP .

If they hold, then the morphisms s and r appearing in (b) and (c), respectively, can be chosen in such

a way that r ○ s = 0.

We call a morphism r with the property described in (b) a retraction of the morphism f , and
a morphism s with the property described in (c) a section of the morphism д.

Proof. Let us write E⊕ the split extension of P by N .
Suppose ûrst that the extension E is split, so that there is a morphism of extensions ϕ ∶ E → E⊕,

that is, a morphism ϕ ∶ M → N ⊕ P making the diagram

0 N M P 0

0 N N ⊕ P P 0

f д

ϕ

( idN
0 )

( 0 idP )
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commutative. he map r = ( idM 0 ) ○ ϕ ∶ M → N is a retraction of f , since

r ○ f = (idM 0) ○ ϕ ○ f = (idM 0) ○ ( idN
0 ) = idN ,

and the map s = ϕ−1 ○ ( 0
idP

) ∶ P → M is a section of s, since

д ○ s = д ○ ϕ
−1 ○ ( 0

idP
) = (0 idP) ○ (

0
idP

) = idP .

his shows that the condition (a) implies both (b) and (c). Moreover, since we have

r ○ s = (idM 0) ○ ϕ ○ ϕ
−1 ○ ( 0

idP
) = (idM 0) ○ ( 0

idP
) = 0,

when the condition (a) holds we can choose the retraction r of f and the section s of д so that
r ○ s = 0, as the last sentence of the proposition claims.

Let us suppose now that the condition (b) holds, so that there is a retraction r ∶ M → N of f .
he morphism ϕ = ( r

д ) ∶ M → N ⊕ P is such that

(0 idP) ○ ϕ = (0 idP) ○ (
r

д
) = д

and

ϕ ○ f = (r

д
) ○ f = (r ○ f

д ○ f ) = (idN
0

) ,

and is therefore a morphism of extensions ϕ ∶ E → E⊕. he extension E is thus split in this
situation.

Finally, let us suppose that condition (c) holds, and let s ∶ P → M be a section of д. he
morphism h = idM − s ○ д ∶ M → M is such that

д ○ h = д − д ○ s ○ д = д − д = 0

and, since f is a kernel of д, this implies that there exists a morphism r ∶ M → N such that
f ○ r = h = idM − s ○ д. Now, as

f ○ r ○ f = f − s ○ д ○ f = f ○ idN

and the morphism f is injective, we have that r ○ f = idN , that is, that r is a retraction of f and,
then, that the condition (b) holds. his completes the proof.

Filtrations

5.6. If M is a module and t ∈ N, a ûltration of length t on M is a sequence

M0 ⊆ M1 ⊂ ⋯ ⊆ Mt

of submodules ofM such thatM0 = 0 andMt = M, and the quotientmodulesM1/M0, . . . ,Mt/Mt−1
are the subquotients of the ûltration.

70



5.7. Proposition. Let M and P be modules and let

M0 ⊆ M1 ⊂ ⋯ ⊆ Mt

be a ûltration of length t ∈ N of M. If every extension of O by one of the subquotients of this ûltration

splits, then every extension of P by M splits.

Proof. We proceed by induction on the length of the ûltration. If t = 1, then there is nothing to
prove, as the unique subquotient of the ûltration is then M1/M0 ≅ M, so the conclusion coincides
with the hypothesis.

Suppose next that t > 2. Since

M0 ⊆ M1 ⊂ ⋯ ⊆ Mt−1

is a ûltration of length t − 1 of Mt−1 and since every extension of P by one of its subquotients
splits —simply because its subquotients are some of the subquotients of the ûltration of M— the
inductive hypothesis tells us that every extension of P by Mt−1 splits.

We have a short exact sequence of the form

0 Mt−1 Mt Mt/Mt−1 0

and we know that every extension of P by Mt−1 or by Mt/Mt−1 splits, so Proposition 5.8 tells us
that every extension of P by Mt splits. As M = Mt , this proves what we want.

Suppose ûnally that t = 2. In that case, the ûltration amounts to a choice of a submodule M1
in M2 = M, and the hypothesis is that in the exact sequence

0 M1 M M/M1 0

every extension of P by either M1 or M/M1 splits. hat every extension of P by M splits is then a
consequence of Proposition 5.8 that we will now prove.

