CÁLCULO AVANZADO Primer Cuatrimestre — 2010

Práctica 6: Compacidad y continuidad uniforme

Compacidad

- **1.1.** (a) Si $(a_n)_{n\geq 1}$ es una sucesión en \mathbb{R} tal que $\lim_{n\to\infty} a_n = 0$, entonces el conjunto $\{0\} \cup \{a_n : n \geq 1\} \subseteq \mathbb{R}$ es compacto.
- (b) El intervalo $(0,1] \subseteq \mathbb{R}$ no es compacto.
- (c) Sean $a, b \in \mathbb{R} \setminus \mathbb{Q}$ y sea $S = (a, b) \cap \mathbb{R}$. El conjunto S es cerrado y acotado pero no compacto en (\mathbb{Q}, d) , con d la restricción de la métrica usual de \mathbb{R} .
- **1.2.** Un espacio metrico compacto es separable.
- **1.3.** Para cada $n \in \mathbb{N}$ sea $e^n = (e_k^n)_{k \ge 1} \in \ell^{\infty}$ tal que

$$e_k^n = \begin{cases} 0, & \text{si } k \neq n; \\ 1, & \text{si } k = n. \end{cases}$$

El conjunto $E=\{e^n:n\geq 1\}\subseteq \ell^\infty$ es discreto, cerrado y acotado, pero no es compacto.

1.4. Si (X,d) es un espacio métrico compacto y $\mathscr{U} = \{U_i : i \in I\}$ es un cubrimiento abierto de X, un número $\varepsilon > 0$ es un *número de Lebesgue* para \mathscr{U} si para todo $x \in X$ existe $i \in I$ tal que $B(x,\varepsilon) \subseteq U_i$.

Muestre que todo cubrimiento de un espacio métrico compacto posee un número de Lebesgue.

- **1.5.** Sea (X, d) un espacio métrico.
- (*a*) Toda unión finita y toda intersección (finita o infinita) de subconjuntos compactos de *S* es compacta.
- (b) Si (X, d) es compacto, todo subconjunto cerrado de X es compacto.
- (c) Un subconjunto $F \subseteq X$ es cerrado sii para todo compacto $K \subseteq X$ la intersección $F \cap K$ es cerrada.
- **1.6.** Sea $c_0 = \{(x)_{n \geq 1} \in \mathbb{R}^{\mathbb{N}} : | \text{ifm}_{n \to \infty} x_n = 0 \}$. Notemos que $c_0 \subseteq \ell^{\infty}$, así que podemos considerar a x_0 como un subespacio métrico de ℓ^{∞} con la métrica d_{∞} .
- (a) Si $x \in c_0$, entonces la bola cerrada B[x, 1] no es compacta.
- (b) El espacio (c_0, d_∞) es separable.
- **1.7.** Sean (X, d_X) e (Y, d_Y) dos espacios métricos. El espacio $(X \times Y, d_\infty)$ es compacto sii (X, d_X) e (Y, d_Y) lo son.
- **1.8.** Un subconjunto compacto y no vacío de \mathbb{R} tiene máximo y mínimo.
- **1.9.** Sea (X,d) un espacio métrico y sea $A \subseteq X$ un compacto. Si $f: A \to \mathbb{R}$ es continua y f(x) > 0 para todo $x \in A$, entonces existe c > 0 tal que $f(x) \ge c$ para todo $x \in A$.

- **1.10.** Sea (X, d) un espacio métrico.
- (a) Sea $K \subseteq X$ un compacto y sea $x \in X \setminus K$. Entonces existe $y \in K$ tal que d(x,K) = d(x,y).
- (b) Si $F, K \subseteq X$ son subconjuntos disjuntos tales que F es cerrado y K es compacto, entonces d(F,K) > 0.
- (c) Si K_1 , $K_2 \subseteq X$ son compactos disjuntos, entonces existen $x_1 \in K_1$ y $x_2 \in K_2$ tales que $d(K_1, K_2) = d(x_1, x_2)$.
- **1.11.** Sea (X,d) un espacio métrico compacto y sea $f:X\to\mathbb{R}$ una función superiormente semicontinua. Entonces f está acotada superiormente en X y alcanza su máximo.
- **1.12.** Sean (X, d_X) e (Y, d_Y) dos espacios métricos y sea $f: X \to Y$ una función continua y biyectiva. Si (X, d_X) es compacto, entonces f es un homeomorfismo.
- **1.13.** Sea (X, d) un espacio métrico compacto. Para cada espacio métrico (Y, d') la proyección $\pi: X \times Y \to Y$ es cerrada, si dotamos a $X \times Y$ de su métrica d_{∞} .
- **1.14.** Sean (X, d_X) e (Y, d_Y) dos espacios métricos y sea $f: X \to Y$ una función. Si Y es compacto y el gráfico de f es cerrado en $(X \times Y, d_{\infty})$, entonces f es continua.
- **1.15.** Sea $f : \mathbb{R} \to \mathbb{R}$ una función continua y abierta.
- (a) La función f no posee extremos locales.
- (b) Existen $a, b \in \mathbb{R} \cup \{-\infty, \infty\}$ tales que $f(\mathbb{R}) = (a, b)$.
- (c) La función $f: \mathbb{R} \to (a, b)$ es un homeomorfismo, y ella y su inversa son monótonas.

