CÁLCULO AVANZADO Primer Cuatrimestre — 2010

Práctica 10: Diferenciación

Diferenciación

1.1. Sea $f:\mathbb{R}\to\mathbb{R}$ una función derivable tal que f' es acotada. Entonces f es uniformemente continua.

Solución. Por hipótesis, existe $K \geq 0$ tal que $|f'(x)| \leq K$ para todo $x \in \mathbb{R}$. Sea $\varepsilon > 0$. Si $x, y \in \mathbb{R}$ son tales que x < y y $|x - y| < \varepsilon/K$, entonces del teorema de Lagrange existe $\xi \in (x,y)$ tal que $f(y) - f(x) = f'(\xi)(y-x)$. Pero entonces $|f(y) - f(x)| = |f'(\xi)||x - y| \leq K\varepsilon/K = \varepsilon$. Vemos que f es uniformemente continua, como queríamos.

- **1.2.** Sea $f:(a,b)\to\mathbb{R}$ una función continua y derivable en $(a,b)\setminus\{x_0\}$. Supongamos además que los límites laterales de f' en x_0 existen y son finitos.
- (a) f es derivable lateralmente en x_0 . Más aún, si ambos límites laterales coinciden, entonces f es derivable en x_0 ; determine $f'(x_0)$ en ese caso.
- (b) Los resultados de la parte anterior dejan de ser válidos si se omite la hipótesis de continuidad de f en x_0 .

Solución. (a) Veamos que existe la derivada por derecha en x_0 ; la existencia de la derivada por izquierda es por supuesto similar. Sea $\alpha = \lim_{x \to \infty} f'(x)$.

Sea $\varepsilon > 0$. Como $f'(x) \to \alpha$ cuando $x \downarrow x_0$, existe $\delta > 0$ tal que

$$0 < h < \delta \implies |f'(x_0 + h) - \alpha| < \varepsilon$$
.

Sea $h \in (0, \delta)$. La continuidad de f en x_0 implica que existe $k \in (0, h)$ tal que $|f(x_0 + k) - f(x_0)| < \varepsilon/h$ y $|\alpha k| < h\varepsilon$. Es inmediato verificar que

$$\frac{f(x_0 + h) - f(x_0)}{h} - \alpha = \left(\frac{f(x_0 + h) - f(x_0 + k)}{h - k} - \alpha\right) \frac{h - k}{h} + \frac{f(k) - f(x_0)}{h} - \alpha \frac{k}{h}.$$

Existe $\xi \in (k, h)$ tal que $f(x_0 + h) - f(x_0 + k) = f'(\xi)(h - k)$, así que

$$\left| \frac{f(x_0 + h) - f(x_0 + k)}{h - k} - \alpha \right| \le |f'(\xi) - \alpha| < \varepsilon,$$

y usando esto vemos que

$$\left| \frac{f(x_0 + h) - f(x_0)}{h} - \alpha \right| \le \left| \frac{f(x_0 + h) - f(x_0 + k)}{h - k} - \alpha \right| \frac{h - k}{h} + \frac{|f(k) - f(x_0)|}{h} + |\alpha| \frac{k}{h} \le 3\varepsilon$$

por que 0 < (h-k)/h < 1, $|f(k)-f(x_0)| < \varepsilon/h$ y $|\alpha k|/h\varepsilon$. Concluimos así que

$$\lim_{h\downarrow 0} \frac{f(x_0+h)-f(x_0)}{h} = \alpha,$$

esto es, que f es derivable a derecha en x_0 , como queríamos.

Es inmediado que si los límites laterales $\lim_{h\downarrow} f'(x_0 + h)$ y $\lim_{h\uparrow 0} f'(x_0 + h)$ existen y tienen el mismo valor α , entonces f es derivable a derecha y a izquierda en x_0 , y que ambas derivadas laterales valen α . Esto implica, por supuesto, que f es de hecho derivable en x_0 con derivada $f'(x_0) = \alpha$.

(b) Sea $f:(-1,1)\to\mathbb{R}$ tal que f(x)=0 si x<0 y f(x)=1 si $x\ge 1$. Es evidente que f es derivable en $(-1,1)\setminus\{0\}$, y que existen los límites $\lim_{h\downarrow 0}f'(h)$ y $\lim_{h\uparrow 0}f'(h)$, con el mismo valor finito. Pero f no es derivable en 0, ya que ni siquiera es allí continua.