5.8. Proposition. Let Q be a module and let

0 N M P 0
f д

be a short exact sequence of modules. If every extension of Q by N or by P splits, then every extension

of Q by M splits.

Proof. Let us suppose that every extension of Q by N or by P splits, and let

0 M E Q 0u v (54)

be an extension of Q by M. Let us consider the map α = ( u
д ) ∶ M → E ⊕ P, let E′ be its cokernel

and let β = ( д′ u′ ) ∶ E⊕P → E′ be the canonical projection, so that we have a short exact sequence

0 M E ⊕ P E′ 0
α=(uд ) β=( д′ u′ )

(55)
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and, in particular,

д
′ ○ u + u

′ ○ д = 0. (56)

he morphism γ = ( v 0 ) ∶ E ⊕ P → Q is such that γ ○ α = ( v 0 ) ○ ( u
д ) = v ○ u = 0, so the universal

property of the cokernel tells us that it factors through E′, that is, that there exists a morphism
v′ ∶ E′ → Q such that γ = v′ ○ β, which means that

v
′ ○ д

′ = v (57)

and

v
′ ○ u

′ = 0. (58)

Let us check that

0 P E′ Q 0u′ v′ (59)

is an extension of Q by P.
• Suppose that p ∈ P is such that u′(p) = 0. It follows then that β( 0

p ) = 0 and the exactness
of (55) tells us that there is an m ∈ M such that

(0
p
) = α(n) = (u(n)

д(n)) .

Since u is an injective function, we see that n = 0, and therefore that p = д(n) = 0. his
means that the morphism u′ is injective.

• According to (58), we have v′ ○ u′ = 0. Suppose that e′ ∈ E′ is such that v′(e′) = 0. Since the
map β in (55) is surjective, there exist e ∈ E and p ∈ P such that

e
′ = β (e

p
) = д

′(e) + u
′(p). (60)

It follows from this that

0 = v
′(e′) = v

′(д′(e)) + v
′(u′(p)) = v(e),

in view of (57) and (58) and, since (54) is exact, that there exists anm ∈ M such that u(m) = e.
Now

u
′(p − д(m)) = u

′(p) − u
′(д(m))

= u
′(p) + д

′(u(m)) because of (56)

= u
′(p) + д

′(e) because of (60)

= e′

and this shows that e′ is in the image of u′. We thus see that the sequence (59) is exact at E′.
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• Finally, if q ∈ Q, from the exactness of the sequence (57) it follows that there exists an e ∈ E
such that v(e) = q and then, using (57), that

д = v(e) = v
′(д′(e))

is in the image of v′. he morphism v′ is thus surjective.
his completes the proof of exactness of the sequence (59), which is therefore an extension of Q
by P. he hypothesis then tells us that this extension splits and, according to Proposition 5.5, this
implies that there exists morphisms r ∶ E′ → P and s′ ∶ Q → E′ such that

r ○ u
′ = idP , (61)

v
′ ○ s = idQ

and

r ○ s = 0.

Let now E′′ be the kernel of r ○ д′ and let f ′ ∶ E′′ → E be the inclusion. Of course, we have that

r ○ д
′ ○ f ′ = 0. (62)

As

r ○ д
′ ○ u ○ f = −r ○ u

′ ○ д ○ f = 0,

there exists a morphism u′′ ∶ N → E′ such that

f
′ ○ u

′′ = u ○ f . (63)

We put v′′ = v ○ f ′ ∶ E′′ → Q and consider the sequence

0 N E′′ Q 0u′′ v′′ (64)

his is also an exact sequence:
• Since u and f are injective morphisms, the equality (63) implies immediately that u′′ is also

injective.
• Using that same equality (63) we see that

v
′′ ○ u

′′ = v ○ f ′ ○ u
′′ = v ○ u ○ f = 0.

