Taller de Cálculo Avanzado Primer Cuatrimestre — 2013

Práctica 2: Series

1. Estudie la convergencia de las siguientes series:

(a)
$$\sum_{n=1}^{\infty} \frac{n^2+3n-1}{2n^2+3}$$
;

(b)
$$\sum_{n=1}^{\infty} \frac{n}{2^n};$$

 $\begin{array}{lll} (d) & \sum_{n=1}^{\infty} \frac{n+1}{n}; & (g) & \sum_{n=1}^{\infty} \frac{1+n}{3+n^2}; \\ (e) & \sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}; & (h) & \sum_{n=1}^{\infty} \frac{1}{n^2+2n+3}; \\ (f) & \sum_{n=1}^{\infty} \frac{1}{n^{2/3}}; & (i) & \sum_{n=1}^{\infty} \sin(\frac{1}{n}). \end{array}$

(c)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{10n}}$$
;

2. Encuentre la suma de las siguientes series:

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{3^{n-2}}$$
;

(c) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)};$ (d) $\sum_{n=1}^{\infty} \frac{2^n + 3^n}{6^n}.$

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{3^{n-2}};$$

(b) $\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)};$

3. Sume la serie $\sum_{n=1}^{\infty} \frac{3n^2 - 4n + 2}{n!}$.

Sugerencia. Descomponer el término general en la forma $\frac{3n^2-4n+2}{n!} = \frac{A}{n!} + \frac{B}{(n-1)!} + \frac{C}{(n-2)!}$

4. ¿Cuántos primeros términos hay que tomar en las series siguientes para que su suma difiera no más que en 10⁻⁶ de la suma de las series correspondientes?

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2^n}$$
;

$$(b) \quad \sum_{n=1}^{\infty} \frac{(-1)^n}{n};$$

$$(c) \quad \sum_{n=1}^{\infty} \frac{(-1)^n}{n!}$$

5. ¿Es cierto que si las series $\sum_{n=1}^{\infty} a_k$ y $\sum_{n=1}^{\infty} b_k$ divergen, entonces $\sum_{n=1}^{\infty} a_k b_k$ también lo es?

6. Pruebe que

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} > \ln(n+1) > \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n+1}$$

y usando esto, que la sucesión con término general

$$r_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln(n)$$

converge. El límite de esta sucesión es la constante de Euler-Mascheroni y es igual a

 $0.57721566490153286060651209008240243104215933593992\dots$

Sugerencia. Recurde la demostración del criterio de comparación con una integral impropia.

7. Criterio de Raabe. Sea $(a_n)_{n\geq 1}$ una sucesión de términos positivos. Si existe $\eta>0$ tal que para $n \gg 1$ se tiene que

$$n\left(\frac{a_n}{a_{n+1}}-1\right)$$

es mayor que $1+\eta$ o menor que $1-\eta$, entonces la serie $\sum_{n=1}^{\infty}a_n$ converge o diverge, respectivamente. Sugerencia. Compare con la serie $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$.

8. Teorema de Abel. Si $(a_n)_{n\geq 1}$ es una sucesión decreciente de términos positivos tal que la serie $\sum_{n=1}^{\infty} a_n$ converge, entonces $\lim_{n\to\infty} na_n = 0$.

Sugerencia. Muestre que $na_{2n} \le a_{n+1} + a_{n+2} + \cdots + a_{2n} \to 0$ si $n \to \infty$, y similarmente para na_{2n+1} .

- 9. Criterio de condensación de Cauchy. Si $(a_n)_{n\geq 1}$ es una sucesión decreciente de números no negativos, entonces las series $\sum_{n\geq 1} a_n$ y $\sum_{n\geq 1} 2^n a_{2^n}$ convergen o divergen simultaneamente.
- 10. Dedica si las siguientes series convergen absoluta o condicionalmente.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n \cdot 2^n}$$
;

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\ln(n)}$$
;

(c)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^2 - 2n - 1}{n!}$$
.

- 11. (a) Si la serie $\sum_{n=1}^{\infty} a_n$ converge absolutamente, entonces la serie $\sum a_n^2$ converge. ¿Puede obtenerse la misma conclusión si sólo se supone que la serie $\sum_{n=1}^{\infty} a_n$ converge condicionalmente?
- (b) ¿Si la serie $\sum_{n=1}^{\infty} a_n$ converge y tiene todos sus términos no negativoes, se puede concluir algo sobre la serie $\sum_{n=1}^{\infty} \sqrt{a_n}$?
- **12.** Si $|\alpha| < 1$, entonces $\frac{1}{(1-\alpha)^2} = \sum_{k=1}^{\infty} k\alpha^{k-1}$.
- 13. Determine para qué valores de x convergen las siguientes series:

(a)
$$\sum_{n=1}^{\infty} \frac{x^n}{2^n}$$
; (c) $\sum_{n=1}^{\infty} \frac{x^n}{n+\sqrt{n}}$; (e) $\sum_{n=1}^{\infty} 3^{n^2} x^{n^2}$; (b) $\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n^2}$; (d) $\sum_{n=1}^{\infty} 2^n \sin(\frac{x}{3^n})$; (f) $\sum_{n=1}^{\infty} n! (x+1)^n$.

(c)
$$\sum_{n=1}^{\infty} \frac{x^n}{n+\sqrt{n}};$$

(e)
$$\sum_{n=1}^{\infty} 3^{n^2} x^{n^2}$$
;

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n^2}$$
;

$$(d) \quad \sum_{n=1}^{\infty} 2^n \sin(\frac{x}{3^n})$$

(f)
$$\sum_{n=1}^{\infty} n!(x+1)^n$$
.

Leonhard Euler

1707-1783, Suiza

«Léanlo a Euler: es nuestro maestro en todo.» — Pierre Simon de Laplace.»