- **1.3.** Sean $\alpha < a < b < \beta$ y $f : [\alpha, \beta] \to \mathbb{R}$ una función derivable en (α, β) tal que $f'(a) \neq f'(b)$.
- (a) Si f'(a) < 0 < f'(b), entonces existe $c \in (a, b)$ tal que f'(c) = 0.
- (b) Si $\lambda \in \mathbb{R}$ es tal que $f'(a) < \lambda < f'(b)$, entonces existe $d \in (a,b)$ tal que $f'(d) = \lambda$.
- (c) Sea $g:(-1,1) \to \mathbb{R}^2$ tal que

$$g(t) = \begin{cases} (t^2 \sin \frac{1}{t}, t^2 \cos \frac{1}{t}), & \text{si } 0 < t < 1; \\ (0, 0), & \text{si } -1 < t \le 0; \end{cases}$$

Entonces g es derivable en (-1,1) pero g'((-1,1)) no es conexo.

Solución. (a) Como f es continua en [a,b], existe $c \in [a,b]$ tal que $f(c) \le f(x)$ para todo $x \in [a,b]$. Como $f'(a) = \lim_{h\downarrow 0} (f(a+h)-f(a))/h < 0$, existe a < x < b tal que f(x) < f(a). Esto implica que f(c) < f(a) y, en particular, que $c \ne a$. De la misma forma, como f'(b) > 0 es $c \ne b$, y vemos entonces que $c \in (a,b)$. Para terminar, mostremos que f'(c) = 0. Si $0 < h \ll 1$, es $(f(c+h)-f(c))/h \ge 0$, así que la derivada a derecha de f en $f'(c) \ge 0$, y como f'(c) = f'(c) = f'(c), vemos que f'(c) = 0.

- (b) Esto sigue de aplicar (a) a la función $g: x \in [\alpha, \beta] \mapsto f(x) \lambda x \in \mathbb{R}$.
- (c) Es inmediato que g es derivable en (-1,0) y en (0,1), y que la derivada a izquierda en 0 existe y es nula. Para ver que g es derivable, resta entonces mostrar que

$$\lim_{h\downarrow 0}\frac{g(h)-g(0)}{h}=\lim_{h\downarrow 0}\frac{1}{h}(h^2\sin\tfrac{1}{h},h^2\cos\tfrac{1}{h})=\lim_{h\downarrow 0}(h\sin\tfrac{1}{h},h\cos\tfrac{1}{h})=0,$$

lo que sigue inmediatamente de que $\|(h \sin \frac{1}{h}, h \cos \frac{1}{h})\| \le h \text{ si } 0 < h.$

Sea $t \in (0,1)$. Es $g'(t) = (2t \sin \frac{1}{t} - \cos \frac{\Gamma}{t}, 2t \cos \frac{1}{t} + \sin \frac{1}{t})$, y un cálculo directo muestra que $\|g'(t)\|^2 = 1 + 4t^2 > 1$. Si $\Gamma = g'((-1,1))$, con esto vemos que $\Gamma \cap (\mathbb{R}^2 \setminus B(0,1) \neq \emptyset$ y que $\Gamma \cap B(0,1) = \{(0,0)\}$. Se sigue inmediatamente que Γ no es conexo.

1.4. Sea $A \subseteq \mathbb{R}^n$ un abierto no vacío y sea $f: A \to \mathbb{R}^n$. Si f es diferenciable en x_0 , entonces existen $\delta > 0$ y $c \ge 0$ tales que $B(x_0, \delta) \subseteq A$ y $||f(x) - f(x_0)|| \le c||x - x_0||$ para todo $x \in B(x_0, \delta)$.

Solución. Como f es diferenciable en x_0 , existe una función lineal $T: \mathbb{R}^n \to \mathbb{R}^n$ tal que

$$\lim_{x \to x_0} \frac{f(x) - f(x_0) - T(x - x_0)}{\|x - x_0\|} = 0.$$

Sabemos que T es continua, así que existe $K \ge 0$ tal que $||Tx|| \le K||x||$ para todo $x \in \mathbb{R}^n$. Existe $\delta > 0$ tal que $B(x_0, \delta) \subseteq A$ y

$$x \in B(x_0, \delta) \implies ||f(x) - f(x_0) - T(x - x_0)|| \le ||x - x_0||,$$

y entonces si $x \in B(x_0, \delta)$ tenemos que

$$||f(x)-f(x_0)|| \le ||f(x)-f(x_0)-T(x-x_0)|| + ||T(x-x_0)|| \le (1+K)||x-x_0||.$$

Podemos entonces tomar c = 1 + K.

