
HYPERCOMPLEX NUMBERS. 77

ON HYPERCOMPLEX NUMBERS

By J. H. MACLAGAN WEDDERBURN.

(Communicated by W. BURNSIDE. )

[Received July 7th, 1907.—Read November 14th, 1907.]

INDEX OF TERMS.

Pago
Algebra . ... 79
A + B 79
A^B 80
AB 80
Complex 79
Composition series ... ... ... ... ... ... ... ... 83
Difference algebra 82
Difference series ... ... ... ... ... ... ... ... 83
Direct product 99
Direct sum ... ... ... ... ... ... ... ... ... 84
Idempotent ... ... ... ... ... ... ... ... ... 90
Identical equation ... ... ... ... ... ... ... ... 101
Index 87
Integral sub-algebra ... ... ... ... ... ... 84
Invariant... ... ... ... ... ... ... ... ... ... 81
Matric algebra ... ... ... ... ... ... ... ... ... 98
Modular sub-algebra ... ... ... ... ... ... ... ... 112
Modulus 84
Nilpotent 87
Order 79
Potent Algebra 89
Primitive ... ... ... ... ... ... ... 91
Principal idempotent element... ... ... ... ... 92
Quadrate algebra ... ... ... ... -. • ... ... ... 98
Reduced equation ... ... ... ... ... ... ... ... 101
Reducible 84

Reduct ion series ... ... ... ••• ••• ••• . . . ••• 86

Semi- invar iant ... ... ... ... ... . . . . . . . . . . . . 113

Semi-simple . . . ... ... ... ... ••• ••• ••• . . . 94

Simple 81

Supplement . . . ... ... ... ... ... -. . . . 79

Zero a lgebra 88

THE object of this paper is in the first place to set the theory of
hypercomplex numbers on a rational basis. The methods usually
employed in treating the parts of the subject here taken up are, as a
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rule, dependent on the theory of the characteristic equation, and are
for this reason often valid only for a particular field or class of fields.
Such, for instance, are the methods used by Cartan in his fundamental
and far-reaching memoir, Sur les groupes bilineaires et les systemes com-
plexes. It is true that the methods there used are often capable of
generalisation to any field ; but I do not think that this is by any means
always the case.

My object throughout has been to develop a treatment analogous to
"that Tvhich has been so successful in the theory of finite groups. An in-
strument towards this lay to hand in the calculus developed by Frobenius,
and used by him with great effect in the theory of groups. This calculus
is, with slight additions, equally applicable to the theory of hypercomplex
number-systems, or, as they will be called below, algebras. Although a
short account of this calculus has already been given, it was thought
advisable to give a more detailed account in the present paper.

A word or two on the nomenclature adopted will perhaps not be out
of place. At Professor Dickson's suggestion I have used the word algebra
as equivalent to Peirce's linear associative algebra which is too long for
convenient use. An algebra ^which is composed of only a part of the
elements (or numbers) of an algebra is called a sub-algebra of that algebra.
It is assumed throughout that a finite basis can be chosen for any algebi'a
which is under discussion, that is, we suppose that it is always possible to
find a finite number of elements of the algebra which are linearly inde-
pendent with regard to some given field, and are such that any other
number of the algebra can be linearly expressed in terms of them. This
excludes from the present paper an interesting class of algebras which I
hope to discuss in a subsequent communication.

Most of the results contained in the present paper have already been
given, chiefly by Cartan and Frobenius, for algebras whose coefficients lie
in the field of rational numbers; and it is probable that many of the
methods used by these authors are capable of direct generalisation to any
field. It is hoped, however, that the methods of the present paper are,
in themselves and apart from the novelty of the results, sufficiently inter-
esting to justify its publication.

The greater part of Sections 1, 2, 4-6 was read in the Mathematical
Seminar of the University of Chicago early in 1905, and owe much to
Professor Moore's helpful criticism.

A list of memoirs referred to is given at the end of the paper, and
these memoirs are quoted throughout by their number in this list.
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1. The Calculus of Complexes.

The definition of the term algebra or hypercomplex number-system is
now so well known that it is unnecessary to give here a formal set of
postulates.*

Let xlf x2, ..., xn be a set of elements which are linearly independent
in a given field F. The set of all elements of the form

X ~ 2/ £r%n
r=l

the £'s being any marks of F, is said to form an algebra, if

(i.) 2&

(ii.) The product of any two x's is linearly dependent on xlf x2, ..., xn

in JP, in such a way that the multiplication so defined is
associative.

(iii.) For any three elements x, y, z of the algebra

x (y-\rz) = xy-\-xz, (y-t-z) x = yx-\-zx.

The algebra is said to be of order n with respect to F. In what
follows the term " linearly independent " will always be understood to be
with respect to a given field F which is supposed to be constant through-
out but otherwise arbitrary.

The complex A = xx, x2, ..., xa is defined as the set of all quantities
linearly dependent on xx, x2, ..., xa. The greatest number of linearly
independent elements which can be simultaneously chosen, is called the
order of the complex.

If A and B are two complexes, the complex formed by all elements of
A and B and those linearly dependent on them, is called the sum of A
and Bt and is denoted by A+B. The operation of addition so defined is
evidently associative and commutative.

If a complex B is contained in a complex A, we write B < A or
A > B. Similarly, if x is an element of a complex A, we write x < A.
This amounts to representing a complex of order one by one of its ele-
ments, and will be found to lead to no confusion if certain obvious pre-
cautions are observed.

If B <.A, we can always find C such that B-\-C = A. C is called
the supplement of B with regard to A. It is obviously not uniquely

* The reader is referred to the following papers on this subject:—Dickson 2, 3.
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determined, but if B-\-C —B-\-C, any element of C can be expressed
as the sum of an element of B and an element of C. This is conveniently
denoted by writing C = C (mod B).

The elements common to two complexes evidently also form a complex.
The greatest complex common to A and B is denoted by A ^ B. Thus
the statement that A and B have no element in common is equivalent to
A ~ B = 0.

If A and B are any two complexes, and if x and // are any elements
of A and B respectively, the complex of elements of the form xy and those
linearly dependent on them, is called the product of A and B and is
written AB. For instance, if A = xlt x2... xa and B = ylf y2... y&, then

AB — ..., xry8, ... (?• = 1, 2, ..., a ; s = 1, 2, ..., 6).

.4.B of course is not in general the same as BA. The operation of
multiplication so defined is associative, and it is also distributive with
regard to addition.

The following is a summary of the laws of the calculus described
above:—

(i.) A+B = B+A.

(ii.) A+(B+O = (A+B)+C.
(iii.) A.BC — AB.C.

(iv.) A(B+®=AB+AC, (B+C)A=BA-t-CA.

(v.) A ~ (B - G) = (A ~ B) - C.

(vi.) A^B — B^A.

(vii.) A(B^O

Integral powers of a complex are denned by the methods usually
employed in hypercomplex numbers, e.g., A.Am = Am+1 = Am.A. A
necessary and sufi&cient condition that a complex A be an algebra is then
obviously A2 ̂  A.

The above definitions will perhaps be made clearer by a special
example. Consider the algebra (quaternions) formed by four units e0, elt

e2te3, where eres = -eter (r,s^O\

eoer = er and — e\ = e\ = e\ = e\ = — e0.

If Greek letters are used to denote marks of the given field, elements of
he form ^o+^i e i form a complex A = eQ, ex. If B = eL, e2, then
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A -NB = ex; we have also A2 = A and B2 = e0, eu e2, e3 = A. Again,

AB = B2 = A and B(A~B) = e0, c,,

but BA - £ 2 = E2

2. T7K? Theory of Invariant Sub-algebras.

A sub-complex B of a complex A, which is such that AB^.B and
^ J3, is called an invariant* sub-complex of A. If B is contained in

no other sub-complex of A which has this property, it is said to be
maximal. B is necessarily an algebra, since B2 ^ BA ^ B. An algebra
which has no invariant sub-complex is said to be simple A

The theory of invariant sub-algebras is of great importance, as will be
seen in the succeeding sections. As most of the present section has
already appeared elsewheret it is given here in a somewhat condensed
form.

THEOREM 1.—If AB <; B and A2 <; A, either BA = A or BA is an
invariant sub-algebra of A.

For BA.A^BA and A.BA < 5^4. This theorem is frequently
applied in the sequel.

We may also notice that B-\-BA is also an invariant sub-algebra,
unless it is identical with A.

THEOREM 2.—If B1 and B2 are invariant sub-algebras of an algebra
A, By-\-B2 is also an invariant sub-algebra, unless A =

For A (B^BJ = AB1+ABa < B.+B,,

COROLLARY.—If Bx is maximal, then either A =Bl-)-B2 or B.2 < Bx.
Hence, if Bx and B2 are two different maximal invariant sub-algebras, we
must necessarily have Bx-\-B2 = A.

THEOREM 3.—If B is an invariant sub-algebra of an algebra A, a new
algebra can be derived from A by regarding as identical those elements of
A which differ only by an element of B.§

• Molien (10) ; Frobenius (6), p. 523 ; Cartan (1), p. 57.
t Cartan (1), p. 57.
X Epsteen and Maclagan Wedderburn (5).
§ This fundamental theorem is due to Molien.

SEE. 2. VOL. 6. NO. 980.
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The set of elements defined by regarding as identical those elements
of A which, differ only by an element of B, is evidently closed under the
operations of addition and multiplication, and the distributive law holds.
The only law that is not evidently satisfied is the associative law for
multiplication. This law is shown to hold as follows.

