TOPOLOGÍA Segundo Cuatrimestre — 2009

Práctica 3: Redes

Ejemplos

- **1.1.** (*a*) Describa las sucesiones convergentes y las redes convergentes en un espacio discreto.
- (b) Describa las sucesiones convergentes y las redes convergentes en un espacio numerable dotado de la topología de los conjuntos cofinitos.
- **1.2.** (a) Describa todas las sucesiones que son subredes de una sucesión dada.
- (b) Muestre que una sucesión tiene subredes que no son subsucesiones.
- **1.3.** (*a*) Dé un ejemplo de un espacio topológico X, de un subconjunto $A \subseteq X$ y de un punto $x \in \overline{A}$ tal que ninguna sucesión en X con valores en A converge a X.
- (*b*) Dé un ejemplo de un espacio topológico que no sea Hausdorff y en el cual toda sucesión convergente converge a exactamente un límite.
- **1.4.** Sea X un conjunto totalmente ordenado y *superiormente completo*, de manera que todo subconjunto $A \subset X$ superiormente acotado y no vacío posee un supremo en X. Consideremos a X dotado de su topología del orden.

Decimos que una red $\phi: I \to X$ es monótona si

$$i \le j \implies \phi(i) \le \phi(j)$$
,

y que es acotada superiormente si

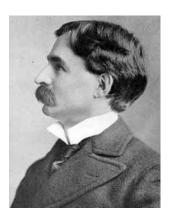
$$\exists c \in X, \forall i \in I, \phi(i) \leq c.$$

Entonces toda red $\phi: I \to X$ que monótona y acotada superiormente converge a un único límite, y ese límite es $\sup \{\phi(i): i \in I\}$.

Aplicaciones

- **2.5.** Sea *X* un espacio topológico.
- (a) Un subconjunto $U \subseteq X$ es abierto sii ninguna red en X con valores en $X \setminus U$ converge a un punto de U.
- (b) Si X satisface el primer axioma de la numerabilidad, entonces un subconjunto $U\subseteq X$ es abierto sii ninguna sucesión en X con valores en $X\setminus U$ converge a un punto de U.
- **2.6.** Sea *X* un espacio topológico.
- (a) Sean $A \subseteq X$ y $x \in X$. Entonces $x \in \overline{A}$ sii existe una red en X con valores en A que converge a x.

- (b) Sean $A \subseteq X$ y $x \in X$. Entonces x es un punto de acumulación de A sii existe una red en X con valores en $A \setminus \{x\}$ que converge a x.
- **2.7.** Un espacio topológico X es Hausdorff sii toda red en X converge a lo sumo a un punto.



Eliakim Hastings Moore 1862–1932, Estados Unidos

Junto con su alumno Herman Lyle Smith introdujo en el trabajo [Moore, E. H.; Smith, H. L. A General Theory of Limits. Amer. J. Math. 44 (1922), no. 2, 102–121] la noción general de convergencia en el sentido de las redes.