- **1.5.** Sean $x_1, x_2 \in \mathbb{R}^n$ y sea $A \subseteq \mathbb{R}^N$ un abierto que contiene al segmento S que une x_1 y x_2 .
- (a) Si $f: A \to \mathbb{R}$ una función diferenciable, entonces existe x en el segmento S tal que $f(x_1) f(x_2) = Df(x)(x_1 x_2)$.
- (b) Sin embargo, esto es falso para una función $f: A \to \mathbb{R}^m$.
- (c) Si $f: A \to \mathbb{R}^m$ es una función diferenciable tal que $||Df(x)|| \le M$ para todo $x \in A$, entonces $||f(x_1) f(x_2)|| \le M||x_1 x_2||$.

Solución. (a) Consideremos la función $\gamma: t \in \mathbb{R} \mapsto (1-t)x_2 + tx_1 \in \mathbb{R}^n$. Como A es abierto y el segmente de x_1 a x_2 está contenido en A, es claro que existe $\varepsilon > 0$ tal que $\gamma((-\varepsilon, 1+\varepsilon)) \subseteq A$. La función $f \circ \gamma: (-\varepsilon, 1+\varepsilon) \to \mathbb{R}$ es derivable, así que del teorema de Lagrange existe $\tau \in (0,1)$ tal que

$$f(x_1) - f(x_2) = (f \circ \gamma)(1) - (f \circ \gamma)(0) = (f \circ \gamma)'(\tau).$$

Usando la regla de la cadena, vemos que $(f \circ \gamma')(\tau) = Df(\gamma(\tau))\tau'(\tau) = Df(\gamma(\tau))(x_1 - x_2)$. Basta entonces tomar $x = \gamma(\tau)$, que es un punto del segmento que une x_1 con x_2 .

- (b) Consideremos la función $f: t \in \mathbb{R} \mapsto (\cos t, \sin t)\mathbb{R}^2$ y sean $x_1 = 0$ y $x_2 = 2\pi$. Entonces $f(x_1) f(x_2) = 0$ y $x_1 x_2 = 2\pi \neq 0$, pero no existe $x \in (x_1, x_2)$ tal que f'(x) = 0.
- (c) Sean como arriba $\gamma: t \in \mathbb{R} \mapsto (1-t)x_2 + tx_1 \in \mathbb{R}^n$ y $\varepsilon > 0$ tal que $\gamma((-\varepsilon, 1+\varepsilon)) \subseteq A$. Entonces

$$f(x_1) - f(x_2) = \int_0^1 \frac{\mathrm{d}}{\mathrm{d}t} (f \circ \gamma)(t) \, \mathrm{d}t = \int_0^1 Df(\gamma(t)) \gamma'(t) \, \mathrm{d}t.$$

Es $\gamma'(t) = x_1 - x_2$, así que

$$||f(x_1) - f(x_2)|| = \left\| \int_0^1 Df(\gamma(t)) \gamma'(t) dt \right\| \le \int_0^1 ||Df(\gamma(t))|| ||\gamma'(t)|| dt \le M ||x_1 - x_2||.$$

Esta es la desigualdad buscada.

1.6. Sea $A \subseteq \mathbb{R}^n$ un abierto conexo y sea $f: A \to \mathbb{R}^m$ una función diferenciable. Si Df(x) = 0 para todo $x \in A$, entonces f es constante en A.

Solución. Como ||Df(x)|| = 0 para todo $x \in A$, del ejercicio 1.5(c) sabemos que f toma el mismo valor en dos puntos de A que pueden unirse por un segmento totalmente contenido en A. Se sigue de esto inmediatamente que f toma el mismo valor en dos puntos de A que pueden unirse por una poligonal totalmente contienida en A. Sea $x_0 \in A$ y sea C el conjunto de todos los puntos de A que pueden ser unidos a x_0 por una poligonal totalmente contenida en A. Para ver que f es constante en A, bastará entonces mostrar que C = A.

Supongamos que $x \in C$ y sea γ una poligonal totalmente contenida en A que une x_0 con x. Como $x \in A$, existe $\delta > 0$ tal que $B(x, \delta) \subseteq A$. Si $y \in B(x, \delta)$, entonces el segmento σ que une x con y está contenido en A, así que la poligonal que se obtiene concatenando γ con σ es una poligonal totalmente contenida en A que une x_0 con y. Vemos que $y \in C$ y, en definitiva, que $B(x, \delta) \subseteq C$: esto prueba que C es abierto en A. Como A es conexo por hipótesis, para probar que C = A bastará mostrar que C es también cerrado en A.