Let A = B-\-C, and let elements of B and C be respectively denoted
by x and y with subscripts attached. If, then, yp, yq and yr are any
three elements of C,

(mod B),

since yPx,ir < B. Similarly,

y» yq-yr = (yOT+«,»,) yr = ym yr (mod B);

therefore, since Vp-Vql/r = M<z-#r,

we have ypyl[r — ynyr (mod B),

which shows that multiplication is associative.
The algebra defined in this way is called the difference algebra of A

and B, and, on the analogy of the symbolism used for the quotient group
in the theory of finite groups, it is conveniently denoted by {A—B).
{A —B) is said to accompany A and to be complementary* to B.

THEOREM 4.—If Bx and B2 are invariant sub-algebras of an algebra A,
and B1>B2, (A—B^j has an invariant sub-algebra lohich is simply
isomorphic with (Bl—B2) and conversely.

To show this, let A = Bx+C, BX^C = 0,

J31=-J59+D, 52~Z>=r0;

then A = B2-\-D-t-C.

If D' is the complex o£ {A—B2), which corresponds to D, we have

tf-BJD'^D',

since ( D + O D <-D (mod B2).

Similarly £ ' (A - £ 2 ) < D \

Now Dr is derived from D by regarding those elements as equal which
differ only by an element of B2. Hence

Molien (10), p. 92 ; Frobenius (6), p. 523.
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Conversely, if (A — BJ has an invariant sub-algebra D \ and if, as
before, D is a complex of A which corresponds to D', then since

AD^D (mod B2),

we have 4CB a +D)< B 2 +D, (B2+D)A < B 2 + D .

Hence B2-\-D is an invariant sub-algebra of A.

COROLLARY.—An immediate consequence of this theorem is that (A—B)
is simple, if B is a maximal invariant sub-algebra.

THEOREM 5.—If Bx and B2 are two different maximal invariant sub-
algebras of an algebra A, then D = Bx^-B2 is a maximal invariant
sub-algebra of both Bx and B2. Further (A—Bx) and {A—B^j are
simply isomorphic with (B2—D) and (Bx —D) respectively.

Let B1

where D ^ Cx = 0, D ̂  C2 = 0 ;

and therefore, since

D =BX^B2 and A = Bx+B2,

A = D+d-hCa, Cx ̂  C2 = 0.

If we denote simple isomorphism* by the symbol ~ , we have

(A —Bx) — Cx (mod Bx),

and (B2—D) ~ Cx (mod D), — Cx (mod Bx),

since Cx < 5 ^ and therefore any two elements of Cx which are equal
modulo Bx, are also equal modulo D. We have therefore

(A-BX)~(B2-D),

i.e., (B2—D) is simple since (A—Bx) is simple. Hence D is a maximal
invariant sub-algebra of B2. In exactly the same way it can be shown
that it is a maximal invariant sub-algebra of B2, and

If Ax, Az, ..., Ar is a series of algebras such that Ar is a maximal
invariant sub-algebra of Ar-\, the series is called a composition series of
Ax. The series {A}—A2), (A2—A3),...,Ur-\—Ar), ... is said to be a
difference series of Ax. An algebra can of course have many composition
series.

* I.e., isomorphism with regard both to addition and multiplication.
G 2
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Let (i.) AltAifA3,...t (ii.) A x , Bx, B.2, ...,

be two composition series of A for which A^=f=-Bx. Then, if A2 ^ Bx = D,

(iii.) Av A2, D, Dx, ..., (iv.) Ax, Blt D, Dlt ...,

where D, Dx, ... is a difference series for D, are two composition series
for Alf and, by Theorem 5, the corresponding differences are identical
apart from the order of their terms. If we now assume that all possible
difference series of the same algebra are equivalent for all algebras of
order less than the order of A, (i.) and (ii.) are respectively equivalent to
(iii.) and (iv.) and hence to each other. For algebras of one unit, there is
only one difference series possible, hence we have by induction the follow-
ing theorem.

THEOREM 6.—Any two difference series of the same algebra are
identical apart from the order of their terms.

If in forming the series Ax, A2, ... we make each term the largest sub-
algebra of the preceding algebra which is an invariant sub-algebra of Ax,
the corresponding difference series is called a principal difference series.
It can be shown by a method analogous to that used above, that the
principal series is also independent of the particular composition series
from which it is formed.

3. deducibility.

If an algebra A is expressible as the sum of two algebras Ax and A2>

which are such that AXA2 = 0 = A2AX, A is said to be reducible, and to
be the direct sum of Ax and A2. It was in this sense that the word sum
was first used by Scheffers. To avoid circumlocution, we shall in this
section call Ax an integral sub-algebra of A, if there is another sub-
algebra A2 such that A = Ax-\-A^ and AXA2 = 0 = A2AX. This term
is not used except in this section. An integral sub-algebra is always
invariant.

THEOREM 7.—If B is an invariant sub-algebra of A, and both A and
B have a modulus* then A is reducible.

Let A=B+C, B^C'=0,

* An algebra is said to have a modulus e, if e is an element such that ex = x = xe for every
element x of A.
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and let e and ex be the moduli of A and B respectively, then

C = (e-ex) C (e-ex) = C (mod B),

and (e—e1)B = O = B(e—e1),

since, if y < B, then ey = y = exy. Hence BC = 0 = GB; and C2=C,
since A2 = A. e — ex is evidently the modulus of C.

COUOLLARY.—If B is an integral*sub-algebra of A and both A and J5
have a modulus, A is expressible uniquely as the direct sum of B and an
algebra C. For e and ex being as above, we have

G = {e—ex) A (e~ex).

THEOREM 8.—If Ax and A2 are two different maximal integral sub-
algebras of A, then A =

Let A = x+x,

A2B.2 = 0 = B2A2,

Every element of A2 can be expressed in the form x-\-y, where x <AX

and y < Bx, and the complex of y's so denned forms a sub-algebra C2 of
Bx which does not vanish.

Similarly, any element of J52 can be expressed in the form x-\-y, the
?/'s denning a sub-algebra D2 of Bx. But

AXBX = BXAX = 0 = A2B% = B.2A«;

therefore C2R2 = 0 — R2C2.

Now A = A2-\-B2 and Ax ^ Bx = 0, hence we must have

Bx =

But, since Ax is maximal, Bx must be irreducible ; from which there
results D2

 = 0. Hence B2 is contained in Ax and A = Ax-\-A2. It
follows also that Bx is an integral sub-algebra of A%. For, if the elements
of A2 are expressed in the form x-\-y as before, the re's compose a sub-
algebra D of Ax, which is also a sub-algebra of A.2, since the y'a have
been shown to be elements of ^42. Since

A2 = D+Bx and Ax - Bx = 0,

we must evidently have D = A x ^ A.2.

If Ax, A2, ... be a series of algebras such that Ar is a maximal
integral sub-algebra of Ar-\, the series (Al—A.2)> (A2—A^, ... is said to



86 MB. J. H. MACLAGAN WEDDERBURN [NOV. 14,

form, a reduction series of Ax. It then follows exactly as in Theorem. 6,
that—

THEOREM. 9.—Any two reduction series of an algebra are identical
except as regards the order of their terms.*

There are evidently sub-algebras of the given algebra which are
isomorphic with the terms of the- reduction series, but, as Holder has
noticed, these sub-algebras are not in general uniquely denned. The
following, theorem is a slight extension of one by Schefferst dealing with
this point.

THEOREM 10.—An algebra A can be uniquely expressed as the direct
sum of irreducible algebras which have each a modulus, and an algebra-
which has no modulus.

Let A = B+C, BC = 0 = CB, B^C=0,

where B has a modulus ev and C has (1) no modulus, (2) no integral sub-
algebra which has a modulus. A has then no integral sub-algebra which
contains B, and at the same time has a modulus.

We can form an algebra A' by adjoining a modulus e' to the basis
of A ; and if ex is the modulus of B, and

C = C+ie'-eJ,

then A' = B+ie'-eJ C {e'-et)

Hence C, and therefore G, is unique for a given B by Theorem 7.
Suppose there is another algebra Bx satisfying the same conditions as B.
As in Theorem 8, we can express Bx as the direct sum of two algebras
JB2 < B and C2 < G, where B2 and C2 have both moduli, unless one is
zero, seeing that B has a modulus. Now

therefore CC2 = G2, and similarly C2 G = C2; and therefore C2 is an
integral sub-algebra of C which has a modulus, contrary to the conditions
previously laid down for C. Hence we must have G2 = 0, from which it
follows that B = Blt i.e., B is unique.

Let B = B1+Ba4-...+J5»> (1)

* Epsteen (4), p. 444.
t Scheffera (13).
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be two expressions of B as the direct sum of irreducible algebras. From
Theorem 9 we have m = n. Again, since B has a modulus, we have

Bp — BBPB = 2 BrBvB3 =
r>s

remembering tha t BrB'pBs (r =£ s) is contained in both Br and Bs, and
that Br "--* Bs = 0. But , since B'p is irreducible, BrB'pBr must vanish
except for some particular value rp of r which is necessarily different for
each value of p . We may therefore, by rearranging the terms, set rp =-p.
But BPB'PBP = Bp, since Bp is invariant. Hence Bp = B'p.

