Topología

Segundo Cuatrimestre — 2009

Práctica 0: Conjuntos ordenados

1. Principio general de definición recursiva. Sea J un conjunto bien ordenado. Decimos que un subconjunto $S \subseteq J$ es una sección de J si

$$\forall \alpha \in S, \forall \beta \in J, \quad \beta \leq \alpha \implies \beta \in S.$$

En particular, si $\beta \in J$, el conjunto $S_{\beta} = \{\alpha \in J : \alpha < \beta\}$ es una sección de J. Notemos que si S es una sección de J y $\beta \in S$, entonces $S_{\beta} \subseteq S$.

Sea C un conjunto y sea \mathscr{F} el conjunto de todas las funciones $h:S\to C$ cuyo dominio S es una sección de J. Sea, finalmente, $\rho:\mathscr{F}\to C$ una función. Si $h:S\to C$ es un elemento de \mathscr{F} , decimos que h es *compatible* con ρ si

$$h(\alpha) = \rho(h|_{S_{\alpha}})$$

para todo $\alpha \in S$. El objetivo de este ejercicio es mostrar que

existe una función
$$h: J \to C$$
 que es compatible con ρ . (1)

Para verlo:

- (a) Si S es una sección de J y h_1 , $h_2: S \to C$ son funciones compatibles con ρ , entonces $h_1 = h_2$.
- (b) Si $\beta \in J$ y si $h: S_{\beta} \to C$ una función compatible con ρ , entonces existe una función $\bar{h}: S_{\beta} \cup \{\beta\} \to C$ que es compatible con ρ .
- (c) Si $K \subset J$ y si para todo $\alpha \in K$ existe una función $h_\alpha : S_\alpha \to C$ compatible con ρ , entonces existe una función

$$k: \bigcup_{\alpha \in K} S_{\alpha} \to C$$

que es compatible con ρ .

- (d) Para todo $\beta \in J$ existe una función $h_{\beta}: S_{\beta} \to C$ que es compatible con ρ . Sugerencia. Estudie por separado el caso en que β tiene un predecesor inmediato y el caso en que
- (e) Demuestre (1).
- **2.** (a) Sean J y E dos conjuntos bien ordenados y sea $h: J \to E$ una función. Entonces las siguientes afirmaciones son equivalentes:
 - (i) h preserva el orden y su imagen es E o una sección de E.
 - (ii) $h(\alpha) = \min E \setminus h(S_{\alpha})$ para todo $\alpha \in J$.
 - (iii) Para todo $\alpha \in J$ es $h(S_{\alpha}) = S_{h(\alpha)}$.
- (*b*) Si *E* es un conjunto bien ordenado, entonces el tipo de orden de una sección propia de *E* es distinto del tipo de orden de *E*, y que dos secciones distintas de *E* tienen tipos de orden distintos.

Sugerencia. Dado J, existe a lo sumo una aplicación que preserva el orden de J en E cuya imagen es E o una sección de E.

3. Sean J y E dos conjuntos bien ordenados y sea $k: J \to E$ una función que preserva el orden. Entonces el tipo de orden de J es el de E o el de una sección de E. Sugerencia. Elija $e_0 \in E$, defina $h: J \to E$ mediante la recursión

$$h(\alpha) = \begin{cases} \min(E \setminus h(S_{\alpha})) & \text{si } h(S_{\alpha}) \neq E; \\ e_0 & \text{en caso contrario;} \end{cases}$$

y muestre que $h(\alpha) \le k(\alpha)$ para todo $\alpha \in J$. Concluya de esto que $h(S_\alpha) \ne E$ para todo $\alpha \in J$.

- **4.** Si *A* y *B* son dos conjuntos bien ordenados, entonces se satisface exactamente una de las siguientes tres condiciones:
 - A y B tienen el mismo tipo de orden;
 - *A* tiene el tipo de orden de una seccción de *B*;
 - *B* tiene el tipo de orden de una sección de *A*.

Sugerencia. Construya un conjunto bien ordenado que contenga a A y a B y usar el ejercicio anterior.

- **5.** Sean X un conjunto y sea \mathcal{A} la familia de todos los pares (A, \leq) con A un subconjunto de X y < un buen orden en A. Definimos una relación \leq en \mathcal{A} de manera que $(A, \leq) \leq (A', \leq')$ si (A, \leq) es una sección de (A', \leq') .
- (a) La relación \leq es un orden parcial sobre \mathcal{A} .
- (b) Sea \mathcal{B} una subfamilia de \mathcal{A} totalmente ordenada por \preceq . Sea

$$B' = \bigcup_{(B, \leq) \in \mathscr{B}} B$$

y sea \leq' la unión de las relaciones \leq que aparecen como segunda componente de los elementos de \mathcal{B} . Muestre que (B', \leq') es un conjunto bien ordenado.

- **6.** Usando los ejercicios 1–5 muestre que el principio del máximo es equivalente al teorema del buen orden.
- 7. El objetivo de este ejercicio es demostrar, usando los resultados de los ejercicios 1–5, que el axioma de elección es equivalente al teorema del buen orden.

Sea X un conjunto, sea $\mathscr{P}'(X)$ el conjunto de las partes no vacías de X y sea $c: \mathscr{P}'(X) \to X$ una función de elección fijada, de manera que para cada $T \in \mathscr{P}'(X)$ es $c(T) \in T$. Si T es un subconjunto de X y \leq es una relación sobre T, decimos que (T, \leq) es una *torre* en X si \leq es un buen orden de T y si para cada $x \in T$ se tiene que

$$x=c(X\setminus S_x(T,\leq))$$

con $S_x(T, \leq)$ la sección de (T, \leq) por x.

- (a) Si (T_1, \leq_1) y (T_2, \leq_2) son dos torres en X, entonces o bien estos conjuntos ordenados coinciden, o bien uno de ellos es una sección del otro.
 - Sugerencia. Suponiendo que $h: T_1 \to T_2$ preserva el orden y que $h(T_1)$ es igual a T_2 o a una sección de T_2 , pruebe que h(x) = x para todo $x \in T_1$.
- (*b*) Si (T, \le) es una torre en X y $T \ne X$, entonces que existe una torre en X de la cual (T, \le) es una sección.
- (c) Sea $\{(T_k, \leq_k) : k \in K\}$ la familia de todas las torres de X y sean

$$T = \bigcup_{k \in K} T_k$$
 $y \leq = \bigcup_{k \in K} \leq_k$.

Muestre que (T, \leq) es una torre en X y concluya de esto que T = X.

Ernst Friedrich Ferdinand Zermelo 1871–1953, Alemania