Análisis Compleio

Primer Cuatrimestre — 2009

Práctica 1: Números complejos

Números complejos

1.1. Exprese los siguientes números complejos en la forma a + bi, con $a, b \in \mathbb{R}$:

(a) (i+1)(i-1)(i+3), (d) $\frac{1+i}{i}$,

(f) $(1+i)^{100}$,

(b) $(3-2i)^2$, (c) $\frac{1}{-1+3i}$,

(e) $\frac{2+i}{2-i}$,

(g) $(1+i)^{65} + (1-i)^{65}$.

1.2. Sean z y w dos números complejos. Muestre que:

(a) $\overline{z} = z$ si y sólo si $z \in \mathbb{R}$,

(d) $\operatorname{Re}(z) = \frac{z+\overline{z}}{2}$,

(b) $\overline{z+w} = \overline{z} + \overline{w}$,

(c) $\overline{z.w} = \overline{z}.\overline{w}$,

(e) $\operatorname{Im}(z) = \frac{z-\overline{z}}{2i}$.

- **1.3.** (a) Si $z \in \mathbb{C}$ es raíz del polinomio $a_n X^n + a_{n-1} X^{n-1} + \cdots + a_0 \in \mathbb{C}[X]$, entonces \overline{z} es raíz de $\overline{a}_n X^n + \overline{a}_{n-1} X^{n-1} + \cdots + \overline{a}_0$.
- (b) En particular, si $p \in \mathbb{R}[X]$ es un polinomio con coeficientes reales y $z \in \mathbb{C}$ es una raíz de p, entonces \bar{z} también lo es.
- 1.4. Determine todas las soluciones complejas de la ecuación

$$iz^2 + (3-i)z - (1+2i) = 0.$$

1.5. Si $z \in \mathbb{C}$, el módulo de z es $|z| = \sqrt{z\overline{z}}$. Sean $z, w \in \mathbb{C}$. Entonces:

(a) si z = a + bi, es $|z| = \sqrt{a^2 + b^2}$;

(b) |zw| = |z| |w| y, si $w \neq 0$, $\left| \frac{z}{w} \right| = \frac{|z|}{|w|}$;

(c) $-|z| \le \text{Re}(z) \le |z| \text{ y } -|z| \le \text{Im}(z) \le |z|;$

(d) $|z+w|^2 = |z|^2 + |w|^2 + 2\operatorname{Re}(z\overline{w}) \text{ y } |z-w|^2 = |z|^2 + |w|^2 - 2\operatorname{Re}(z\overline{w});$

(e) $|z+w|^2 + |z-w|^2 = 2(|z|^2 + |w|^2);$

(f) $|z+w| \le |z| + |w| y |z-w| \ge |z| - |w|$.

Interprete geométricamente las igualdades (d) y (e), conocidas como "Teorema del coseno" y "Ley del paralelogramo", respetivamente.

1.6. La función

$$d:(z,w)\in\mathbb{C}\times\mathbb{C}\mapsto|z-w|\in\mathbb{R}$$

es una métrica sobre C.

1.7. Sean $\alpha = a + bi \in \mathbb{C}$ y $c \in \mathbb{R}_{>0}$. Si z = x + yi, encuentre una condición sobre x, y, a, b y c equivalente a la ecuación

$$|z - \alpha| = c$$

y describa el lugar geometrico de sus soluciones.

- 1.8. Describa los siguientes subconjuntos de \mathbb{C} :
- (a) |z-i+3|=5,

(c) $Re(2z+3) \ge 0$,

(b) $|z-i+3| \leq 5$,

(*d*) $Re((1+2i)z) \ge 0$.

Función exponencial y funciones trigonométricas

Definición. La función $\exp: \mathbb{C} \to \mathbb{C}$ es la dada por

$$\exp(z) = e^a \cdot (\cos b + i \sin b)$$

para cada $z = a + bi \in C$. La escribimos también $e^z = \exp(z)$.

- **2.1.** (a) Para todo $z, w \in \mathbb{C}$ se tiene que $e^{w+z} = e^w e^z$.
- (b) Describa el conjunto $\{z \in \mathbb{C} : e^z = 1\}$.
- (c) Si $z, w \in \mathbb{C}$ son tales que $e^z = e^w$, existe $k \in \mathbb{Z}$ tal que $z = w + 2k\pi i$.
- (d) Cualquiera sea $z \in \mathbb{C}$, vale que $e^{\overline{z}} = \overline{e^z}$.
- 2.2. (a) Dé la forma polar de los siguientes números:
 - 1. 1 + i,

3. -3.

- 2. -5i,
- (b) De la forma binomial de los siguientes números:
 - 1. $3e^{i\frac{\pi}{4}}$,

3. $\pi e^{-i\frac{\pi}{3}}$.