Let e′′ ∈ E′′ be such that v′′(e′′) = v( f ′(e′′)) = 0. Since the sequence (54) is exact, there
exists an m ∈ M such that u(m) = f ′(e′′). We can now compute that

д(m) = r(u′(д(m))) because of (61)

= −r(д′(u(m)) because of (56)

= −r(д′( f ′(e′′)) in view of the choice of e′′

= 0 because of (62).
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Using the exactness of the short exact sequence that appears in the statement of the proposi-
tion we see that there exists an n ∈ N such that f (n) = m. Now

f
′(u′′(n)) = u( f (n)) = u(m) = f ′(e′′)

and since the morphism f ′ is injective this implies that u′′(n) = e′′. he sequence (64) is
therefore exact at E′′.

• Finally, let q ∈ Q. Since the morphism v is surjective, there is an e ∈ E such that v(e) = q,
and since the morphism д is surjective, an m ∈ M such that д(m) = r(д′(e)). As

r(д′(e − u(m)) = r(д′(e)) − r(д′(u(m)))
= r(д′(e)) − r(u′(д(m)))
= д(m) − д(m) = 0

the deûnition of E′′ and the morphism f ′ implies that there exists an e′′ ∈ E′′ such that
f ′(e′′) = e − u(m), and then

v
′′(e′′) = v( f ′(e′′)) = v(e) − v(u(m)) = q.

As the sequence (64) is an extension of Q by N , it is split by hypothesis and, as before, there exist
morphisms r′ ∶ E′′ → N and s′ ∶ Q → E′′ such that

r
′ ○ u

′′ = idN ,

v
′′ ○ s

′ = idQ

and

r
′ ○ s

′ = 0.

We now consider the sequence

0 N E′′ ⊕M E 0
ϕ=(−u

′′

f ) ψ=( f ′ u )
(65)

and —for the last time!— show that it is exact:
• Since themorphism u′′ is injective, it is clear that themorphism ϕ appearing here is injective.
• We have

ψ ○ ϕ = ( f ′ u) ○ (−u
′′

f
) = − f ′ ○ u

′′ + f ○ u = 0.

Let, on the other hand, e′′ ∈ E′′ and m ∈ M be such that ψ( e′′m ) = f ′(e′′) + u(m) = 0. As

v
′′(e′′) = v( f ′(e′′)) = −v(u(m)) = 0,
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the exactness of the sequence (64) implies that there exists an n ∈ N such that u′′(n) = −e′′,
and then

u( f (n)) = f ′(u′(n)) = f ′(−e′′) = u(m),

so that f (n) = m, because the morphism u is injective. It follows that ϕ(n) = ( e′′m ) and, as
a consequence of this, that the sequence (65) is exact at E′′ ⊕M.

• Finally, let e ∈ E. Since the morphism д is surjective, there exists an m ∈ M such that
д(m) = r(д′(e)), and then

r(д′(e−u(m))) = r(д′(e))−r(д′(u(m))) = д(m)−r(u′(д(m)) = д(m)− д(m) = 0,

so that there exists an e′′ ∈ E′′ such that f ′(e′′) = e − u(m). hen

ψ (e
′′

m
) = f ′(e′′) + u(m) = e .

his shows that the morphism ψ is surjective.
Let us now consider the morphism

w = ( f ○ r′ idM) ∶ E′′ ⊕M → M

Since w ○ ϕ = −r ○ r′ ○ u′′ + f = 0, the exactness of the sequence (65) implies that there exists a
morphism σ ∶ E → M such that w = σ ○ ψ, and this means that

( f ○ r′ idM) = (σ ○ f ′ σ ○ u)

and, in particular, idM = σ ○ u. We conclude in this way that the morphism σ is a retraction for
the map u appearing in the extension (55) and that the latter is therefore split. his proves the
proposition.

Projectivity

5.9. If C is a class of modules, we say that a module P is projective relative the class C if every
extension of P by a module belonging to C is split.

5.10. Projectivity is usually presented in a slightly diòerent but equivalent way:

Proposition. Let C be a class of modules. A module P is projective relative to the class C if and only

if for each short exact sequence

0 M N Q 0
f д

(66)

in which the module M belongs to C we have that

if ϕ ∶ P → Q is a morphism of modules, then there exists a morphism of modules

ϕ̄ ∶ P → N such that д ○ ϕ̄ = g.
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Proof. Let us suppose ûrst that P is projective relative to the class C , let us consider a short exact
sequence as in (66) with the the module M belonging to C and let ϕ ∶ P → Q be a morphism.

