GEOMETRÍA DIFERENCIAL Primer Cuatrimestre — 2012

Práctica 5: Integrales

- **1.** Sea M una variedad y sean U y V dos abiertos de M tales que $M = U \cup V$, y pongamos $W = U \cap V$. Muestre que toda función $f \in C^{\infty}(W)$ puede escribirse en la forma $f_1|_W + f_2|_W$ con $f_1 \in C^{\infty}(U)$ y $f_2 \in C^{\infty}(V)$ y, dando un contraejemplo, que no toda función de $C^{\infty}(W)$ es la restricción a W de una de $C^{\infty}(U)$.
- **2.** Si $f:M\to N$ es una función diferenciable entre variedades, los pull-backs $f^*:\Omega^k(N)\to\Omega^k(M)$ son tales que

$$f^*(\omega_1 + \omega_1) = f^*(\omega_1) + f^*(\omega_2),$$

$$f^*(h \cdot \omega_1) = h \circ f \cdot f^*(\omega_1)$$

у

$$f^*(\omega_1 \wedge \omega_2) = f^*(\omega_1) \wedge f^*(\omega_2)$$

para cada ω_1 , $\omega_2 \in \Omega^{\bullet}(N)$ y $h \in C^{\infty}(N)$.

3. Si U y V son abiertos de \mathbb{R}^n y $f:U\to V$ es diferenciable, entonces

$$f^*(dx_i) = \sum_{k=1}^n \frac{\partial f_i}{\partial x_k} dx_k$$

у

$$f^*(g \cdot dx_1 \wedge \dots \wedge dx_n) = g \circ f \cdot \det\left(\frac{\partial f_i}{\partial x_j}\right)_{i,j} \cdot dx_1 \wedge \dots \wedge dx_n$$

para cada $i \in \{1, ..., n\}$ y cada $g \in C^{\infty}(V)$.

- **4.** Sea M una variedad de dimensión n y sean ω_1 , $\omega_2 \in \Omega^n(M)$ dos n-formas sobre M que no se anulan en ningún punto.
- (a) Para cada $\omega \in \Omega^n(M)$ existe una única función $f \in C^{\infty}(M)$ tal que $\omega = f \cdot \omega_1$.
- (b) Las formas ω_1 y ω_2 inducen la misma orientación de M si y solo si la función $f \in C^{\infty}(M)$ tal que $\omega_1 = f \cdot \omega_2$ es positiva.
- **5.** Si M es una variedad y $\omega \in \Omega^k(M)$, ¿es $\omega \wedge \omega = 0$? ¿Y si dim M = 3?
- **6.** Si M es una variedad y $f: M \to \mathbb{R}$ es una función diferenciable, hay una función d $f: M \to T^*M$ tal que d $f(x) \in T_x^*M$ y d $f(x)(X) = X_x f$ para cada $x \in M$ y cada $X \in T_x M$. Muestre que df es una función diferenciable.
- 7. Si M es una variedad, f, $g \in C^{\infty}(M)$ y $\omega \in \Omega^{1}(M)$, entonces $f \omega \in \Omega^{1}(M)$ y d(fg) = g df + f dg.
- 8. Sea M una variedad.
- (a) Sea $x \in M$. Si $v \in T_x M$ y $\lambda \in T_x^* M$, entonces existen $X \in \mathfrak{X}(M)$ y $\omega \in \Omega^1(M)$ tales que $X_x = v$ y $\omega_x = \lambda$.

- (b) Sean U un abierto, $X \in \mathfrak{X}(U)$ y $\omega \in \Omega^1(U)$. Si $x \in U$, existen un abierto $V \subseteq U$, un campo $\tilde{X} \in \mathfrak{X}(M)$ y una forma $\tilde{\omega} \in \Omega^1(M)$ tales que $x \in V$, $\tilde{X}|_V = X|_V$ y $\tilde{\omega}|_V = \omega|_V$. ¿Puede tomarse siempre V = U?
- 9. Sea M una variedad y sea $X \in \mathfrak{X}(M)$ un campo sobre M. Si $k \geq 1$, podemos considerar la función $i_X : \Omega^k(M) \to \Omega^{k-1}(M)$ tal que

$$(i_X \omega)(x)(v_1, \dots, v_{k-1}) = \omega(X_x, v_1, \dots, v_{k-1})$$

para cada $x \in M$ y $\nu_1, \ldots, \nu_{k-1} \in T_x M$. Por simplicidad, definimos tambien $i_X = 0 : \Omega^0 \to \Omega^{-1}(X)$. Muestre que $i_X : \Omega^{\bullet}(M) \to \Omega^{\bullet}(M)$ es una derivación y encuentre expresiones en coordenadas locales para i_X .