- 2. $e^{-i\pi}$
- **2.3.** (a) Para cada $n \in \{2,3,4,5\}$, describa el conjunto de soluciones de la ecuación $z^n = 1$.
- (*b*) Sea $n \in \mathbb{N}$ y $\alpha \in \mathbb{C} \setminus \{0\}$. Hay exactamente n números complejos distintos tales que $z^n = \alpha$.
- **2.4.** (a) La función exp es periódica de período $2\pi i$.
- (b) Describa la imagen por exp de
 - 1. el conjunto $\{z \in \mathbb{C} \mid 0 \leq \operatorname{Im}(z) < 2\pi\}$.
 - 2. el primer cuadrante.
 - 3. la recta $\{t + it : t \in \mathbb{R}\}.$
- **2.5.** (a) Si $\theta \in \mathbb{R}$, entonces $\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$ y $\sin \theta = \frac{e^{i\theta} e^{-i\theta}}{2i}$.

Definición. Generalizando estas igualdades, definimos para $z \in \mathbb{C}$,

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}$$

У

$$\operatorname{sen} z = \frac{e^{iz} - e^{-iz}}{2i}.$$

(b) Para todo $z \in \mathbb{C}$, es

$$\cos^2(z) + \sin^2(z) = 1$$

y

$$e^{iz} = \cos z + i \sin z.$$

- (c) Las funciones sen z y cos z son periódicas de período 2π .
- (d) Las únicas soluciones de las ecuaciones $\cos z = 0$ y $\sin z = 0$ son las soluciones reales usuales.
- (e) Para todo $z \in \mathbb{C}$, $\cos(\overline{z}) = \overline{\cos(z)}$ y $\sin(\overline{z}) = \overline{\sin(z)}$.
- **2.6.** Describa los conjuntos $\{z \in \mathbb{C} : \cos z \in \mathbb{R}\}$ y $\{z \in \mathbb{C} : \sin z \in \mathbb{R}\}$.
- **2.7.** (a) Las funciones cos, sen : $\mathbb{C} \to \mathbb{C}$ son survectivas.
- (b) Encuentre todas las soluciones de la ecuación $\cos z = \frac{5}{4}$.
- **2.8.** Si $a, b, b' \in \mathbb{R}$ y |b| < |b'|, entonces

$$|\cos(a+bi)| < |\cos(a+b'i)|$$

y

$$|\operatorname{sen}(a+bi)| < |\operatorname{sen}(a+b'i)|.$$

2.9. Si $z \in \mathbb{C} \setminus \{1\}$, entonces

$$1+z+\cdots+z^n=\frac{z^{n+1}-1}{z-1}.$$

A partir de esto, dé una fórmula cerrada para la suma

$$1 + \cos \theta + \cdots + \cos n\theta$$

con $0 < \theta < 2\pi$.

2.10. Si a, b > 0, entonces

$$\arctan\Bigl(\frac{1}{a+b}\Bigr)+\arctan\Bigl(\frac{b}{a^2+ab+1}\Bigr)=\arctan\Bigl(\frac{1}{a}\Bigr).$$

Sucesiones de números complejos

- **3.1.** Sea $(z_n)_{n\in\mathbb{N}}$ una sucesión en \mathbb{C} y sea $z\in\mathbb{C}$.
- (a) Pruebe que

$$\lim_{n\to\infty} z_n = z \iff \lim_{n\to\infty} \operatorname{Re}(z_n) = \operatorname{Re}(z) \text{ y } \lim_{n\to\infty} \operatorname{Im}(z_n) = \operatorname{Im}(z).$$

- (b) Si $\lim_{n\to\infty} z_n = z$, entonces $\lim_{n\to\infty} |z_n| = |z|$.
- (c) Dé un ejemplo para mostrar que la afirmación recíproca es falsa.
- (a) Sea $\alpha \in \mathbb{C}$. Determine $\lim_{x\to\infty} \alpha^n$ cuando $|\alpha| < 1$ y cuando $|\alpha| > 1$. ¿Que pasa cuando $|\alpha| = 1$?
- (*b*) Si $\alpha \in \mathbb{C}$ es tal que $|\alpha| < 1$, entonces

$$\lim_{n\to\infty} \left(1+\alpha+\cdots+\alpha^n\right) = \frac{1}{1-\alpha}.$$

3.3. Calcule, en caso de que existan, los límites de las siguientes sucesiones:

(a)
$$\frac{1}{n} \left(\frac{1+i}{2} \right)^n$$
,

(c)
$$\cos(n\pi) + i\frac{\sin(\frac{n}{2})}{n^2}$$

(b)
$$n\left(\frac{1+i}{2}\right)^n$$
,

(c)
$$\cos(n\pi) + i\frac{\sin(\frac{n}{2})}{n^2}$$
,
(d) $(\frac{(-1)^n + 1}{3})^n$, ni^{2n+1} .