Let β = ( д ϕ ) ∶ N ⊕ P → Q, let E be the kernel of β and let α = ( ϕ′
д′ ) ∶ E → N ⊕ P be the

inclusion, so that we have a short exact sequence

0 E N ⊕ P Q 0
α=( ϕ

′

д′ ) β=( д ϕ )
(67)

and, in particular,

д ○ ϕ
′ + ϕ ○ д

′ = 0.

he map γ = ( f0 ) ∶ M → N ⊕ P is such that β ○ γ = д ○ f = 0, so that the universal property of the
kernel tells us that there exists a morphism f ′ ∶ M → E such that α ○ f ′ = γ, that is, such that

ϕ
′ ○ f ′ = f (68)

and

д
′ ○ f ′ = 0. (69)

Let us show that the sequence

0 M E P 0
f ′ д′

(70)

is exact.
• Since themorphism f is injective, the equality (68) implies at once that so is themorphism f ′.
• he equation (69) tells us that д′ ○ f ′ = 0. Suppose that e ∈ E is such that д′(e) = 0. Since

д(ϕ′(e)) = −ϕ(д′(e)) = 0, the exactness of the sequence (66) tells us that there exists an
m ∈ M such that f (m) = ϕ′(e). Now

α( f ′(m) − e) = (ϕ
′( f ′(m)) − ϕ′(e)

д′( f ′(m)) − д′(e)) = (0
0
)

and the morphism α is injective, so that f ′(m) = e.
• If p ∈ P, then —since the morphism д is surjective— there exists an n ∈ N such that

д(n) = −ϕ(p) and therefore

β (n
p
) = д(n) + ϕ(p) = 0.

he exactness of the sequence (67) implies then that there is an e ∈ E such that

(n
p
) = α(e) = (ϕ

′(e)
д′(e))

and, in particular, ϕ′(e) = p.
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Since M belongs to the class C , the extension (70) if P by M is split, and there exists a section
s ∶ P → E of д′, so that д′ ○ s = idP . Using this, we see at once that the morphism ϕ̄ = −ϕ′ ○ s

satisûes the desired condition:

д ○ ϕ̄ = д ○ (−ϕ′ ○ s) = −д ○ ϕ
′ ○ s = ϕ ○ д

′ ○ s = ϕ.

his shows that the condition in the proposition is necessary.
Let us now suppose that that condition is satisûed, and let us show that the module is then

projective relative to the class C . Suppose for this that

0 M E P 0
f д

(71)

is an extension of P by a module M belonging to the class C . By hypothesis, there exists a
morphism s ∶ P → E such that д ○ s = idP . his means precisely that s is a section of д, and then
the extension (71) is split. his shows that P is projective relative to the class C , as we wanted.

5.11. Proposition. Let C be a class of modules and let P be a module which is projective relative to C .

If

0 M E N 0
f д

is a short exact sequence of modules in C , then the sequence of vector spaces

0 homg(P,M) homg(P, E) homg(P,N) 0
f∗ д∗

is also exact.

Proof. Hacer

5.12. Proposition. Let C be a class of modules and let C̃ be the class of all modules which admit a

ûltration of ûnite length whose subquotients all belong to the class C . A module is projective relative

to the class C if and only if it is projective relative to the class C̃ .

Proof. he necessity of the condition is the content of Proposition 5.7 and its suõciency is evident
since C̃ ⊆ C .