4. Nilpotent Algebras.

I t was mentioned in § 1 tha t a necessary and sufficient condition, tha t
a complex A shall be an algebra, is tha t A 2 ^ A . HA has a modulus,
i.e., an element e such that ex = x = xe for any element x of A, we

must evidently have A2 = .4. In general, since we are dealing only with
algebras which have a finite basis, we must have Aa+l = Aa for some
integer a. The smallest integer a for which this is the case is called the
index* of the algebra. For instance, in the algebra whose multiplication
table is

we find A2 = e.2 — A3. Hence its index is 2.

It may, of course, happen that some power of A vanishes as in the
algebra

e2 0

- . ° °
where Az = 0.

If for some integer a, Aa = 0, A is said to be nilpotent. Nilpotent
algebras are of great importance in the discussion of the structure of
algebras.

THEOREM 11.—If a is the index of A, the elements of A can be divided
into a—1 complexes Bv B2, ..., -Ba-i, such that

BpBq ^ Bp+y+Bp+q+i+.-.+B^-i,

* The index might also be suitably defined as the least integer a for which (A")* = A".
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i.e., such that the product of two elements, belonging to complexes icith
subscripts p and q respectively, lies entirely in the sum of the complexes
with subscripts greater than p-\-q—1.

For let A ^

where A* =.B,+-A*+\ A-*=B-i;

then. Bp Bq < A*A? < A**9,

which proves the theorem.

Tbis theorem, is evidently considerably stronger than the similar
theorems enunciated by Scheffers* and others.

COROLLARY.—Since A =B1-\~A2, we have on squaring

A2 = B*+-B1A? 2

hence B\ —B% (mod A3),

and similarly- B" =Bn (mod An+1).

From, this we readily derive the interesting result

A = 2 i

If A* — 0 is zero, A is. said to be generated by Bx. In this case A ia
reducible if B1 is reducible^ and conversely.

If a is the index: of a nilpotent algebra, we have Aa~l =f=0, Aa = 0;
and hence the product of any-element of A and any element of A*'1 is
zero. Thi& is a simple= proof of a theorem, by Cartant to the effect that
there is at least one element in. a nilpotent algebra whose product with
any other element is zero. It must be noticed, however, the above defini-
tion of a nilpotent algebra is not verbally identical with Cartan's. The
identity of the two definitions will be shown in the next section.

An algebra in which- the product of any two elements is zero, may be
called a zero-algebra. For example, if A2 < A, A2 is an invariant sub-
algebra of A, and (A— A2) is a zero algebra. Let A = B-\-A2, where

• B = 2/i> Viy • • • » 2 / m , A 2 = x v x 2 , ..., x n ,

and m+n is the order of A. A' =y2, y3, ..., ym, xu ..., xn is evidently

• Scheffera (12).
\ Cartan(l), p. 31.
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an invariant sub-algebra of A, such that (A—A') is a zero algebra of
order 1. This gives the following theorem regarding the difference series
of such an algebra.

THEOREM 12.—If a is the index of an algebra A, and if the difference
of the orders of A and Aa is n, the difference series of A can be so
arranged that the first n terms are zero algebras of order 1.

The following theorem also simplifies the study of the difference series
considerably.

THEOREM 13.—If N is a maximal nilpotent invariant sub-algebra of
an algebra A, all other nilpotent invariant sub-algebras of A are con-
tained in N.

Let Nx be any nilpotent; invariant sub-algebra of A, then, by
Theorem 2, JV+JVi is also an invariant sub-algebra of A. It is, however,
nilpotent. For, if N2 = N ^ Nlt then

since NNX < N2 and NtN < JV2. Similarly,

whence, if a is greater than the indices of N and Nx,

(N+Nx)
a < No.

But No, is nilpotent and therefore also N-\-Nv Hence, since N is
maximal, we must have Nx ^ N.

An immediate deduction from this theorem is that {A—N) has no
nilpotent sub-algebra. This theorem is very important, its importance
lying in the fact that, in studying the difference series, it enables us to
confine our attention to algebras which have no nilpotent invariant sub-
algebra. Such algebras are called semi-simple.

5. Potent Algebras.

An algebra which is not nilpotent is called a potent algebra. If the
index of a potent algebra is a, the index of Aa is 1. It is therefore sufficient
in many investigations to consider only algebras with unit index.

Let A be an algebra such that A2 = A. There will in general be
some complex C < A, such that AC = A. In fact, if A has a modulus e,
it is possible to find elements x, such that Ax = A. Let us suppose,
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however, that Axx<A for every xx< A. Again, suppose that Axxx2<Axx

for every x2 < Axx, and so on. We thus derive a series of algebras each
one containing the preceding one, and, as we are dealing with algebras
with a finite basis, this process must terminate at some stage. This may
happen in either of two ways. After, say r—1 steps, we must find either

AxxXz... xr-iXT = 0 (1)

for every xr < Axxx.2... £,—i, or

. xr_i (2)

for some xr <Axxx%... z r - i . In the first case, if B = Axxx^.... xr^\A,
then

B2 < (Axxx2 ... xr-if A = 0,

and AB < B, BA < B, i.e., B is an invariant sub-algebra of A, unless
B = 0 when ^a^. . . zr_i is an invariant sub-algebra of 4 . The first case
then cannot arise if A is simple.

In the second case, if A' = Axx ... xr-\, there is an element x, such
that A'x = A'. Hence every element of A' can be put in the form
y = zx. Here z is unique. For were zx = z'x, then (z—z')x = 0, and
the order* of the basis of A'x would be less than the order of the basis
of A'. In particular we have x = yx, hence yx = y2x and therefore
y = if. Such an element is said to be idempotent, and the result we have
obtained may be stated in the form that a simple algebra always contains
an idempotent element. By means of this result we can now establish
the following important theorem:—

THEOREM 14.—Every potent algebra contains an idempotent element.

For, let B be a maximal invariant sub-algebra of Aa, where Aa+1 =Aa.
{Aa—B) is simple and has 1 as its index.! A has therefore a non-
nilpotent element x, namely any element which corresponds to an idem-
potent element of the simple algebra (A*—B) Now for some value of n,
we must have ^ 2 , l + 1 _ ^

for otherwise we should have

A >Ax> Ax3> ... > Ax11 • > Ax2ll+1 > ...,

* In other words, if eu e3, ..., ea ia a basis of A, eyx, e^v, ..., eax are necessarily indepen-
dent if Ax = A.

t Since, if A" = B + C, then B + C- = A°-> = A' => B + C, and therefore G - C3 (mod £) .
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which as before is impossible. Axn, and a fortiori A, must therefore
contain an idempotent element.*

The converse of this theorem is that an algebra, every one of whose
elements is nilpotent, is itself nilpotent. This shows that the definition
of a nilpotent algebra which was given in § 4, is identical with the one
given by Cartan and others.

COROLLARY.—If x is nilpotent, then Ax < A.

The following extension of a theorem due to Peirce,+ is easily deduced
from the results obtained above.

THEOREM 15.—If an algebra A possesses only one idempotent element e,
every element which does not possess an inverse* with respect to e, is
nilpotent.

This is shown as follows. If for a given x there is no y, such that
xy = e, the same is true of all elements of the form xz. For were
xzz' = e, it would suffice to put y — zz'. It follows that e is not con-
tained in xA, which is therefore nilpotent by Theorem 14. Hence
xn = 0 for some integer n.

An obvious corollary to this theorem is that if an algebra A contains
only one idempotent element e and no nilpotent element, then eveiy
element possesses an inverse with respeet to e. Further, e is the moduLus
of A. For, since Ae =^A, every elementx can be put in the form x = ye,
and hence xe = x. Similarly ex = x. Such an algebra is said to be
primitive. Also, if e is the only idempotent element of an algebra A,
which is contained in eAe, e is said to be a primitive idempotent element
oiA.

THEOREM 16.—Every algebra A, which does not possess a modulus, has
a nilpotent invariant sub-algebra.

If A is nilpotent, the theorem is obvious, and it may therefore be
assumed that this is not the case. Under this assumption A has at least
one idempotent element ex. If Aex<, A., there must be elements x such
that xex = 0. All such elements form a sub-algebra Bx of A ; because, if
xxex = 0, x2ex = 0, then {xx-\-x2) ex = 0 and xxx^ex = 0. Let A =-Bx-\-C,

* In most proofs of this theorem, the idempotent element which is found, is in general
irrational. This objection does not apply to the proof given by Hawkes (7), p. 320.

t Peirce(ll), p. 112.
X x is said to possess an inverse with respect to e, if there exist elements xl and xif such that

xxt = e = x2x.
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wher& Bx ^ G — 0. 0 can be chosen so that Gel = G. For

Cex < C (mod Bx),

and, if Gex < G (mod Bx),

there would be an element x of C such that a;̂  < i?, which is impossible
since Bxex=r0 and xex=fc0. Cex=^Aex can therefore take the place of
C, and Cex. ex = C^ .

We have then .4 = Bx+Aex, B1e1 = 0, (1)

and similarly .4 = .Z^-t-e!^, ^ £ 2 = 0. (2)

From (1) follows exA = e1B1+e1Ae1, (3)

and, from (2), Aex = J5ae1+e1-4e1. (-1)

Now ex J3X ^ B.2e2 — 0> since . B ^ ! = 0 and ^ ^ = 0, hence

and if 5 =• ^ ^ B.2, we find similarly that

Bx = JB+^Bj, jBa

Hence, from (2) and (3),

A = B-j-e1B1+B2e2-\-e1Ae1.

If B is not nilpotent, it contains an idempotent element e2, such that
exe2 = 0 = e26i, ei-f-&2 is then also idempotent and may take the place of
ex in the above discussion.