- **10.** Sea $F : \mathbb{R}^3 \to \mathbb{R}^3$ un campo vectorial.
- (a) Si para cada $x \in \mathbb{R}^3$ y cada $v \in \mathbb{R}^3$ definimos $\omega_F^1(x)(v) = \langle F(x), v \rangle$, obtenemos una forma $\omega_F^1 \in \Omega^1(\mathbb{R}^3)$. Encuentre sus coeficientes con respecto a la base $\{dx, dy, dz\}$. Recíprocamente, dada una forma $\omega \in \Omega^1(\mathbb{R}^3)$, existe un único campo $F : \mathbb{R}^3 \to \mathbb{R}^3$ tal que $\omega_F^1 = \omega$.
- (b) Si para cada $x \in \mathbb{R}^3$ y cada $u, v \in \mathbb{R}^3$ ponemos $\omega_F^2 = \langle F(x), u \times v \rangle$ obtenemos una forma $\omega_F^2 \in \Omega^2(\mathbb{R}^3)$. Determine sus coeficientes con respecto a la base $\{dy \wedge dz, dx \wedge dz, dx \wedge dy\}$ de $\Omega^2(\mathbb{R}^3)$. Recíprocamente, dada una forma $\omega \in \Omega^2(\mathbb{R}^3)$ existe un único campo $F : \mathbb{R}^3 \to \mathbb{R}^3$ tal que $\omega_F^2 = \omega$.
- (c) Sea $f \in C^{\infty}(\mathbb{R}^3)$ y $F : \mathbb{R}^3 \to \mathbb{R}^3$ un campo. Establezca y pruebe una relación entre ∇f y df, entre rot F y d ω_F^1 y entre div F y d ω_F^2 .
- 11. Sea M una variedad. Decimos que una forma $\omega \in \Omega^k(M)$ es *cerrada* si $d\omega = 0$ y que es *exacta* si existe una forma $\eta \in \Omega^{k-1}(M)$ tal que $d\eta = \omega$.
- (a) Una forma exacta es cerrada.
- (b) Si ω y ω' son formas cerradas y ω'' es exacta, entonces $\omega \wedge \omega'$ es cerrada y $\omega \wedge \omega''$ es exacta.
- (c) Si $f: M \to N$ es una función diferenciable entre variedades y $\omega \in \Omega^{\bullet}(N)$ es una forma cerrada (exacta), entonces $f^*(\omega)$ es cerrada (exacta).
- **12.** *Derivada de Lie.* Sean M una variedad y $X \in \mathfrak{X}(M)$ Entonces la derivada de Lie $\mathscr{L}_X : \Omega^{\bullet}(M) \to \Omega^{\bullet}(M)$ es una función \mathbb{R} -lineal de grado 0 tal que

$$\mathcal{L}_X(\omega \wedge \eta) = \mathcal{L}_X(\omega) \wedge \eta + \omega \wedge \mathcal{L}_X(\eta),$$

$$\mathcal{L}_X(d\omega) = d\mathcal{L}_X(\omega),$$

$$\mathcal{L}_X(f) = X(f)$$

para cada ω , $\eta \in \Omega^1(M)$ y cada $f \in C^\infty(M)$. Muestre que estas condiciones determinan a \mathcal{L}_X de manera únívoca, encontrando la expresión en coordenadas para \mathcal{L}_X .

13. Si *M* es una variedad y $X, Y \in \mathfrak{X}(M)$ son campos sobre *M*, entonces

$$\begin{split} &i_X i_Y = -i_Y i_X, \\ &i_{fX} = f i_X, \\ &i_X \operatorname{d} + \operatorname{d} i_X = \mathcal{L}_X, \\ &\mathcal{L}_{fX} = f \, \mathcal{L}_X + \operatorname{d} f \wedge i_X, \\ &\mathcal{L}_X i_Y - i_Y \mathcal{L}_X = i_{[X,Y]}. \end{split}$$