GEOMETRÍA PROYECTIVA Segundo Cuatrimestre — 2011

Primer Parcial

Apellido y nombre:	
L.U.:	. Hojas:

1. Sea $F: \mathbb{R}^2 \to \mathbb{R}$ una función suave. La curvatura de la curva plana definida implícitamente por la ecuación F(x,y)=c en los puntos donde ésta es regular está dada por

$$\kappa = \frac{F_x^2 F_{xx} - 2F_x F_y F_{xy} + F_y^2 F_{xx}}{(F_x^2 + F_y^2)^{3/2}}.$$

- **2.** (a) Sea $\gamma:(a,b)\to\mathbb{R}^2$ una curva regular, sea $t_0\in(a,b)$ y supongamos que $r=\|\gamma(t_0)\|>0$. Si para todo $t\in(a,b)$ es $\|\gamma(t)\|\leq r$, entonces el valor absoluto de la curvatura de γ en t_0 es al menos 1/r.
- (b) Usando la parte (a), muestre que si una curva cerrada está contenida en un disco de radio r, entonces el valor absoluto de a curvatura es al menos 1/r en algún punto.
- **3.** Determine las formas normales general afín real, general afin compleja y ortogonal de la cuádrica

$$2x^2 + 2xy + 2xz + 2y^2 - z^2 + 2yz + 4x + 4y + 2z + 3 = 0.$$

- **4.** Sea $\alpha: I \to \mathbb{R}^3$ una curva regular.
- (a) La curva α está contenida en una esfera sii existe un punto p tal que para todo $s \in I$ el vector $\alpha(s) p$ está en el subespacio $\langle N(s), B(s) \rangle$.
- (b) Supongamos que la curvatura de α es siempre positiva. Existe un punto p tal qure $\alpha(s)-p$ está contenido en el plano $\langle T(s),B(s)\rangle$ para todo $s\in I$ sii existen constantes $a\in\mathbb{R}\setminus 0$ y $b\in\mathbb{R}$ tales que

$$\frac{\tau}{\kappa} = as + b.$$