Again, if ex is not primitive, exAex can be broken up in the same
manner as A, and so, by repeated application of this process, A can be
expressed in the form

A = B+eBx-\-B2e-\-eAe

where£0 = 0, B1 = B+eBl, B.2 = B+B»e, e = Hep, ep&i=0 (p=£q),

and ep (p = 1, 2, ..., r) are primitive idempotent elements of A. This
form is due to Peirce.* e is called a, principal idempotent of A. If A has
a modulus, it is evidently the only principal idempotent element. Hence
two principal idempotent elements differ only by an element of the
maximal invariant nilpotent sub-algebra.

• Peirce (11), p . 109.
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If A has a modulus e', Bx and B.2 are zero, and e = e'. For

(e'—e)2 = e'—e and (e'—e) e = 0 = e {e' — e).

Hence e'—e < B, and is therefore zero.

In (5), BXB2 is nilpotent. For, from (5),

BXA = BXB2 — AB.2,

and B.2BX < B, Ba = 0,

hence (BxA)a+l ^BxB
aB2 = 0.

But ABXA=A.AB2^AB2^BXA,

BXA.A ^BXA.

Hence BXA = BXB.2 is a nilpotent invariant sub-algebra of A. If
BB = 0, then 2 _

(iJ + ij^ i5^> < B

A (B!+Ba) < ^ < JBx

and B±+B2 =f= 0,

unless A has a modulus. Hence, if an algebra has no modulus, it has a
nilpotent invariant sub-algebra.

COROLLARY 1.—Bx and B.2 are also nilpotent. For suppose y'2 = ij,
y <BX. y can be expressed in the form y=yx-t-y.2, where yx<B,
yt < eBx, and therefore y\ = yxy2 = 0. It follows, then, that

y\ = (y—yif = y—yy*—yiy+yl

= yi-\-yi—y^ji'

But eBi^ ;< ei^! and .B2 ̂  .B ; hence we must have

which is impossible, since B, and therefore ^ is nilpotent. Hence Bx and
B2 are nilpotent.

COROLLARY 2.—Unless eBxB.2e = 0, it is a nilpotent invariant sub-
algebra of eAe.

COROLLARY 8.—If the index of A is 1, then B = B.2eBx, and con-
versely. For from A2 — A we deduce

B = B2+B«eBx = B2+C (say).

If Bn = 0, then B = Bn-1C+Bn-*C+... + C.
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But BC < C ; hence B = C, and

A = B2 eBx+eBx+B% e +eA e.

If A has no modulus, it is always possible to add one to the algebra.
Let e' be the added modulus and let e0 = e'—e; then

A = e'Ae' = e^BeQ-^eB^Q-^-eaB^e-^eAe.

This form will be of use later.

Algebras which have no nilpotent invariant sub-algebra form a very
important class. Such algebras are called semi-simple.* A semi-simple
algebra always has a modulus.

THEOREM 17.—A semi-simple algebra, which is not simple, is reducible.

Let A be the algebra and B an invariant sub-algebra. A, having no
nilpotent invariant sub-algebra, has a modulus. Hence AB = B = BA.
If B has no modulus, it has a nilpotent invariant sub-algebra N. BNB
is a nilpotent invariant sub-algebra of A and is therefore zero, seeing that
A is semi-simple. Also ANA is an invariant sub-algebra of A which is
contained in B, and, since A has a modulus, it is not zero unless N is
zero. Now, since ANA <; B, we have

(ANA)3 = ANA.N.ANA < BNB = 0.

Hence N = 0 and B has a modulus, and, by Theorem 13, A is reducible.
It follows immediately that A can be expressed in the form

A = Ax+A2+...+An,

where AvAq = 0 = AqAp (p^fcq)

and Ap (p = 1, 2, ..., n)

are simple. A is therefore the direct sum of Alt A2,..., An.

THEOREM 18.—If e is an idempotent element of a semi-simple algebra
A, then eAe is semi-simple.

If eAe is not semi-simple, it must necessarily have a nilpotent sub-
algebra N. Then ANA is an invariant sub-algebra of A which is not
zero. Also ANA=j=A, since

eANAe = eAeNeAe = N < eAe.

Hence, if A is simple the theorem is proved. The main theorem can now
be made to depend on this particular case, since any semi-simple algebra

* Cartan (1), p. 57.
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can be expressed as the direct, sum. of simple algebras. The following
proof is more direct and also more comprehensive* Let e' be the modulus
of A. If, then, e1 = e'—e, we have ee1 =^0 —exe', and therefore

(1)

We have also A = eAe-\-e1Ae-\-eAe1-\-e1Ae. (2)

From (1) and (2), it follows that

A NA =• eA eNeA e -j-eA eNeA e1-\-e1A eNeA e-\-exA eNeA ex

and (ANA)2 = AN AN A — A (N2+N2Ae)

= N2-\-e1AN''-\-N2Ae1+e1AN2Ae1 =

Similarly (ANA)3 = AN3A,

and so on. Hence ANA is nilpotent and therefore 1^=0 , since A is
semi-simple.

COROLLARY.—If in the above theorem, e is primitive, eAc is also
primitive.

6. The Classification of Potent Algebras.

This section is chiefly concerned with the classification of semi-simple
algebras. The result is, however, incomplete in so far as the classification
is given in terms of primitive algebras which have themselves not yet
been classified. At the same time, a considerable step is made towards
the classification of non-nilpotent algebras in general.

Let et> (p = 1, 2, ..., n) be a set of primitive idempotent elements of

A, which are so chosen that e = 2 ep is a principal idempotent element

of A, and eveq = 0 (p =£ q). This was shown to be possible in the proof
of Theorem 16, where it was also shown that A can be expressed in the

A = B-{-eBl-\-B2e-\-eAe, eAe = 2 evAeq.

The algebras e.pAeq occur so frequently in the sequel that the following
notation is convenient, viz.,

eitAe,j = A})q, (ep-\-e,j) A \er-\-ea) = Ap+IJtr+s,

and so on. I t is also convenient to denote elements of Am by x-pq, z/M, . . . .
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THEOREM 19.—If A is simple, Am =fc 0 for any p and q ; and if semi-
simple, hut not simple, then An = 0 entails A,IP = 0.

Suppose that Am = 0, then

A P+'l. V + Q Aqp — \Aj,p-J- Aqp-\-Aqqj Aqp ^ Aqp,

A A ^ A
~*'WaP + 'l,P + 'l ^5: 'L'W

Hence A,n> is a nilpotent invariant sub-algebra of Ar+f]tP+q, and is there-
fore zero by Theorem 18. This proves the second part of the theorem.
To prove the first part, we observe that, if e' = ep-\-eq, App is an invariant
sub-algebra of A)l+,Jil>+ll = e'Ae' when APH = 0 = Aw. But AAVPA =f=- A,
since*

e'AAPl,Ae' = e'AerAppe'Ae' < Avv < Ap+qiP+(l;
and therefore AAjipA is an invariant sub-algebra of A. Hence we cannot
have Am = 0, if A is simple.

THEOREM 20.—If A is simple, then ApqAqr = Apn and the order of An

is tlie same for all values of p and qA

Jjet -A. =: Ap/jAfjP*

From the definition of App, we have

A == ep A. ep ^^ -"-l^p •

But A'AJV^A' and APPA'^A'.

Therefore, either A' is identical with App or it is zero. If it is zero, then
also AqpAm = 0. For, were AqpAm = Aqq, we.should have

A"vl = Aqp. AmA,lv.Am = 0,

which is impossible, since Aqq is primitive. If A' =• 0, then

ApqAp + qtP + q ^ Apq,

which is impossible by Theorem 18, since A is simple and An is nilpotent.

Hence ApqAqp = App. (1)

Again, since

(App-\- Apq~\- A,,p-\- Aqq) = Ap+qiP + q = Ap + q^ + q = App~\-Apq-\~ Aqp-'c Aqq ,

* Cf. the proof of Theorem 18.
t Cartaii (1), p. 50.
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on multiplying on the left by ep and on the right by eq, we get

A A -l~A A — A

xXippiipq^^ n-pq-fXqq —Ji.pq.

-DUE AppApq — /Lpj /Lqp Apq Jl.pqJi.qq

by (1); hence AppAn = Apq = ApqAqq, (2)
and, finally, from (1) and (2),

It will now be shown that, if xm and xqr are any elements, not zero, of
Am and A^ respectively, then XpqXqr =/= 0.

If XpqXqr = 0, then XpqXqrArq = 0. But xqrArq <^ Aqq, which is primi-
tive ; and therefore for any* yrq such that xqryrq =£ 0, there is an xqqt

such that xqryrqXqq = eq. Hence, as xm^0, xpqxqrArq = 0 entails
x^Arq = 0. It follows for any xrq that XqrXrq = 0 ; therefore, as above,
xrqAqr = 0 ; and, as this is true for any xrq, we must have ArqAqT = 0 in
contradiction to the first part of the theorem. Hence XpqXqr =£ 0 for any
xPq and xqr, and, since xpqAqr ^ Aj»- and xqpApr <; ^ 7 r , we have evidently
xpqAqr — Apr, from which the second part of the theorem follows imme-
diately.

COROLLARY.—For any xpq =jfc 0, there is an xqp such that xpqxIJ(l =• ep.
This is evident from the relation xpqAqp =• App.

