Complementos / Matemática 2

MATEMÁTICA 3

Primer Cuatrimestre — 2008

Segundo parcial

Apellido y nombre:			
Comisión:	. L.U.:	Páginas: .	

1. Sea $V = \mathbb{R}^4$ dotado de su producto interno usual y

$$S = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : 2x_1 + x_2 - x_4 = x_1 + x_2 + 3x_3 = 0\}.$$

- *a*) Encuentre S^{\perp} .
- *b*) Determine la proyección ortogonal $p:V\to V$ con imagen S, dando la matriz de p con respecto a la base canónica.
- c) Encuentre una base ortonormal de *V* que diagonalice a *p*.
- 2. Encuentre la forma normal de Jordan de la matriz

$$A = \begin{pmatrix} 3 & 0 & 1 & 0 & 1 & 0 \\ 1 & 3 & 1 & -1 & 0 & 1 \\ -1 & 0 & 1 & 0 & -1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 1 & 0 & 1 & 0 & 0 & 2 \end{pmatrix}.$$

- 3. Sea V un espacio euclídeo Sea $f:V\to V$ una aplicación lineal autoadjunta. Mostrar que las siguientes afirmaciones son equivalentes:
 - (i) $\langle f(v), v \rangle \ge 0$ para todo $v \in V$;
- (ii) existe $g: V \to V$ tal que $f = g^*g$;
- (iii) existe $h: V \to V$ tal que $h^* = h$ y $f = h^2$.
- **4.** Sea $V = \mathbb{R}[x]_{\leq 2}$ dotado del producto interno dado por

$$\langle f, g \rangle = \int_0^1 f g \, \mathrm{d} x.$$

- *a*) Usando el procedimiento de Gram-Schmidt obtener a partir de la base $\mathcal{B} = \{1, x, x^2\}$ una base ortonormal para V.
- b) Sea $f: p \in V \mapsto p \frac{d^2}{dx}p \in V$. Determine la matriz de f^* en la base \mathcal{B} .