GEOMETRÍA PROYECTIVA Segundo Cuatrimestre — 2011

Segundo Parcial

Apellido y nombre:	
L.U.:	Hojas:

1. Dos polinomios f, $g \in \mathbb{C}[X,Y]$ tienen un factor común no constante si y solamente si $Z(f,g) \subseteq \mathbb{C}^2$ es un conjunto infinito.

Sugerencia. Para probar la suficiencia, considere las resultantes $R_X(f,g)$ y $R_Y(f,g)$.

- **2.** (*a*) La curva proyectiva *N* de ecuación $X^3 + Y^3 + XYZ = 0$ es irreducible y tiene exactamente un punto singular, que es un nodo. Toda cúbica irreducible de \mathbb{P}^2 con un nodo es proyectivamente equivalente a *N*.
- (*b*) La curva proyectiva C de ecuación $X^3 + Y^2Z = 0$ es irreducible y tiene exactamente un punto singular, que es una cúspide. Toda cúbica irreducible de \mathbb{P}^2 con un punto cúspide es proyectivamente equivalente a C.
- 3. Determine los puntos de intersección de las curvas proyectivas

$$(X^2 + Y^2)Z + X^3 + Y^3 = 0,$$
 $X^3 + Y^3 - 2XYZ = 0,$

y calcule la multiplicidad de la intersección en cada uno de ellos.

- **4.** Sea $M \subseteq \mathbb{R}^3$ una superficie y sea $p \in M$.
- (a) Si la curvatura Gaussiana en p es positiva, entonces hay un entorno V de p en M tal que V está totalmente contenido en uno de los dos semiespacios cerrados determinados por el plano tangente T_pM y solo interseca ese plano en p.
- (b) Si hay un entorno V de p en M tal que V está totalmente contenido en uno de los dos semiespacios cerrados determinados por T_pM , entonces la curvatura Gaussiana en p es no negativa.
- **5.** Sea $I \subseteq \mathbb{R}$ un intervalo abierto, sea $\alpha: I \to \mathbb{R}^3$ una curva regular parametrizada por longitud de arco y sea $\nu: I \to \mathbb{R}^3$ una función tal que $\|\nu(s)\| = 1$ y $\nu'(s) \neq 0$ para todo $s \in I$. Consideremos la *superficie reglada* parametrizada por

$$\phi: (s,t) \in I \times \mathbb{R} \longmapsto \alpha(s) + t\nu(s) \in \mathbb{R}^3.$$

(a) Existe una única función $r: I \to \mathbb{R}^3$ tal que si definimos $\beta: I \to \mathbb{R}^3$ poniendo $\beta(s) = \alpha(s) + r(s)v(s)$, se tiene que

$$\langle \beta'(s), \nu'(s) \rangle = 0, \quad \forall s \in I.$$

Llamamos a la curva β , contenida en la superficie, la línea de estricción.

- (b) La superficie es regular salvo, a lo sumo, a lo largo de la curva de estricción.
- (c) La curvatura Gaussiana de la superficie es no positiva. La curvatura es identicamente nula sii $\langle v', \alpha' \wedge v \rangle = 0$, y en este caso decimos que la superficie es desarrollable.