THEOREM 21.—If A is simple, it is possible to find a set of n2 elements
ePq (p, q = 1, 2, ..., n) such that epqeqr = ê r and erqera = 0 (q =£r) ; and
e = 1,err is the modulus of A A

Let epp = ev (p = 1, 2, ..., n). By the corollary to the previous
theorem, we can find for any Xpq ^ 0 an xqp such that xpqxqp = e^.
Forming the square of xqpxvq, we get

— X
qp

therefore, since eq is primitive,

It is therefore possible to find an algebra of order 4 which has the required
laws of combination. Suppose that m2 elements em (p, q = 1, 2, ..., m)

* As previously stated, xpq, ypq, ... will be used to denote elements of Apq.
t Molien (10), p. 124 ; Cartan (1), p. 46 ; Frobenius (6), p. 527 ; Shaw (14), p. 275.

8BU. 2. vor,. 6. NO. 9S1. H
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have been found which satisfy these laws, and let ei(W+i be any element
of Ai>m+i. There is then an element em+1,i of -4m+i, 1 such that

Together with the previous w2 elements and <Wi,»i+i> these form an
algebra of {m-\-Xf elements satisfying the given laws; for

and similarly e3)> TO+1 em+lj r = epr -

By induction it is therefore possible to find n2 such elements.

This form of algebra we shall call a simple or quadrate matric algebra
of order n2.* When a semi-simple algebra is expressed as the sum of
simple matric algebras, it is said to be a matric algebra.

In accordance with the corollary of Theorem 20, we have

This gives a 1, 1-correspondence between the elements of the algebras Avv

and An, which is obviously preserved under the operations of addition and
multiplication—i.e., the two algebras are simply isomorphic. More

Apq — GplAneiq,

which establishes a 1, 1-relation between the elements of An and An.
Let xu be any element of An, and let the element xpq of An, which is
associated with it by the above relation, be denoted by

xpg== i ^ l i ' ^PQ r •

Then xn = \xn, en) = epixneiq.

Similarly, if yrs < Ars, we may write

if yu corresponds to yrs. This form of relation is preserved under addi-
tion and multiplication, since

ls = \xnyn, eme,ir\ =

* The algebra is also said to be of degree w. Cartan calls this type of algebra a quaternion.
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This result can be expressed as follows. If C is an algebra simply iso-
morphic with Au, and D is a simple matric algebra of order n2; and if
every element of C is commutative with every element of D; then
A = CD. In general, if G and D are any algebras such that every
element of the one is commutative with every element of the other, and if
the order of the complex A •= CD is the product of the orders of C and D,
then A is an algebra which is called the direct product* of G and D.
The final result can therefore be stated as follows.

THEOREM 22.—Any simple algebra can be expressed as the direct pro-
duct of a primitive algebra and a simple matric algebra A

Since semi-simple algebras can be reduced to the direct sum of several
simple algebras, Theorem 22 amounts to a determination of the form of
all semi-simple algebras.

THEOREM 23.—The direct product A of a primitive algebra B and a
quadrate matric algebra G is simple; and any element which is commu-
tative with every other element of A is an element of B.

Let the basis of G be en (p, q = 1, 2, ..., n), ep = epp (p = 1, 2, . . . , n)
being a primitive set of idempotent elements. If D is any invariant sub-
algebra, then epp De,n ^ D, and is not zero for some value of p and q
unless D = 0. But every element of eppDe,n is the product of em and an
element of B ; and if x < B, then Bx = B = xB. Hence BelH ^ D.

We have, however,

for every value of s and r. This gives A -=• D, which proves the first part
of the theorem.

* Scheffers used the term ' ' product'' in this sense. As this term is used in this paper in
a different sense, I employ the term "direct product," which is used in the theory of groups in
a similar sense. Cf. § 11.

t Cartan (1), p. 67, gives this form of a simple algebra in the field of all real numbers,
apparently without observing that his result is capable of this simple description.

The theorem may also be proved as follows. If x < A, then

x = Saw = SeDxe,,,

xpq = epq^CrpXe^r = 2 erp xeljr. epq,
r r

since e,v xeqr = erp xM eqr.

This method is fully developed in (9), where it is shown that, if B is any matric sub-algebra
of A, which has the same modulus as A, then A can be expressed as the direct product of B and
some other algebra 0.

H 2
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Again, if x is any element which is commutative with every element
of Ar then x =• E xnen, where xrs < B. But emx = xem ; hence

— £6p,f — e^q x —

therefore xn = 0 (r =£= s) and x]vp = xqq, i.e., x is an element of B.

This theorem is the converse of the preceding one.

COROLLARY.—The only element of a quadrate matric algebra which is
commutative with every other element is the modulus.

THEOREM 24.—If N is a maximal nilpotent invariant sub-algebra of
an algebra A which possesses a modulus, and if (A—N) is simple, then A
can be expressed as the direct product of a simple matric algebra and an
algebra which contains only one idempotent element.

From Theorem 22, we have

ApqAqp = App (mod N).

4NOW App A pq Aqp ^^ ApqAqp, ApqAqp App ^ ^ ApqAqp.

Hence, as any invariant sub-algebra of App is necessarily nilpotent, we
must have AvqA,lp = App. In particular, A%P = APP, and since, when
p •=. q, the proof does not assume that ep is primitive, we also have

A2 — A
•"•p+q.p+'i — -"-j'+g, p+Q '

It may now be proved, as in Theorem 20, that AvqAqr = Apr. If xm is an
element of An which is not contained in Npq, then xmAqr = Apr. The
proof of this is almost exactly as it is given in the proof of Theorem 20,
and it is therefore only necessary to give it very briefly. If xmAqr < Apr,
there must be some xqr such that XpqXqr = 0. But, by Theorem 20, there
is an xqv such that xqq = xQpXpq is not zero, and therefore has an inverse,
ij,Vi, with respect to eq. Hence

Xqr 6qXqT yqqXqqXqr
 = = yqqXqpXpqX,[r U ',

and therefore xpqAqr = Apr. An important consequence of this is that,
for any xvq which is not contained in Nm, there is an xqp such that

— ep

It can now be proved, exactly as in Theorems 21 and 22, that A con-
tains a simple matric sub-algebra, and that it can be expressed as the
direct product of this matric algebra and an algebra containing only one
idempotent element.

It is possible at this point to state Cartan's main theorem regarding
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the classification of algebras in the field of ordinary complex or real
numbers, if use is made of the fact that, in the latter field, quaternions is
the only primitive algebra; and in the former the algebra of one idem-
potent unit. The result for an arbitrary field seems much more difficult
to obtain, the difficulties centring round the proof of the theorem that an
algebra with only one idempotent element can be expressed as the sum of
a primitive and a nilpotent algebra ; a theorem which is obvious in the
above two special cases. The proof given in the next section is rather
long, but much additional information is obtained in the course of the
work.

7. The Identical Equation.

This section is not intended as a development of the theory of the
identical equation, and so only those points are dealt with which are of
importance from our present point of view.

If x is any element of an algebra A, which has a finite basis, the
algebra generated by x, being a sub-algebra of A, must itself have a finite
basis, x therefore satisfies a relation of the form

xll-\-a1x'l-1 + ...+an-ix-\~ati = 0, (1)

where ax, a2, ..., a«. are marks of the given field, and alt is to be taken as
zero, if the algebra has no modulus, and otherwise as the product of the
modulus and a mark of the field. If xv x2, ..., xa is a basis of A and
x = 2(-ra:r, the r-th power of x can be expressed in the form

x' = ZtfV
where £f} is a rational integral function of the £'s; hence not more than a
powers of x can be independent, and a; satisfies an equation of the form (1),
where av a2, ..., an are now rational integral functions of the f's. This
equation being an identity in the £'s, there must be an equation of this
form of lowest degree which is satisfied by x whatever values are assigned
to the £'s. This equation is called the identical or characteristic equation
of the algebra. For particular values of the f's, x may satisfy an equation
of lower degree; but there is evidently at least one x which, satisfies no
equation of lower degree. The equation of lowest degree satisfied by a
particular x has been called by Frobenius the reduced equation of that
element.

The characteristic of the identical equation will be denoted by f(x), or
by fx(x) where it is desirable to emphasise the fact that the coefficients
are functions of x.
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If N is the maximal nilpotent invariant sub-algebra of A, a being its
index, and if g(x) = 0 is the identical equation of (A—N), then g(x) < N.
if x<A, and hence \g(x)\«=0.

\g(x)}a is therefore divisible by f(x). It may, of course, happen that
g (aO = /(«)» as in the algebra

^1 ^2 ^3 ^4

6! 0 03 0

0 e2 0 e4

0 e3 0 0

e, 0 0 0

where z2—(&+&) a;+& £2 = 0,

In a primitive algebra, f(x) is irreducible ; for otherwise the product
of two rational elements would be zero. An immediate consequence of
this is that, if the given field is so extended that every equation is
soluble, the only primitive algebra in the extended field is the algebra of
one unit, e = e2.

THEOREM 25.—If A is an algebra which is semi-simple in a given
field F, and if F' is another field containing F, then A is also semi-
simple in F'.*

Since a semi-simple algebra is the direct sum of a number of simple
algebras and a simple algebra can be expressed as the direct product of
a matric and a primitive algebra, it is sufficient to consider the latter
type of algebra.

Let the identical equation of the primitive algebra A be

f(x) = xn+a1x
n-1+...+aa = 0. (1)

If A has a nilpotent invariant sub-algebra N in the extended field, the
identical equation of (A—N) is also f(x) = 0, since the latter has no
multiple roots. Hence, if z is any element of N and x any element
of A, x and x-\-z have the same identical equation, since they are equal
modulo N.

