ÁLGEBRA LINEAL Primer Cuatrimestre — 2011

Segundo parcial

APELLIDO Y NOMBRE:	
	HOJAS:

1. Sea $n \ge 1$ y para cada matriz $A \in M_n(\mathbb{C})$ denotemos $\sigma(A) \subseteq \mathbb{C}$ al conjunto de los autovalores de A.

Pruebe que si $A \in M_n(\mathbb{C})$ y $p \in \mathbb{C}[X]$ es un polinomio arbitrario, entonces

$$p(\sigma(A)) = \sigma(p(A)).$$

- **2.** Si $f: V \to V$ es un endomorfismo de un espacio vectorial V de dimensión finita y positiva sobre un cuerpo k, entonces las siguientes afirmaciones son equivalentes:
- (a) Los únicos subespacios f-invariantes de V son 0 y V.
- (b) Todo vector $v \in V$ no nulo es cíclico.
- (c) El polinomio característico χ_f es irreducible.
- **3.** Decida si las siguientes afirmaciones son verdaderas o falsas y justifique su respuesta.
- (i) Si $A \in M_6(k)$ es una matriz tal que $A^3 = 0$, entonces todo menor de 4×4 tiene determinante nulo.
- (ii) Existe una matriz $B \in M_3(\mathbb{C})$ tal que $adj(B) = \begin{pmatrix} 1 & 0 & 3 \\ 1 & 2 & 1 \\ 1 & 2 & 3 \end{pmatrix}$.
- **4.** Sea $f:\mathbb{C}^8\to\mathbb{C}^8$ una transformación lineal cuyo polinomio característico es $\chi_f(X)=X^8-2X^7+2X^5-X^4$ y tal que

$$\dim \ker f^3 = \dim \ker (f - \mathrm{id}).$$

Encuentre todas las posibles formas de Jordan de f.

5. Mostrar que existe un producto interno en \mathbb{R}^3 para el cual

$$(1,1,0) \perp (0,1,1),$$

 $\langle (1,0,-1), (1,3,2) \rangle^{\perp} = \langle (1,2,3) \rangle,$
 $\| (1,0,-1) \|^2 = 5 \text{ y } \| (1,2,3) \|^2 = 1.$

Determinar $\|(3,4,5)\|$.