3.4. El conjunto de Mandelbrot $\mathcal{M} \subseteq \mathbb{C}$ es el conjunto de los números $c \in \mathbb{C}$ para los cuales es acotada la sucesión $(z_n)_{n>0}$ tal que

$$z_0 = c$$

y

$$z_{n+1} = z_n^2 + c$$

para cada $n \ge 0$. Mostrar que $\mathcal{M} \subseteq \{z \in \mathbb{C} : |z| \le 2\}$.

El plano complejo ampliado y la esfera de Riemann

Definición. Sea $\bar{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ y sea

$$S^2 = (x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = 1\} \subset \mathbb{R}^3$$

la esfera de radio 1 y centro (0,0,0). Sea además $N=(0,0,1)\in S^2$. La proyección estereográfica es la función $\theta:S^2\to \bar{\mathbb{C}}$ definida de la siguiente manera. Es $\theta(N) = \infty$ y, si $P \in S^2 \setminus \{N\}$ y si (a,b,0) es el punto de intersección de la recta \overline{NP} con el plano $\pi = \{(x_1,x_2,x_3) \in \mathbb{R}^3 : x_3 = 0\}$, entonces $\theta(P) = a + bi$.

- **4.1.** (a) Si $(x_1, x_2, x_3) \in S^2 \setminus \{N\}$, entonces $\theta(x_1, x_2, x_3) = \frac{x_1 + ix_2}{1 x_3}$.
- (b) La función θ es biyectiva y su inversa $\varphi: \bar{\mathbb{C}} \to S^2$ es tal que $\varphi(\infty) = N$ y

$$\varphi(z) = \Big(\frac{2\operatorname{Re}(z)}{1+|z|^2}, \frac{2\operatorname{Im}(z)}{1+|z|^2}, \frac{|z|^2-1}{1+|z|^2}\Big)$$

si $z \in \mathbb{C}$.

- (c) Describa los conjuntos $\varphi(\{z \in \mathbb{C} : \text{Re}(z) = 0\})$ y $\varphi(\{z \in \mathbb{C} : \text{Im}(z) = 0\})$.
- **4.2.** Sea \bar{d} la métrica sobre $\bar{\mathbb{C}}$ inducida por la distancia de \mathbb{R}^3 vía θ , de manera que si $z, z' \in \mathbb{C}$, se tiene

$$\bar{d}(z,z') = d(\varphi(z),\varphi(z'))$$

con d es la métrica euclídea de \mathbb{R}^3 .

(a) Si z, $w \in \mathbb{C}$, entonces

$$\bar{d}(z,w)=\frac{2|w-z|}{(1+|z|^2)^{1/2}(1+|w|^2)^{1/2}}$$
 y
$$\bar{d}(z,\infty)=\frac{2}{(1+|z|^2)^{1/2}}.$$

- (b) La función \bar{d} es una métrica en $\bar{\mathbb{C}}$ que, restringida a \mathbb{C} , es equivalente a la métrica usual.
- (c) El espacio métrico $(\widehat{\mathbb{C}}, \overline{d})$ es compacto y, entonces, completo.
- **4.3.** Sea C una circunferencia contenida en 2S . Muestre que si C pasa por N, entonces su imagen por θ es una recta de \mathbb{C} , y que si C no pasa por N entonces su imagen es una circunferencia.

Homografías

Definición. Una *homografía* es una función $T: \bar{\mathbb{C}} \to \bar{\mathbb{C}}$ del tipo

$$T(z) = \frac{az+b}{cz+d}$$

 $con ad - bc \neq 0$.

5.1. ¿Por qué se excluye el caso en que ad - bc = 0 en esta definición?

5.2. El conjunto \mathcal{H} de las homografías es un grupo bajo la composición.

5.3. Sean $z_1, z_2, z_3 \in \bar{\mathbb{C}}$ tres puntos distintos. Entonces existe una única homografía T tal que

$$T(z_1) = 0,$$
 $T(z_2) = 1,$ $T(z_4) = \infty.$

Deduzca de esto que si w_1 , w_2 , $w_3 \in \bar{\mathbb{C}}$ es otra terna de puntos distintos, existe una única homografía que aplica z_1 en w_1 , z_2 en w_2 y z_3 en w_3 .

- **5.4.** (a) Encuentre todas las homografías que transformen
 - (i) los puntos 0, i, -i en 0, 1, ∞ ;
 - (*ii*) los puntos 0, i, -i en 1, -1, 0.
- (b) Muestre que la imagen de la circunferencia de centro 0 y radio 1 por la primera homografía del ítem anterior es la recta $\{Re(z) = 1\}$.
- **5.5.** Si $\alpha \in \mathbb{C}$ es tal que $|\alpha| \neq 1$, entonces la homografía $T \in \mathcal{H}$ tal que

$$T(z) = \frac{z - \alpha}{1 - \overline{\alpha}z}$$

transforma la circunferencia $\{|z|=1\}$ en sí misma y a α en 0.