77



§6. References

[Bae2002] John C. Baez,he octonions, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 2, 145–205, available at https:
//arxiv.org/abs/math/0105155. MR1886087 ↑6

[Cay1889] Arthur Cayley, A second memoir upon quantics, Collected Math. Papers, Vol. 2, Cambridge University
Press, New York, 1889, pp. 250–275. ↑54

[CS2003] John H. Conway and Derek A. Smith, On quaternions and octonions: their geometry, arithmetic, and
symmetry, A K Peters, Ltd., Natick, MA, 2003. MR1957212 ↑6

[Dyn1950] Eugene B. Dynkin, Some properties of the system of weights of a linear representation of a semisimple Lie
group, Doklady Akad. Nauk SSSR (N.S.) 71 (1950), 221–224 (Russian). MR0033813 ↑60

[Ell1895] Edwin Bayley Elliott, An Introduction to the Algebra of Quantics, Oxford University Press, 1895. ↑60

[Her1854] Charles Hermite, Sur la theorie des fonctions homogenes à deux indéterminées, Cambridge and Dublin
Mathematical Journal 9 (1854), 172–217, available at http://resolver.sub.uni-goettingen.de/
purl?PPN600493962. ↑55

[O’H1990] Kathleen M. O’Hara, Unimodality of Gaussian coeõcients: a constructive proof, J. Combin. heory Ser. A
53 (1990), no. 1, 29–52, DOI 10.1016/0097-3165(90)90018-R. MR1031611 ↑60

[Pro1982] Robert A. Proctor, Solution of two diõcult combinatorial problems with linear algebra, Amer.Math.Monthly
89 (1982), no. 10, 721–734, DOI 10.2307/2975833. MR683197 ↑60

[Sch1904] Issai Schur, Neue Begründung der heorie der Gruppencharaktere, Sitzungsberichte der Königlich Preussis-
chen Akademie der Wissenscha�en 1904 (1904), 406–432 (German). ↑26

[Slo2017] N. J. A. Sloane,he On-Line Encyclopedia of Integer Sequences (2017), http://oeis.org/. ↑51

[Sta1980] Richard P. Stanley, Unimodal sequences arising from Lie algebras, Combinatorics, representation theory
and statistical methods in groups, Lecture Notes in Pure and Appl. Math., vol. 57, Dekker, New York, 1980,
pp. 127–136, available at http://math.mit.edu/~rstan/pubs/pubfiles/41.pdf. MR588199 ↑60

[Sta2015] Richard P. Stanley, Catalan numbers, Cambridge University Press, New York, 2015. MR3467982 ↑48

[Syl1974] James Joseph Sylvester, Proof of the hitherto undemonstrated fundamental theory of invariants, Collected
Math. Papers, Vol. 3, Chelsea, New York, 1974. ↑54, 60

[Zei1989] Doron Zeilberger, Kathy O’Hara’s Constructive Proof of the Unimodality of the Gaussian Polynomials,
he American Mathematical Monthly 96 (1989), no. 7, 590-602, available at http://www.jstor.org/
stable/2325177. ↑60

78

https://arxiv.org/abs/math/0105155
https://arxiv.org/abs/math/0105155
http://www.ams.org/mathscinet-getitem?mr=1886087
http://www.ams.org/mathscinet-getitem?mr=1957212
http://www.ams.org/mathscinet-getitem?mr=0033813
http://resolver.sub.uni-goettingen.de/purl?PPN600493962
http://resolver.sub.uni-goettingen.de/purl?PPN600493962
http://www.ams.org/mathscinet-getitem?mr=1031611
http://www.ams.org/mathscinet-getitem?mr=683197
http://oeis.org/
http://math.mit.edu/~rstan/pubs/pubfiles/41.pdf
http://www.ams.org/mathscinet-getitem?mr=588199
http://www.ams.org/mathscinet-getitem?mr=3467982
http://www.jstor.org/stable/2325177
http://www.jstor.org/stable/2325177

	Lie algebras
	Lie algebras
	Examples

	Representations of Lie algebras
	Representations, modules and morphisms
	Examples and constructions

	The Lie algebra sl2(k) and its finite-dimensional representations
	Simple modules
	Schur's Lemma and the Casimir operator
	Semisimplicity
	Multiplicities
	Isotypic components
	Characters

	Some applications
	Tensor products and the Clebsch–Gordan formula
	Invariant bilinear forms
	Tensor powers
	Symmetric powers
	Gaussian polynomials
	Invariants of symmetric powers
	Exterior powers
	The Grothendieck ring

	Appendix: Extensions of modules
	Extensions
	Split extensions
	Filtrations
	Projectivity

	References