Continuidad uniforme

- **2.1.** (*a*) Sean $a, b \in \mathbb{R}$ tales que a < b, y sea $f : [a, \infty) \to \mathbb{R}$ una función que es uniformemente continua en [a, b] y en $[b, \infty)$. Entonces f es uniformemente continua en todo su dominio.
- (b) La función $x \in [0, +\infty) \mapsto \sqrt{x} \in \mathbb{R}$ es uniformemente continua.
- (c) Si $f : \mathbb{R} \to \mathbb{R}$ es continua y $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x) = 0$, entonces f es uniformemente continua.
- **2.2.** Sean (X, d_X) e (Y, d_Y) dos espacios métricos, sea $c \ge 0$ y sea $f: X \to Y$ una función tal que

$$d_Y(f(x_1), f(x_2)) \le cd(x_1, x_2)$$

para cada $x_1, x_2 \in X$. Entonces f es uniformemente continua.

- **2.3.** (a) Sean (X, d_X) e (Y, d_Y) espacios métricos, sea $A \subseteq X$ un subconjunto y sea $f: X \to Y$ una función. Si existen a > 0, $n_0 \in \mathbb{N}$ y sucesiones $(x_n)_{n \ge 1}$ en A tales que
 - $d_X(x_n, y_n) \to 0$ si $n \to \infty$, y
 - $d_Y(f(x_n), f(y_n)) \ge a$ para todo $n \ge n_0$,

entonces f no es uniformemente continua en A.

(b) La función $x \in \mathbb{R} \mapsto x^2 \in \mathbb{R}$ no es uniformemente continua en \mathbb{R} . ¿Lo es en $(-\infty, -\pi]$?

- (c) La función $x \in (0,1) \mapsto \sin(1/x) \in \mathbb{R}$ no es uniformemente continua.
- **2.4.** (a) Si $f: X \to Y$ una función uniformemente continua entre espacios métricos y $(x_n)_{n\geq 1}$ es una sucesión de Cauchy en X, entonces $(f(x_n))_{n\geq 1}$ es una sucesión de Cauchy en Y.
- (*b*) Sea $f:(X,d_X) \to (Y,d_Y)$ un homeomorfismo uniforme. Entonces (X,d_X) es completo sii (Y,d_Y) lo es.

Notemos que se sigue de esto que un espacio métrico es completo para una métrica sii lo es para cualquier otra métrica uniformemente equivalente.

- **2.5.** (*a*) Dé un ejemplo de una función $f: \mathbb{R} \to \mathbb{R}$ que sea acotada y continua pero no uniformemente continua.
- (b) Dé un ejemplo de una función $f:\mathbb{R}\to\mathbb{R}$ uniformemente continua y no acotada
- **2.6.** Si $f:(X,d_X) \to (Y,d_Y)$ es una función uniformemente continua y $A, B \subseteq X$ son conjuntos no vacíos tales que $d_X(A,B) = 0$, entonces $d_Y(f(A),f(B)) = 0$.
- **2.7.** Sean X e Y espacios métricos y supongamos que Y es completo. Sea $D \subseteq X$ un subconjunto denso y sea $f:D \to Y$ una función uniformemente continua. Entonces existe una única extensión continua $\overline{f}:X \to Y$ de f, esto es, existe una única función continua $\overline{f}:X \to Y$ tal que $\overline{f}|_D=f$. Más aún, la función \overline{f} es uniformemente continua.

Pavel Sergeevich Aleksandrov 1896–1982, Rusia/Unión Soviética

Junto con Pavel Urysohn, Aleksandrov introdujo en 1929 la noción moderna de compacidad.