- **5.6.** Sean A, $B \in GL_2(\mathbb{C})$ dos matrices no singulares que representan a las homografías T_1 y T_2 , respectivamente.
 - (a) ¿Qué homografía representa la matriz AB?

- (b) ¿Qué homografía representa la matriz A^{-1} ?
- (c) ¿Qué homografías representan las matrices diagonales?
- (d) ¿Cuándo dos matrices distintas representan la misma homografía?
- **5.7.** Una homografía $T(z) = \frac{az+b}{cz+d}$ aplica $\bar{\mathbb{R}}$ en $\bar{\mathbb{R}}$ si y sólo si se puede escribir con coeficientes reales.

Definición. Si z_1 , z_2 , z_3 , z_4 son puntos distintos de $\bar{\mathbb{C}}$, la *razón doble* es

$$(z_1, z_2, z_3, z_4) = \frac{z_1 - z_2}{z_1 - z_4} \frac{z_3 - z_4}{z_3 - z_2} \in \bar{\mathbb{C}}$$

5.8. La razón doble (z_1, z_2, z_3, z_4) es la imagen de z_1 bajo la homografía T tal que $T(z_2) = 0$, $T(z_3) = 1$ y $T(z_4) = \infty$.

5.9. (a) Si $T: \bar{\mathbb{C}} \to \bar{\mathbb{C}}$ es una homografía, entonces

$$(T(z_1), T(z_2), T(z_3), T(z_4)) = (z_1, z_2, z_3, z_4)$$

para cada elección de cuatro puntos distintos z_1 , z_2 , z_3 , $z_4 \in \mathbb{C}$.

(*b*) Los puntos z_1 , z_2 , z_3 , z_4 están en una recta o circunferencia de $\mathbb C$ si y sólo si $(z_1, z_2, z_3, z_4) \in \mathbb R$.

Definición. Sea C una recta o circunferencia de $\bar{\mathbb{C}}$ y sean z_2 , z_3 , z_4 tres puntos distintos de C. Dos puntos z y z^* de $\bar{\mathbb{C}}$ son *simétricos respecto de* C sii $\overline{(z,z_2,z_3,z_4)}=(z^*,z_2,z_3,z_4)$.

- **5.10.** (a) La definición anterior depende solamente de C y no de la elección de los tres puntos z_2 , z_3 , z_4 .
- (b) Para cada punto $z \in \bar{\mathbb{C}}$ existe exáctamente un punto $z^* \in \bar{\mathbb{C}}$ simétrico a z respecto de C. Esto nos permite definir una aplicación

$$\sigma_{\mathbb{C}}: z \in \bar{\mathbb{C}} \mapsto z^* \in \bar{\mathbb{C}},$$

a la que llamamos la simetría con respecto a C.

- (c) Si $T: \bar{\mathbb{C}} \to \bar{\mathbb{C}}$ es una homografía tal que $T(\bar{\mathbb{R}}) = C$, entonces $\sigma_C = T \circ T^{-1}$.
- (*d*) Si S es una homografía y z y z^* son puntos simétricos respecto de C, entonces S(z) y $S(z^*)$ son simétricos respecto de S(C).

5.11. Si $C \subset \mathbb{C}$ es una circunferencia y z es su centro, entonces el punto simétrico de z con respecto a C es ∞ .

5.12. Si *C* sea una recta, esta nueva noción de simetría con respecto a *C* coincide con la simetría usual.

5.13. Si z_1 , z_2 y z_3 son tres puntos distintos de \mathbb{C} , entonces existe una única recta o circunferencia que pasa por z_1 y con respecto a la cual z_2 y z_3 son simétricos.

5.14. Encuentre homografías que transformen

- (a) a la circunferencia $\{z \in \mathbb{C} : |z| = 2\}$ en $\{z \in \mathbb{C} : |z+1| = 1\}$ y a los puntos -2 y 0 en 0 e i;
- (b) al semiplano superior $H^+ = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0\}$ en $\{z \in \mathbb{C} : |z| < 1\}$ y a $\alpha \in H^+$ en 0.
- **5.15.** Sea $S(z)=\frac{7z+15}{-2z-4}$. Sea $(z_n)_{n\geq 1}$ la sucesión tal que $z_1=1$ y $z_{n+1}=S(z_n)$ para cada $n\geq 1$. Calcule $\lim_{n\to\infty} z_n$.

Leonhard Euler 1707–1783, Suiza