Complementos / Matemática 2 Matemática 3

Primer Cuatrimestre — 2008

Práctica 3: Bases, cambios de base y matrices

- 1. En contrar las coordenadas de $v \in V$ respecto de la base B en los siguientes casos:
 - a) $V = k^n$, $v = (x_1, ..., x_n)$, B la base canónica.
 - b) $V = \mathbb{R}^3$, v = (1, 2, -1), $B = \{(1, 2, -1), (0, 1, 1), (0, 0, 2)\}$.
 - c) $V = \mathbb{R}^3$, v = (1, -1, 2), $B = \{(1, 2, -1), (2, 1, 3), (1, 3, 2)\}$.
 - d) $V = \mathbb{R}^3$, $v = (x_1, x_2, x_3)$, $B = \{(1, 2, -1), (2, 1, 3), (1, 3, 2)\}$.
 - e) $V = \mathbb{R}[X]_3$, $v = 2X^2 X^3$, $B = \{3, 1 + X, X^2 + 5, X^3 + X^2\}$.
- **2.** Calcular la matriz de cambio de base C(B, B') en los siguientes casos:
 - a) $V = \mathbb{R}^2$, $B = \{(1,1), (1,2)\}$, $B' = \{(-1,3), (2,5)\}$.
 - b) $V = \mathbb{R}^3$, $B = \{(1,1,0), (0,1,1), (1,0,1)\}$, $B' = \{(1,1,1), (2,0,1), (1,1,3)\}$.
 - c) $V = \mathbb{R}[X]_2$, $B = \{(3, 1 + X, X^2), B' = \{1, X + 3, X^2 + 2\}.$
 - d) $V = \mathbb{R}[X]_3$, $B = \{1, X, X^2, X^3\}$, $B' = \{1, 1 + X, (1 + X)^2, (1 + X)^3\}$.
- **3.** Sea V un k-espacio vectorial y sean B_1 , B_2 y B_3 tres bases de V.
 - a) Se tiene que $C(B_1, B_3) = C(B', B'')C(B, B')$.
 - b) La matrix $C(B_1, B_2)$ es inversible.
- **4.** Sea $M = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ y $B = \{v_1, v_2, v_3\}$ una base de \mathbb{R}^3 .
 - a) Encontrar una base B' tal que C(B, B') = M.
 - b) Encontrar una base B' tal que C(B', B) = M.
- **5.** *a*) Mostrar que existe una única transformación lineal $f: \mathbb{R}^2 \to \mathbb{R}^2$ tal que f(1,1) = (-5,3) y f(-1,1) = (5,2). Determinar f(5,3) y f(-1,2).
 - b) ¿Existe una transformación lineal $f: \mathbb{R}^2 \to \mathbb{R}^2$ tal que f(1,1)=(2,6), f(-1,1)=(2,1) y f(2,7)=(5,3)?
 - c) Encontrar todos los $a \in \mathbb{R}$ para los que existe una transformación lineal $f: \mathbb{R}^3 \to \mathbb{R}^3$ que satisface que $f(1,-1,1)=(2,a,-1), f(1,-1,2)=(a^2,-1,1)$ y f(1,-1,-2)=(5,-1,-7).
- **6.** Sean $f: \mathbb{R}^3 \to \mathbb{R}^4$ tal que $f(x_1, x_2, x_3) = (x_1 + x_2, x_1 + x_3, 0, 0)$ y $g: \mathbb{R}^4 \to \mathbb{R}^2$ tal que $g(x_1, x_2, x_3, x_4) = (x_1 x_2, 2x_1 x_2)$. Determinar la imagen y el núcleo de los morfismos f, g y $g \circ f$. Decidir si se trata de monomorfismos, epimorfismos o isomorfismos.
- 7. Determinar si existe—y en ese caso, encontrar explícitamente—una transformación lineal $f: \mathbb{R}^3 \to \mathbb{R}^4$ tal que im f = S y ker f = T en cada uno de los siguientes casos:

- a) $S = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + x_2 x_3 + 2x_4 = 0\}, T = \langle (1, 2, 1) \rangle.$
- b) $S = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 + x_2 = 0, x_3 + x_4 = 0\}, T = \langle (1, -2, 1) \rangle.$
- **8.** En cada uno de los siguientes casos, determine una transformación lineal $f: \mathbb{R}^3 \to \mathbb{R}^3$ que satisfaga las condiciones dadas:
 - a) $(1,1,0) \in \ker f$, dim im f = 1.
 - b) $\ker f \cap \operatorname{im} f = \langle (1,1,2) \rangle$.
 - c) $f \neq 0$, ker $f \subset \text{im } f$.
 - *d*) $f \neq 0, f \circ f = 0.$
 - *e*) $f \neq id$, $f \circ f = id$.
 - f) ker $f \neq 0$, im $f \neq 0$, ker $f \cap \text{im } f = 0$.
- **9.** Encontrar proyectores $f:\mathbb{R}^3 \to \mathbb{R}^3$ que satisfagan las siguientes condiciones:
 - a) im $f = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 0\}.$
 - b) $\ker f = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 0\}.$
 - c) $\ker f = \{(x_1, x_2, x_3) \in \mathbb{R}^2 : 3x_1 x_3 = 0\}, \text{ im } f = \langle (1, 1, 1) \rangle.$
- **10.** Sea *V* un *k*-espacio vectorial.
 - a) Sea $f:V\to V$ un proyector. Mostrar que $V=\ker f\oplus\operatorname{im} f$. Probar además que $g=\operatorname{id} -f$ es un también un proyector de V y determinar su núcleo e imagen.
 - *b*) Sean S y T subespacios de V tales que $V = S \oplus T$. Entonces existe un único proyector $f: V \to V$ tal que $S = \ker f$ y $T = \operatorname{im} f$.
- **11.** *a*) Sean U, V y W tres espacios vectoriales, con bases B, B' y B''. Si $f: V \to W$ y $g: W \to U$ son transformaciones lineales, mostrar que

$$|g \circ f|_{B'',B} = |g|_{B'',B'} |f|_{B',B}.$$

b) Sean U y W espacios vectoriales y sea $f:V\to W$ una transformación lineal. Si B y B' son bases de V y U y U' son bases de W, mostrar que

$$|f|_{U',B'} = C(U,U')|f|_{U,B}C(B',B).$$

12. Sea V un espacio vectorial y sean B y B' dos bases de V. Si $f:V\to V$ es una transformación lineal, mostrar que

$$\operatorname{tr} |f|_{B,B} = \operatorname{tr} |f|_{B',B'}$$
.

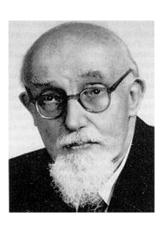
13. Sea V un espacio vectorial de dimensión n y sea $f:V\to V$ una transformación lineal tal que $f^n=0$. Mostrar que existe una base B de V tal que

$$(|f|_B)_{i,j} = \begin{cases} 1, & \text{si } i = j+1; \\ 0, & \text{en otro caso.} \end{cases}$$

14. Sea V un espacio vectorial de dimensión n y sea $f:V\to V$ un proyector. Mostrar que existe un base B de V tal que

$$(|f|_B)_{i,j} =$$

$$\begin{cases} 1, & \text{si } i = j \text{ y } i \leq \dim \operatorname{im} f; \\ 0, & \text{en otro caso.} \end{cases}$$



Georg Karl Wilhelm Hamel 1877–1954, Alemania

Hamel fue el primero en construir una base de $\mathbb R$ como espacio vectorial sobre $\mathbb Q.$