Sea $(y_n)_{n\geq 1}$ una sucesión de puntos de C que converge a un punto $y\in A$. Como A es abierto, existe $\delta > 0$ tal que $B(y, \delta) \subseteq A$, y como $y_n \to y$, existe $n_0 \in \mathbb{N}$ tal que $y_{n_0} \in B(y, \delta)$. Como hay una poligonal totalmente contenida en A que une a x_0 con y_{n_0} y el segmento que une y_{n_0} con y está contenido en $B(y, \delta) \subseteq A$, vemos que $y \in C$. Esto es, C es cerrado en A. \square

1.7. Sea $A \subseteq \mathbb{R}^n$ un abierto conexo y sea $f: A \to \mathbb{R}^m$ una función tal que

$$||f(x)-f(y)|| \le ||x-y||^2$$

para cada par de puntos $x, y \in A$. Entonces f es constante.

Solución. En vista del ejercicio 1.6, bastará mostrar que f es diferenciable en A y que Df(x) = 0 para todo $x \in A$.

Sea entonces $x \in A$ y sea $T : \mathbb{R}^n \to \mathbb{R}^m$ la aplicación nula. Entonces

$$\frac{\|f(y) - f(x) - T(y - x)\|}{\|y - x\|} = \frac{\|f(y) - f(x)\|}{\|y - x\|} \le \|y - x\|,$$

y es evidente que esto converge a 0 si $y \to x$. Esto nos dice que f es diferenciable en x y que Df(x) = T = 0.

1.8. Una función $f:A\to\mathbb{R}$ definida en un abierto de \mathbb{R}^n y con derivadas parciales acotadas es continua.

Solución. Sea $K \ge 0$ tal que $\left|\frac{\partial f}{\partial x_i}(x)\right| \le K$ si $x \in A$ y $1 \le i \le n$. Sea $x = (x_1, \dots, x_n) \in A$ y sea $\varepsilon > 0$. Sea $\delta > 0$ tal que $B(x, \delta) \subseteq A$ y $2nK\delta < \varepsilon$.

Sea $y = (y_1, ..., y_n) \in B(x, \delta)$ y para cada $i \in \{0, ..., n\}$ sea $z_i = (y_1, ..., y_i, x_{i+1}, ..., x_n)$, de manera que, en particular, $z_0 = x$ y $z_n = y$. Si $0 \le i < n$, usando el teorema de Lagrange para la función

$$t \in [x_{i+1}, y_{i+1}] \mapsto f(y_1, \dots, y_i, t, x_{i+2}, \dots, x_n) \in \mathbb{R}$$

podemos ver inmediatamente que

$$|f(z_{i+1}) - f(z_i)| \le K||z_{i+1} - z_i|| \le 2K\delta,$$

de manera que

$$|f(y)-f(x)| \leq \sum_{i=0}^{n-1} |f(z_{i+1})-f(z_i)| \leq 2Kn\delta < \varepsilon.$$

Esto muestra que f es continua en x.

Teoremas de la Función Inversa y de la Función Implícita

2.1. Sea $f : \mathbb{R} \to \mathbb{R}$ la función tal que

$$f(t) = \begin{cases} t + 2t^2 \sin \frac{1}{t}, & \text{si } t \neq 0; \\ 0, & \text{si } t = 0. \end{cases}$$

Entonces f'(0) = 1 y f' es acotada en (-1, 1), pero sin embargo f no es biyectiva en ningún entorno de 0. En particular, la continuidad de f' en el punto es necesaria en el teorema de la función inversa.

Solución. Es claro que f es derivable en $\mathbb{R} \setminus \{0\}$. Para ver que también es derivable en 0 y que f'(0) = 1 tenemos que mostrar que

$$\lim_{h \to 0} \frac{f(h)}{h} = \lim_{h \to 0} (1 + 2h \sin \frac{1}{h}) = 1,$$

lo que es claro. Para ver que f' es acotada en (-1,1) alcanza con mostrar que es acotada en $(-1,1)\setminus\{0\}$, y allí es

$$|f'(t)| = |4t \sin \frac{1}{t} - 2\cos \frac{1}{t} + 1| \le |4t \sin \frac{1}{t}| + |2\cos \frac{1}{t}| + 1 \le 4 + 2 + 1 = 7.$$

