GEOMETRÍA DIFERENCIAL Primer Cuatrimestre — 2012

Práctica 3: Campos

- 1. (a) Sea $S^2 \subseteq \mathbb{R}^3$ la esfera unitaria y sea $f: (x,y,z) \in S^2 \mapsto z \in \mathbb{R}$. Muestre que se trata de una función diferenciable, determine la función diferencial f_{*p} para cada $p \in S^2$ y calcule su rango.
- (b) Sean 0 < r < R y sea $T \subseteq \mathbb{R}^3$ la superficie de revolución que se obtiene haciendo girar la circunferencia de ecuaciones

$$(x-R)^2 + z^2 = r^2, y = 0$$

alrededor del eje z. Muestre que se trata de una subvariedad de \mathbb{R}^3 y repita la parte anterior de este ejercicio para la función $f:(x,y,z) \in T \mapsto z \in \mathbb{R}$.

- **2.** Sea M una variedad y sea $x \in M$.
- (a) Sea G el conjunto de todas las funciones diferenciables $f:U\to\mathbb{R}$ definidas en un abierto $U\subseteq M$ que contiene a x. Sea \sim la relación sobre G tal que si $f:U\to\mathbb{R}$ y $g:V\to\mathbb{R}$ son dos elementos de G, entonces $f\sim g$ sii existe abierto $W\subseteq U\cap V$ tal que $x\in W$ y $f|_W=g|_W$. Entonces \sim es una relación de equivalencia sobre G y podemos, en particular, considerar el conjunto cociente $\mathscr{G}=G/\sim$.
- (b) Si $f:U\to\mathbb{R}$, $f':U'\to\mathbb{R}$, $g:V\to\mathbb{R}$ y $g':V'\to\mathbb{R}$ son cuatro elementos de G y $f\sim f'$ y $g\sim g'$, entonces $f|_{U\cap V}+g|_{U\cap V}\sim f'|_{U'\cap V'}+g'|_{U'\cap V'}$. Esto permite definir una función $+:\mathscr{G}\times\mathscr{G}\to\mathscr{G}$ de manera que si $f:U\to\mathbb{R}$ y $g:V\to\mathbb{R}$ son elementos de G y [f] y [g] son sus clases en \mathscr{G} , entonces $[f]+[g]=[f|_{U\cap V}+g|_{U\cap V}]$. Procediendo de la misma forma pero a partir de la multiplicación podemos construir una función $\cdot:\mathscr{G}\times\mathscr{G}\to\mathscr{G}$. Muestre que de esta forma \mathscr{G} resulta ser una \mathbb{R} -álgebra.
- (c) El conjunto $I \subseteq \mathcal{G}$ de las clases de equivalencia de las funciones $f: U \to \mathbb{R}$ de G tales que f(x) = 0 es un ideal maximal de \mathcal{G} .
- (*d*) Como *I* es un ideal, podemos considerar el ideal I^2 , que está contenido en *I*, y el espacio vectorial cociente I/I^2 . Muestre que, si $(I/I^2)^*$ denota el espacio vectorial dual a I/I^2 , hay un isomorfismo canónico $(I/I^2)^* \cong T_x M$.
- **3.** Sean M una variedad y $f \in C^{\infty}(M)$. Si f tiene un máximo local en $p \in M$, entonces $f_{*x} = 0$.
- **4.** Sean M una variedad, $X, Y \in \mathfrak{X}(M)$ y $f \in C^{\infty}(M)$. Muestre que

$$[X, fY] = XfY + f[X, Y]$$

primero usando las propiedades de las derivaciones y del corchete de Lie, y después usando la expresión en coordenadas del corchete de Lie.

5. Sea G un grupo de Lie, e su elemento neutro y \mathfrak{g} su álgebra de Lie, esto es, el subespacio de $\mathfrak{X}(G)$ de los campos invariantes a izquierda. Muestre que hay un isomorfismo lineal $q:\mathfrak{g}\to T_eG$ tal que $q(X)=X_e$ para cada $X\in\mathfrak{g}$.

