ÁLGEBRA 3 Segundo cuatrimestre — 2014

Segundo parcial

APELLIDO Y NOMBRE:	
L.U.:	HOJAS:

- **1.** Sean $E = \mathbb{Q}(\sqrt[3]{2})$ y $\alpha = 1 + \sqrt[3]{2}$. Muestre que para cada n > 1 el polinomio $X^n \alpha$ no tiene raíces en E.
- **2.** Sea p un número primo y sea $n \ge 2$.
- (a) Si $p \equiv 1 \mod n$, entonces para cada $a \in \mathbb{F}_p$ el polinomio $X^n a$ se factoriza como producto de factores lineales en $\mathbb{F}_{p^n}[X]$.
- (b) Sea $r \geq 1$ y supongamos que $p \nmid n$. El polinomio $\bar{\Phi}_n$ se descompone como producto de factores lineales en $\mathbb{F}_{p^r}[X]$ si y solamente si $p^r \equiv 1 \mod n$.
- 3. Sea p un número primo, $r \ge 1$ y $\zeta \in \mathbb{C}$ una raíz p^r -ésima primitiva de la unidad. Calcule $N_{\mathbb{Q}(\zeta)/\mathbb{Q}}(1-\zeta)$.
- **4.** Sea $k \in \mathbb{Z}$ y $a = k^2 + k + 7$. Determine el grupo de Galois de $X^3 aX + a$ sobre \mathbb{Q} .
- **5.** Si p es un primo impar, para cada $n \in \mathbb{N}$ el polinomio ciclotómico Φ_n es irreducible sobre $\mathbb{Q}(\sqrt[p]{2})$. Esto no es cierto si p=2.