Mostremos, para terminar, que f no es inyectiva en ningún entorno de 0. Para cada $k \ge 0$ sea $\alpha_k = ((k+1/2)\pi)^{-1}$. Entonces

$$f(\alpha_k) = \frac{(k + \frac{1}{2})\pi + 2(-1)^k}{(k + \frac{1}{2})^2\pi^2}.$$

y se puede ver que para todo $k \ge 1$ es $f(\alpha_{2k+1}) < f(\alpha_{2k+2}) < f(\alpha_{2k})$. Como f es continua en $(0,+\infty)$, vemos que para cada $k \ge 1$ existe $\beta_k \in (\alpha_{2k+1},\alpha_{2k})$ tal que $f(\beta_k) = f(\alpha_{2k+2})$. Tenemos que $\alpha_{2k+2} < \beta_k < \alpha_{2k}$ para todo $k \ge 1$ y que $\alpha_{2k} \to 0$ y $\beta_k \to 0$ si $k \to \infty$. Esto muestra que f no es inyectiva en ningún entorno de 0, como queríamos.

- **2.2.** Sea $f: \mathbb{R}^2 \to \mathbb{R}^2$ la función tal que $f(x, y) = (e^x \cos y, e^x \sin y)$.
- (a) f no es inyectiva.
- (*b*) El jacobiano de f es no nulo en todo punto de \mathbb{R}^2 , de manera que f es localmente inyectiva.

Solución. (a) f no es inyectiva porque, por ejemplo, $f(0,0) = f(0,2\pi)$.

(b) Es inmediato calcular que $Jf(x,y) = e^{2x}$, y esto es distinto de cero cualquiera sea $(x,y) \in \mathbb{R}^2$. En particular, el teorema de la función inversa se aplica a f e cualquier punto de \mathbb{R}^2 y, en consecuencia, f es localmente inyectiva.

- **2.3.** Sea U un abierto de \mathbb{R}^n y sea $f: U \to \mathbb{R}^n$ de clase C^1 con jacobiano no nulo en todo U.
- (a) f es abierta.
- (b) Para cada $y \in \mathbb{R}^n$ el conjunto $f^{-1}(y)$ es discreto en U.

Solución. (a) Sea $A\subseteq U$ un abierto. Si $a\in A$, el teorema de la función inversa nos dice que existe un abierto $U_a\subseteq A$ y un abierto $V_a\subseteq \mathbb{R}^n$ tal que $f(U_a)=V_a$. Entonces $f(A)\supseteq\bigcup_{a\in A}f(U_a)=\bigcup_{a\in A}V_a\supseteq f(A)$, así que $f(A)=\bigcup_{a\in A}V_a$ es un abierto de \mathbb{R}^n . (b) Supongamos que $f^{-1}(y)$ no es discreto en U, y sea $x\in U$ un punto de acumulación

- (b) Supongamos que $f^{-1}(y)$ no es discreto en U, y sea $x \in U$ un punto de acumulación de $f^{-1}(y)$ en U. Como el teorema de la función inversa se aplica a f en x, existe $\delta > 0$ tal que $B(x,\delta) \subseteq U$ y la restricción de f a $B(x,\delta)$ es inyectiva. Por otro lado, como x es un punto de acumulación de $f^{-1}(y)$ y f es continua, f(x) = y y existe $x' \in B(x,\delta) \cap f^{-1}(y)$ distinto de x. Pero entonces f(x) = f(x'), lo que es absurdo.
- **2.4.** Sea $F: \mathbb{R}^2 \to \mathbb{R}$ una función tal que (1,2,0) es solución de la ecuación f(xz,y-2x)=0.
- (a) Determine condiciones suficientes para que existan un entorno $W \subseteq \mathbb{R}^2$ de (1,0) y una función $\phi: W \to \mathbb{R}$ de clase C^1 tales que $\phi(1,0) = 2$ y

$$F(xz, \phi(x,z)-2x)=0$$
 para todo $(x,z) \in W$.

(b) Muestre que

$$x \frac{\partial \phi}{\partial x}(x,z) - y \frac{\partial \phi}{\partial z}(x,z) = 2x \text{ en } W.$$

2.5. Muestre que el sistema de ecuaciones

$$\begin{cases} x^2 + \sin x - y^2 + z^3 = 0, \\ -\log(1+x) + y^2z = 1. \end{cases}$$

define dos funciones y = y(x) y z = z(x) en un entorno del punto (0,1,1). Sean $C \subseteq \mathbb{R}^2$ la curva que define el sistema de ecuaciones considerado, dada en forma paramétrica por $\alpha(x) = (x, y(x), z(x))$, y la función $g(x, y, z) = 2xyz + z\tan x$. Calcular la derivada direcciónal de g en (0,1,1) según el vector tangente a α en el punto x = 0.