6. Sea G un grupo de Lie, \mathfrak{g} su álgebra de Lie y $X \in \mathfrak{g}$ un campo vectorial invariante a izquierda. Pruebe que X es *completo* y describa el flujo asociado.

Sugerencia. Muestre que si $g,h\in G$ y $\gamma:(-\varepsilon,\varepsilon)\to G$ es una curva integral de X que arranca en $g=\gamma(0)$ entonces la curva $\eta:t\in(-\varepsilon,\varepsilon)\mapsto h\gamma(t)\in G$ es una curva integral de X que arranca en hg. Use esta observación para probar que el intervalo maximal de definición de todas las curvas integrales de X es \mathbb{R} .

- 7. (a) Considere en \mathbb{R}^2 el campo $X = -y \partial_x + x \partial_y$, encuentre sus curvas integrales y determine si se trata de un campo completo.
- (b) Sea $A = (a_{i,j}) \in M_n(\mathbb{R})$ una matriz real y considere sobre \mathbb{R}^n el campo vectorial $X = \sum_{i,j=1}^n a_{i,j} x_i \partial_{x_j}$. Describa sus curvas integrales y su flujo.
- 8. Muestre que el conjunto

$$G = \left\{ \left(\begin{smallmatrix} a & b \\ 0 & 1 \end{smallmatrix} \right) : a, b \in \mathbb{R}, a \neq 0 \right\}$$

es un subgrupo de Lie de GL(2, R) que tiene a la función

$$\phi: \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \in G \mapsto (a, b) \in \mathbb{R}^2$$

como carta global. Con respecto al sistema de coordenadas correspondiente a esta carta, consideremos un campo $X = f(a,b)\partial_a + g(a,b)\partial_b \in \mathfrak{X}(G)$. ¿Qué condiciones tienen que satisfacer las funciones $f,g\in C^\infty(G)$ para que X sea un campo vectorial invariante a izquierda? ¿Y a derecha? Determine la estructura de Lie del álgebra de Lie de G.

- **9.** Sea *G* un grupo de Lie, *e* su elemento neutro y g su álgebra de Lie.
- (a) Si $v \in T_eG$ es un vector tangente a G en e y $X \in \mathfrak{g}$ es el único campo vectorial invariante a izquierda tal que $X_e = v$, sea $\gamma_v : \mathbb{R} \to G$ la única curva integral de X tal que $\gamma_v(0) = e$. Entonces γ_v es un homomorfismo de grupos, esto es,

$$\gamma_{\nu}(t+t') = \gamma_{\nu}(t) \cdot \gamma_{\nu}(t'), \quad \forall t, t' \in \mathbb{R}.$$

(b) Definimos una función $\exp: T_eG \to G$ poniendo, para cada $v \in T_eG$,

$$\exp(v) = \gamma_v(1)$$
.

Determine la diferencial $\exp_{*0}: T_eG \to T_eG$ y muestre que exp es localmente un difeomorfismo alrededor de 0.

(c) Muestre que si $v, w \in T_e G$ son tales que [v, w] = 0, entonces

$$\exp(v + w) = \exp(v) \cdot \exp(w)$$
.

- **10.** Sea $G = \mathsf{GL}(n,\mathbb{R})$. Recordemos que podemos identificar $T_I G$ con $M_n(\mathbb{R})$.
- (a) Para cada $A \in M_n(\mathbb{R})$, describa explicitamente el campo tangente X_A sobre G que es invariante a izquierda y tal que $(X_A)_I = A$.
- (b) Determine la función $\exp: T_eG \to G$.
- (c) Muestre que exp : $T_eG \rightarrow G$ no es un homomorfismo de grupos.

Marius Sophus Lie 1842–1899, Noruega