Análisis I

Primer cuatrimestre — 2006

Lista de temas para el examen teórico final

El examen final constará de algunos temas de esta lista más algunos problemas.

I. Funciones de una variable

- 1. Toda función continua en un intervalo cerrado y acotado [a,b] es acotada.
- 2. Toda función continua en un intervalo cerrado y acotado [a,b] alcanza su máximo y su mínimo.
- 3. (a) Si $f : [a,b] \to \mathbb{R}$ es tal que f(a) < 0 < f(b), entonces existe $c \in (a,b)$ tal que f(c) = 0.
 - (b) Corolario: Teorema de valores intermedios.
- 4. Sea $f:(a,b)\to\mathbb{R}$ es derivable en $x_0\in(a,b)$ y x_0 es un máximo o un mínimo, entonces $f'(x_0)=0$.
- 5. Teorema de Rolle: Si $f:[a,b] \to \mathbb{R}$ es continua y derivable en (a,b) y f(a)=f(b), entonces existe $c\in(a,b)$ tal que f'(c)=0.
- 6. Teorema de Lagrange: Si $f:[a,b]\to\mathbb{R}$ es continua y derivable en (a,b), entonces existe $c\in(a,b)$ tal que

$$f(b) - f(a) = f'(c)(b - a).$$

7. Teorema de Cauchy: Si f, g: $[a,b] \to \mathbb{R}$ son continuas y deri- vables en (a,b), existe $c \in (a,b)$ tal que

$$(f(b) - f(a))g'(c) = (g(b) - g(a))f'(c).$$

8. Fórmula de Taylor y expresión de Lagrange para el resto.

II. Series

- 1. Criterio de Cauchy o de la raíz.
- 2. Criterio de D'Alembert o del cociente.
- 3. Criterio de Leibniz para series alternadas.
- 4. Existencia del radio de convergencia de una serie de potencias.

III. Funciones de varias variables

- 1. Si una función es diferenciable en (x_0, y_0) , entonces es continua en (x_0, y_0) .
- 2. Sea B una bola abierta alrededor del punto (x_0, y_0) tal que para todo $(x, y) \in B$ existen las derivadas parciales $\frac{\partial f}{\partial x}(x, y)$ y $\frac{\partial f}{\partial y}(x, y)$ y son continuas en (x_0, y_0) . Entonces f es diferenciable en (x_0, y_0) .
- 3. Teorema del valor medio para funciones diferenciables en varias variables.
- 4. Sea $f: \mathbb{R}^n \to \mathbb{R}$ diferenciable en un punto $P \in \mathbb{R}^n$ y sea $v \in \mathbb{R}^n$ con $\|v\| = 1$. Entonces $\frac{\partial f}{\partial v}(P)$ existe y es igual a $\nabla f \cdot v$.
- 5. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ tal que todas las derivadas de segundo orden existen y son continuas en una bola B alrededor de un punto P. Entonces $\frac{\partial^2 f}{\partial y \partial x}(P) = \frac{\partial^2 f}{\partial x \partial y}(P)$.
- 6. Fórmula de Taylor de segundo orden y expresión del resto en términos de las derivadas de tercer orden para una función C^3 de dos variables.
- 7. Si $f: \mathbb{R}^2 \to \mathbb{R}$ diferenciable en P y P es un extremo local de f, entonces $\nabla f(P) = 0$.
- 8. Criterio de la matriz Hessiana para la determinación de extermos de funciones de dos variables.