* It is here assumed that rational elements which are independent in F are also in-
dependent in F.
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a

Let z = ~2£rxr be any element of N, the x'a forming a rational

basis for A. Then

Z ^= XSZ ZXS — 2s £r\XsXr XrXg) z=. 2s£rXr,

where x'.r (?• = 1, 2, ..., a) are rational and x's = 0. Similarly

Z" = x'tZ' — z'x = *L£r{x Xr — XrXt) = Y,£rx",

where there are now at most a—2 terms under the summation sign.
This process may be continued till each of the terms a£P) under the sum-
mation sign after the p-th operation is commutative with z^\ i.e.,
Z(P+I) _ o ^ being commutative with each of x^ (r = 1, 2, ..., a), is
also commutative with every element of the algebra generated by them.
Let this algebra be denoted by B and its identical equation by f(x) = 0.
Since X\ , x£, ... are rational, B has a rational basis and is therefore
primitive in F. There is then a rational element x whose identical equa-
tion, with regard to B, is also its reduced equation, and a non-zero element
z of B, which is also an element of N, such that xz = zx. Since z is
nilpotent, we can obviously assume z2 = 0. As before, f{x+z) = 0 :
hence, on expanding, we get

0 = f{z+e) = f{x)+f{x)z = f(x)z.

But, seeing that B is primitive, f(x), being of lower degree than f(x),
has an inverse ; hence z = 0, i.e., A has no nilpotent invariant sub-
algebra and is therefore semi-simple in F'.

THEOREM 26.—If an algebra is rational in a field F and F' is any
field containing F; and if B is the algebra composed of all elements
of A which are, in F', commutative with every element of a sub-complex
G of A ; then, if a rational basis can be chosen for C every element of
which possesses an inverse, B is also rational in F.

Let xx, x2, ..., xa be a rational basis of A, then an arbitrary element
y of B can be expressed in the form y = 5)£,.#,., where £> (r = 1, 2,. . . , a)
are marks of F'. If b is the order of B, at least b of the £'s are linearly
independent in F. We may therefore suppose that the first n (n ̂  h)
of the £'s are linearly independent in F and that the remainder are
zero.

Let x be any rational element of C which has an inverse.
xxx, xx2, ..., xxa are then linearly independent and so also are
x1x, x2x, ..., xax ; hence

a
xrx = 2j7r»zz, (r = 1, 2, ..., a),
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the 17's being rational. Since xy = yx, we must have

a a
0 = xy —yx — 2 (&—2»br £) xxr;

a

hence- £.— X %,.£ = 0 (r = 1, 2, ..., n).
s= l

But tha £'a are linearly independent and therefore these equations must
reduce to identities. Hence

XXr = XrX (r = 1, 2, . . . , 71). (1)

Now a rational basis can be chosen for C in which every element has an
inverse, so that (1) is true for every x<.G. Hence it is possible to choose-
a rational basis for B, viz., xv x2, ..., xn.

THEOREM 27.—If F' is a field, containing the given field F, in which
every equation is soluble, and if a primitive algebra A is expressed in
F' as the direct sum of r simple algebras Alt A2, ..., Ar, these algebras
are simply isomorphic with each other and, in F', A can be expressed
as the direct product of a commutative algebra, which is rational in F,
and an algebra isomorphic with Ax, A%, ..., Ar.

Let elt e2, ..., er be the moduli of Alt A2, ..., Ar respectively. Then
every element of the algebra B = ev e2, ..., e.r is commutative with every
element of A, and, conversely, every such element is, by Theorem 28,
contained in B. Hence, by the previous theorem, a basis can be found
for B which is rational in F. It is easily shown (as in the theory of
finite groups) that we can. find a/6 = c rational elements xlt x2, ..., xc

such that any element of A can b& expressed uniquely in the form

yT (r =. 1, 2, ..., c) being elements of B. Hence we have a primitive
algebra C of c units in the field F" obtained by adjoining JB to F, and
in this algebra, scalar multiples of the modulus are the only elements
commutative with every element of C. In F", C can therefore be expressed
as a simple matric algebra G = (,em) of degree n = A/C* It follows that
A can be expressed as the direct product of C and B.

* This gives a proof of a theorem by Allan to the effect that the order of a primitiTe algebra
is of the form btfi. I have only seen an abstract of this paper. See Amer. Hath. Soc. Bull.,
Vol. xi. (1905), p. 351.
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THEOREM 28.—If A is an algebra in which every element, which has
no inverse, is nilpotent, it can be expressed in the form A =B-\~N, ivhere
B is a primitive algebra and N is the maximal nilpotent invariant sub-
algebra.

We shall first show that the theorem, is true-in tha case- where {A —N)
is commutative. To do this it is only necessary to show that there is
a sub-algebra of A which has the same identical equation, f(x) =0, as
(A—N). Let x be an element of A which corresponds to an element
of (A—N) whose identical equation is also its reduced equation. If
f(x) = 0, the theorem is proved. We therefore set f(x)=z^=0, z being
then an element of N which is commutative with x. Let us first suppose
that N* = 0. Then, putting x—z/f(x) for x in/(x), we get

f[x-zlf(x)]=rf(x)-z=0.

The theorem is therefore true in this case and so is also true of (A—N2)
when JtP^=O. Hence we can so choose B' in A — B'-\-N that Brl=B'
(mod JV2), and therefore B'-\~N* is an algebra which can be treated as
before. The theorem then follows for commutative algebras by in-
duction. If the given field is a Galois field, it can be shown * that there
is no non-commutative primitive algebra. In this case, therefore, the
proof of the theorem is complete at this point.

Let us now consider the case where (A—N) is not commutative.
Suppose, first, that {A —N) is not simple when the given field is sufficiently
extended. There is then a commutative sub-algebra whose- elements
are commutative with every element of (A —N). To this algebra there
corresponds a sub-algebra of A, in which the primitive part B' can be
separated from the nilpotent part as above. Hence,! by adjoining B' to
the given field as in Theorem 27, we obtain, an algebra A' such that
(A'—N) remains simple when, the given field is extended. It is,
therefore, sufficient to confine our attention to such, algebras. We shall
therefore suppose that, in the extended field F', A can be expressed as
the direct product of a simple matric algebra B and an algebra M',
which consists of the modulus and a nilpotent algebra M, of index a.
Since Ma = 0 and every element of M is commutative with every element
of B, it follows that every element of Ma~l is commutative with every
element of A, and therefore, by Theorem 26, we can choose a basis for
Ma~l which is rational in F. Similarly there is a rational sub-algebra
of (A—Na~l) corresponding to (Ma~2—Ma~l). This means that we can

• Maclagan Wedderburn (8). t Seep. 117.
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choose a basis for Ma~2 such that each element consists of a rational
element and an. element of Ma~l which is not necessarily rational. But,
since Ma~2 contains Ma~l, which has a rational basis, we may neglect
the non-rational parts, i.e., we can choose a rational basis for ilfa~2, and
hence, by induction, for M. The problem can now be still further
simplified by showing that the general case can be made to depend on
the case where M consists of a single unit. Let y be any element of
M which is not an element of Jtf2; then, as in Theorem 12, we can
express M in the form M = y+Mv where AMX is an invariant sub-
algebra of A and N = Ay-\-AMx (since N=BM=AM). The algebra
of (A— AMJ which corresponds to M then consists of a single unit.
If, now. the theorem is true in this particular case, (A—AMX) can be
expressed as the sum of a primitive and a nilpotent algebra, and hence
A can be expressed in the form A = Bx+N, where B{ = Bl (mod AMJ.
Hence B^+AM-^ is an algebra which can be treated as before, and so
on till all the elements of M are exhausted. We shall, therefore, now
suppose that the basis of M consists of a single element of y. 1ST2 is
then zero.

For the remainder of the proof we require certain identities * which
can be derived from the identical equation as follows:—

If in the identical equation fx{x) = 0 we substitute x-)r£y for x,
£ being a scalar, and expand as a polynomial in £, we have a relation
which is true for any value of £, and hence the coefficients of the various
powers of f vanish. The following notations are of value in expressing
these identities. Let the coefficient of £r in the expansion of (x+gy)71 be

denoted by ( •'j and, similarly, the coefficient of i^i^-.-H' in

by (ff-f)- Thus

(x t{) =

Also let the coefficient of xn~rinfx{x) be denoted by I. I is of degree

rx(i) c(2) x(«)-\

r in the coefficients of x. Finally, let ' denote the co-
L r i ri ••• rs J

efficient of # # • • • £ ' in the expansion of p i ^ +

where r = r1-\-r2+...-\-rs. We may here observe that

x y\

Sylvester (15); Shaw (14), p. 2S4.
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With this notation the above mentioned identities can be expressed as
follows :—

x

n—r—

x , v

n—r— t r—s

"• r 7/ ~i
f , (y)= 2 y \yr = 0.

r=o Ln—rJ
(n)

Similar identities can easily be obtained by the same method for three
or more elements.

In the algebra we are considering, the primitive algebra (A—N) is.
in F', equivalent to a matric algebra em (p, q = 1, 2, ..., n), which, by
Theorem 24, is a sub-algebra of A in the extended field F'. Hence,
if x'i, x'i, ..., x'm are elements of (A—N) corresponding to the rational
elements xv x2, ..., xm of A, we must have a relation of the form

r ' — V p (I)

Consider these relations now as denning x[, %'*, ...,x'm as elements of A and
so giving a primitive algebra, isomorphic with (A —N), but not necessarily
rational in F. We have, however, xr = x'f (mod N) or, say,

xr
 == xr Xy y,

where it is immaterial whether x'r' is expressed in terms of x[, x'i, ... or
xv x2, ..., since these differ only by elements of A7 and N2 = 0. We can
choose one of the elements, say x[ =fc e, so that x[ = xv For this it is
sufficient to choose xx so that fXi{x\> = 0 anc^ then to choose en, e.^,..., elln

so that the primitive idempotent elements of the algebra generated
by xx are linearly dependent on en, e22, •-, enn. Further, if x'p (p =£ l)
is irrational, we may suppose x'p' = l,gpsxf\ where â 3) (s = 1, 2, ...) are
rational and gps are irrational scalars which are linearly independent*
in F. Let us now consider the r-th. of the series of invariant relations

* In general we have xp = 2f;,.,ar, +xpni where xl>o is rational. "VVe may, however, suppose
th:it the rational element x,, y is included in x,,.
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connecting xl and x'p as elements of (A—N), viz.,

v 2 fxi ^ 1 ( xi x*' \ = 0.
* 7 [_t s J \n—r—t r—s/

Putting x'p+x'pij for x'p in the left-hand side, we get

2 2 [*l Xp~\ ( Xl , x>p . f ) y = z, (i.)
» « L2 sJ \n—r— t r—s—1 1/

where z is rational, since xp = x'v-\-x'v'y is rational. Also

y( *i x'p+z'py xp\
\n—/•—t r—s—1 1/

= i( xx x'p x;\ , / a?! »;, x'p x'p'\ \
J \\n—r—t r—s—1 1 J J \n—r—t r—s—2 1 1 / )

\n—r—t r—s—1 1 /

since y2 — 0. Hence we may put xp for x'p in (i.). The left-hand side
of (i.) then becomes a linear and homogeneous expression in grs (s = 1, 2, ...)
with rational coefficients and, as the £'s are linearly independent in F, it
cannot equal a rational quantity. Hence it must vanish identically, i.e.,
z = 0. Hence f(€iXi-\-£Pxp) = 0 for all values of £x and £p and for
p =-1, 2, ...,n. By a repetition of this argument, £iXx-\-£pxv taking
the place of a;lf we can show that /(S^sxs) = 0. Furthermore, in the
above process xx may be replaced by a rational integral function of it,
say hixj, and, since

which is linear in x'p', x'v may be replaced by h{x^x'p. Hence

/ {\ (xt) + h2 (a?!) Xp 7*8 (a?!)) = 0,

where 7I1(J;1), h2{x{), and /igCajj) are rational integral functions of xv Again,

where x"pp = Z£ps(xpx%+x%Xp),pp Z£ps(xpx%+x%

the ^'s remaining linearly independent. Hence x~v, or any rational
integral function of xp, may take the place of xp. Combining these
results, we find that, if x is any element of the algebra C generated
by xx and xv, then fx{x) = 0. This algebra cannot be identical with A.
For it would then contain the element y which is commutative with, every
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other element. Hence, since fx{x) =• 0 is the identical equation both, of
{A —N) and of C = A, therefore fx(x+y) = 0. But

Let the theorem be now assumed to hold for algebras of order less
than the order of A. C then has a rational primitive sub-algebra Clt

which contains elements congruent to xx and xv modulo N, and is there-
fore of higher order than the algebra generated by x^ Let I) be any
rational primitive sub-algebra of A of order r. Since in the extended
field it is equivalent to a matric algebra, we may suppose epq

(p, q = 1, 2, ..., n) so chosen that x{, x2, ..., x'r form a rational basis
of D, and hence x'\ = ... = x'r = 0« But the algebra generated by D
and xp (p > r) has, as we have shown, fx{x) = 0 as its identical equation.
As before, it cannot be equal to A ; hence it has a rational primitive
sub-algebra which is greater than D, since x'p <£ D. Hence, by a
repetition of this process, A can be expressed as the sum of a primitive
and a nilpotent algebra. Now the theorem is obviously true of algebras
of one unit. Hence, by induction, it is true for algebras of any order.

8. The Classification of Potent Algebras (continued).

The results of the preceding sections may be summarised as
follows :—

(i.) An algebra can be expressed uniquely as the direct sum. of two
algebras, one of which has a modulus, and the other no modulus and no
integral sub-algebra which has a modulus. (Theorem 10.)

(ii.) An algebra, which has a modulus, can be expressed uniquely as
the direct sum of a number of irreducible algebras. (Theorem 10.)

(iii.) Any algebra can be expressed as the sum of a nilpotent algebra
and a semi-simple algebra. The latter algebra is not unique, but any
two determinations of it are simply isomorphic. (Theorems 24 and 28.)

(iv.) A semi-simple algebra can be expressed uniquely as the direct
sum of a number of simple algebras. (Theorems 10 and 17.)

(v.) A simple algebra can be expressed as the direct product of a
primitive and a simple quadrate algebra. (Theorems 22 and 23.)

(vi.) A simple quadrate algebra can be expressed as a matric algebra.
(Theorem 22.)

The classification of algebras cannot be carried much further than
this till a classification of nilpotent algebras has been found which is
much more complete than any that has as yet been found.
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9. Non-associative Algebras.
Many of the results of the previous sections are true of a much larger

class of number-systems than the linear associative algebras. In this
section I discuss the extension of some of these results to non-associative
algebras.

A non-associative algebra differs from an associative one only in that,
for some elements, the associative law does not hold true. Throughout
this section the term " algebra " will be used to include non-associative
algebras as well as associative ones, the appropriate adjective being
affixed when it is necessary to distinguish between them.

The calculus of complexes is the same as in § 1, except that A.BG
is not necessarily the same as AB. C. Hence, any of the previous
theorems which do not involve, directly or indirectly, products of more
than two members, hold unaltered for non-associative algebras. Thus an
invariant sub-complex of an algebra is itself an algebra, and so on, the
terms '' simple ;' and " invariant" being defined as in § 2. Hence also,
if Bx and B2 are invariant sub-algebras of A, B^B^ is also an in-
variant sub-algebra ; and, if B1 and B.2 are maximal, A = B^B^,
when Bx =f= B.2.

If B is any sub-algebra of A and A = B-\-G, the elements of C
define a new algebra if elements, which differ only by elements of B,
are regarded as equal. This algebra, which may be said to be com-
plementary to B, is not, however, unique, since C can be chosen in a
variety of ways. But, if B is invariant, it is easily seen that the algebra
is unique; it can therefore in this case be denoted by (A— B). The
proofs of Theorems 4-6 are therefore applicable word for word to non-
associative algebras, the final result being that any two difference series
of an algebra with a finite basis differ from one another merely in the
order of their terms.

We may notice here a peculiar difference between associative and non-
associative algebras, namely, that in the latter an algebra may have all
its elements nilpotent and yet be simple. Consider the non-associative
algebra A with three units whose multiplication table is

the given field being GF[$]. Here
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2

since Gi = 0, e1e2~\-e2e1 = e1-\-e1 = 0.
A 1 Q/\ n .-p ^— CT p I <T /> —— /y*p

= rceq.

At least two of these are independent, say e1x and e.2x. Then, if
B •=• exx, e2x, AB = A, this being also true if any other two be taken to
be independent. A is therefore simple.

We may also observe that A2 = A, although A has no idempotent
element. This marks another difference between the two classes. Another
interesting example of this is the algebra

(2)

the field being the same as before. It is easily verified that, in this
algebra, the equation xy = z has, for given values of y and z, not both
zero, a unique solution x. The algebra has therefore many of the
properties of a primitive algebra, although it has no modulus.

The formation of powers in a non-associative algebra is rather com-
plex. Thus x.x2 is not necessarily the same as x2.x, nor A.A* the same
as A2. A. We shall use the following notation :—

A(A(A ...(A)...))=An,

(An.Am)Av = A^n+m)+p,

and so on, the index indicating the manner in which the terms are
grouped. All powers for which the sum of the indices is /•, are said to be
of the r-th degree.

If all the n-th powers of an algebra are zero, it is said to be a nilpotent
algebra of index n. If A is nilpotent, the sum of the r-th powers is less
than the sum of the (r—l)-th powers. To show this, let A1'^ be the sum
of the s-th powers, and suppose that the theorem holds for 5 < /•. Then

But A^zfzA^-^, and A& =A2<A; hence the theorem follows by
induction. Now A^A^ ^A^r+S^, and A ^ ^ A ^ . Hence, as in
Theorem 7, we may express A in the form

A = J

where BvB,t < Bp+q+B1>+q+i+... .
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Every element of a nilpotent algebra is nilpotent in the sense that, for
some n, all its n-th. powers are zero. This condition is, however, not
sufficient to render the algebra nilpotent, as may be seen from the first of
the examples given on p. 110. A sufficient condition is, however, not
difficult to find. If n is the index of a nilpotent algebra A, then Aw = 0,
and in particular, if x and y are any two elements,

y(y{...y(yx) . . . ) ) = 0.

Now the proof of Theorem 14 holds for non-associative algebras step for
step, except that we cannot deduce from A'x = A' that A has an idem-
potent element. There is, however, an element y such that yx = x,
from which it follows that

y(y(...y(yx)...))=£•(),

and A is therefore not nilpotent. Hence a necessary and sufficient con-
dition that A is nilpotent is that it contains no pair of elements y and x
such that yx = x (x =f= 0). y, of course, need not be distinct from x.

Of the remaining theorems of Section 5, Theorems 9 and 13 hold also
for non-associative algebras. The others deal chiefly with idempotent
elements and do not seem to have any direct analogue in the general
theory.

A rough classification of non-associative algebras may, however, be
obtained as follows.

In an algebra A there will, in general, be a sub-algebra M1 composed
of all elements z, such that z.xy = zx.y for any elements x and y of A.
The modulus, if the algebra has one, will be contained in it. For this
reason I shall call it the modular sub-algebra of the first kind. Similarly,
the elements z such that x.zy = xz.y form an associative algebra M2

which.may be called the modular sub-algebra of the second kind; and
elements such that x.yz = xy.z form an associative algebra M3 called
the modular sub-algebra of the third kind. The elements common to all
three will be called the principal modular sub-algebra of A. For
example, in the algebra

ex

e2

ea

e,

«i

ex

0
e3

«4

0

0

0

«3

0

e3

0

«4

«4

0

04

e 4

0

we have Mx = M2 = M3 = M = ex,
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and in

ex 0

0 &,

Mi = CL e3, M3 = M3 = M = (e!+e2).

If elf e2, ..., em is a primitive set of idempotent elements of M, we have

A = 2t Apq, ApiArs = 0 {q =p ?*), AjiqAqr ^ ^p,..

This is analogous to Pierce's form for a linear associative algebra, and a
partial classification of non-associative algebras can obviously be based
upon it.

10. Semi-invariant Sub-algebras.*

A sub-algebra B of A is said to be semi-invariant if either AB ^ B
or BA <^ B. We shall assume throughout this section that AB <; B.

If Bx and J32 are two different maximal semi-invariant sub-algebras
of A, then evidently Bx+B2 — A, since A (Bx + B.$ ^Bx + B.2. Further,
if J5 = 51^^-S2, it may be shown that the difference algebras comple-
mentary to Bx, B2 and B, may be so chosen + that

(A-Bx) - (Ba-J5), (A-B.J — (Bx-J?).

It then follows, as in Theorem 6, that, if

A, Blt B2, . . . ; A, B[, B'2, ...

are two series of algebras such that each of them is a maximal semi-
invariant sub-algebra of the preceding term, then the corresponding series
of difference algebras can be so chosen that they differ merely in regard
to the order in which their terms occur.

In a potent associative algebra A, a maximal nilpotent semi-

* The proofs of the theorems of this section are merely repetitions of what has already beeu
done and are, therefore, for the most part omitted.

t Since [A — Bx), ... are not uniquely determined, these symbols have no meauiug uuless it
is shown how these algebras are to be determined, e.y., in this case by setting

BX~L\ + B, CX~B~Q; H^^C.^B, C2 — B = 0;

A ('1 + C. + Jl.

(A—B) in of course not neceasanily simple when B is maximal.

SKK. 2. VOL. 6. NO. H&2. I
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invariant sub-algebra is invariant, and is therefore unique. For

AN^N, NA.A^NA, A.NA^NA,

(NA)2 = NANA^N*A, (NA)a < JVM = 0,

if N* = 0. Hence NA is a nilpotent invariant sub-algebra of A, and
therefore either NA ̂  N or A = NA -\-N. In the latter case,

and therefore A is nilpotent contrary to our assumption. Hence we must
have NA ̂  N, which proves the theorem.

Suppose now that both A and B have a modulus, the moduli being
respectively e and ev Then, if e2 = e—ev

A =Aei-\-e1Ae2-\-e2Ae2

where B =• Aelt C =~e1Ae2, D = e2Ae2,

and B ~ (C+D) = 0 and C ^ D = 0.

Since A2 = A. we have

A = Ae1Ae1-\-elAe2Ae1-t-e2Ae2Ae1-\-Ae1Ae2-\-e1Ae2Ae2-t-e2Ae2

Therefore D2 = D, and the multiplication table of A has the form

B
G
D

B

B
0
0

G

C
0
0

D

0
G
D

C is a nilpotent invariant sub-algebra of A whose complementary algebra
is reducible. Hence no semi-invariant sub-algebra of a semi-simple
algebra has a modulus. We may also notice that D is a left-hand semi-
invariant sub-algebra, and that B+G and D-\-C are invariant sub-
algebras of A.

A primitive algebra is the only type of algebra which has no semi-
invariant sub-algebra. For, if A has no semi-invariant sub-algebra, it
must have a modulus, and if x is any element of A which has no inverse,
Ax is a semi-invariant sub-algebra of A,

11. The Direct Product.

Let A = xv x2, ..., xa, B = ylf y2, ..., yb be two complexes of order a
and 6 respectively, such that every element of A is commutative with
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every element of B; and further, let all the elements

xrys (r= 1, 2, ..., a; s = 1, 2, ..., b)

be linearly independent; then the complex

C = xlij1, x^jz, ..., xry3, ...

is called the direct product of A and B.

The following is an alternative definition. Consider all pairs of
elements of the form (x, y) where x < A and y <C B. Let

(x+x*, y+y1) = (x, y) + (x', y')-{-(x, y')+(x', y)

and (x, y)(x', y') = (xx'} yy').

The elements (x, y) generate an algebra of which they themselves form a
complex of order ab which is said to be the direct product of A and B and
is denoted by A XB. A XB is of course the same as BXA.

We shall generally take A and B to be algebras, in which case AxB
is an algebra.

The following relations follow immediately from the definition of A X B.

AX(BxC) = {AXB)XC,

Ax(B-{-C) = AxB+AxC,

If A = BxG has a modulus, B and C must each have a modulus
and conversely. In this case there is also a sub-complex of A isomorphic
with B, namely, the direct product of B and the modulus of C. Also, if
B' and C are the sub-complexes of A which correspond to B and C, then

A = G'B' = B'C.

If J3 has an invariant sub-algebra Blt B± X C is evidently an invariant
sub-algebra of A ; hence, if A is simple, B and G are also simple. The
converse of this is, however, not always true. For instance, let

be the table of B, and let C = B; then the table of A is

i 2
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where ex = (elt ej, e2 = (ev e2), e3 = (e2, ej,

and eA = (e2, e^.

If we put e[ = $ (e!+e4), e* = £(e2—63)»

63 = 2 (61—64), 64 = £ (e2+<?g),

the table becomes

6i
62'

63

e4

ei

ei
e-2

0
0

62

62

—e\
0
0

0
0

63

64 -

64

0
0
e'i

- 6 3

Hence BxC is reducible. If, however, the given field is such that
every simple algebra is niatric, the converse does hold; therefore, in any
field, the product of two simple algebras is simple or semi-simple.

It is interesting to note that the algebra given above can also be ex-
pressed as the direct product of B and the algebra Ct whose table is

0

Hence, from A = JB X C = B X Cv it does not necessarily follow that
C ~ Cv This is, however, probably true if the field is sufficiently
extended.

12. Conclusion.

It is remarkable that the properties of a field with regard to division
are not used in many of the theorems of the preceding sections. The first
place, where it is used, is where it is assumed that, if A2 < A, the order of
A2 is less than the order of A. Thus, if the table of an algebra is

62

262

and the set of positive and negative integers takes the place of the given
field, then A2 = 2el5 2e2, which is not equivalent to A, but is still con-
tained in A. In other words, if B < A and A = B-\-C, then, for every
such C, B is contained in C.
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If we now call B a proper sub-complex of A when we can find C such
that A=B+C, B-~^C = 0, and, in Theorem 2, substitute "proper
invariant sub-complex" for "invariant sub-complex" throughout, we find
that all the theorems of the section hold without further modification.
Most of the theorems of the other sections can be modified in a similar
fashion. Thus, Theorem 15, when modified, would read:—If A is an
algebra with not more than one idcmpotcnt element, and x is any element
such that Ax is a proper sub-complex of A, then x is nilpotent.

I have not carried out this process in detail, as the results obtained do
not seem to be of sufficient importance.

[Added February 1st, 1908.—Since the above paper was in print I
have noticed a mistake in the proof of Theorem 28 ; this mistake is, how-
ever, easily remedied. The notation used below is that of page 105.

It is there assumed that the algebra B' is commutative with every
element of A. Suppose that this is not the case, and let M be the maxi-
mum sub-algebra of N which is composed of elements commutative with
every element of B'. As on page 105, we may assume N2 = 0. Let x, //,
and z be elements of A, B', and M respsctively. From the definition
of B', we have xy — yx<.N, and therefore, since N2 = 0 and M^.N,
xzy = xyz = yxz. Hence xz < M, i.e., M is invariant. Now, if we prove
the theorem for (A—M), it follows for A as in the text; for if the theorem
is true for (A—M), then A can be expressed in the form ^.j+A^ where Nx

is nilpotent and Ax is an algebra, containing B', of which M is the maximal
invariant nilpotent sub-algebra; B' is then commutative with every
element of Ax and the proof proceeds as on page 105. We may therefore
suppose that there are no elements of N commutative with every element
of B', i.e., M = 0.

If the given field is sufficiently extended, it follows from Theorems 22.
and 27 that A contains a simple matric algebra A' such that {A—N) is
the direct product of A' and B' ; and, since M = 0, evidently the elements
of A'B' are the only elements of A which are commutative with every
element of B'. But B' is rational; hence, by Theorem 26, A'B' is also
rational if B' is of order greater than 1, i.e., the theorem is true in this
case. We may therefore assume that every element of B' is commutative
with every element of A, as we have shown that the theorem follows if
this is not the case.]
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