Álgebra Lineal — 2005

Práctica III: Dependencia lineal y bases

- Decidir si los siguientes conjuntos son linealmente independientes o no. En caso no serlo, determine que elementos pueden eliminarse de manera que el conjunto residual sea linealmente independientes y genere el mismo subespacio que el conjunto original. Finalmente, complete cada conjunto a una base del espacio ambiente.
 - a) $\{(1,2,3),(1,2,4),(1,2,5)\}$ en \mathbb{R}^3 .
 - b) $\{(1,0,-1),(1,1,2),(0,1,1)\}$ en \mathbb{C}^3 .
 - c) $\{(1,1,2),(1,4,3),(3,3,3),(e,\pi,\sqrt{2})\}$ en \mathbb{R}^3 .
 - *d*) $\{(1,1,1), (1,\alpha,\alpha^2), (1,\beta,\beta^2)\}$ en \mathbb{R}^3 con $\alpha,\beta \in \mathbb{R}$.
 - *e*) $\{(1,1,1,1),(1,\alpha,\alpha^2,\alpha^3),(1,\beta,\beta^2,\beta^3)\}$ en \mathbb{R}^4 con $\alpha,\beta,\gamma\in\mathbb{R}$.
 - f) $\{(\frac{1}{2}(X-1)(X-2),(X-1)(X-3),(X-2)(X-3)\}\$ en $\mathbb{R}[X]_2$.
 - g) $\left\{ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & i \\ 1 & i \end{pmatrix}, \begin{pmatrix} 0 & i \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\}$ en $M_4(\mathbb{C})$.
- 2. Determinar todos los $\lambda \in k$ de manera que los siguientes conjuntos resulten linealmente independientes:
 - a) $\{(1,2,k),(1,1,1),(0,1,1-k)\}$ en \mathbb{R}^3 .
 - b) $\{kX^2 + X, -X^2 + k, k^2X\}$ en $\mathbb{R}[X]_4$.
 - c) $\left\{ \begin{pmatrix} 1 & k \\ -1 & 2 \end{pmatrix}, \begin{pmatrix} k & 1 \\ 0 & 2k \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right\} \text{ en } M_4(\mathbb{C}).$
- 3. Encuentre bases para los siguientes espacios vectoriales
 - a) $V = \{A \in M_{n \times n}(\mathbb{R}) : A = A^t\}$ sobre \mathbb{R} .
 - b) $V = \{A \in M_{n \times n}(\mathbb{C}) : A = \bar{A}^t\}$ sobre \mathbb{R} .
 - c) $V = \{A \in M_{n \times n}(\mathbb{C}) : \operatorname{tr} A = 0\}$ sobre \mathbb{R} .
 - *d*) $V = \{(a_n)_{n \in \mathbb{N}_0} \in \mathbb{R}^{\mathbb{N}_0} : \forall n \in \mathbb{N}_0, a_{n+1} = 2a_n\}$ sobre \mathbb{R} .
 - e) $V = \{(a_n)_{n \in \mathbb{N}_0} \in \mathbb{R}^{\mathbb{N}_0} : \forall n \in \mathbb{N}_0, a_{n+2} = a_{n+1} + a_n\} \text{ sobre } \mathbb{R}.$
 - f) $V = \{ p \in \mathbb{R}[X]_n : p(0) = p(1) = 0 \}$ sobre \mathbb{R} .
 - g) $V = \{ p \in \mathbb{R}[X]_n : p(0) = p'(1) = 0 \}$ sobre \mathbb{R} .
- 4. Sea $v_i = (a_{i1}, \ldots, a_{in}) \in \mathbb{R}^n$ si $1 \le i \le n$, y supongamos que $a_{ij} \le 0$ si $i \ne j$, y que $\sum_{j=1}^n a_{ij} > 0$. Mostrar que $\{v_i\}_{1 \le i \le n}$ es una base de \mathbb{R}^n .

1

- 5. Sea $F = \{f_i\}_{i \in \mathbb{N}_0} \subset \mathbb{R}[X]$ tal que deg $f_i = i$ si $i \in \mathbb{N}_0$. Mostrar que F es una base de $\mathbb{R}[X]$.
- 6. Sea $\alpha_i \in k$ para $1 \le i \le n$, y sea

$$v_i = (1, \alpha_i, \alpha_i^2, \dots, \alpha_i^{n-1}) \in k^n.$$

Determinar cuando $\{v_1, \ldots, v_n\}$ es linealmente independiente en k^n .

- 7. Sea *V* un espacio vectorial sobre *k*.
 - a) $\{v_1,\ldots,v_i,\ldots,v_j,\ldots,v_n\}\subset V$ es linealmente independiente sii el conjunto $\{v_1,\ldots,v_j,\ldots,v_i,\ldots,v_n\}$ es linealmente independiente.
 - *b*) Si $\lambda \in k \setminus \{0\}, \{v_1, \dots, v_i, \dots, v_n\} \subset V$ es linealmente sii el conjunto $\{v_1, \dots, \lambda v_i, \dots, v_n\}$ es linealmente independiente.
 - c) Si $\lambda \in k$, $\{v_1, \ldots, v_i, \ldots, v_j, \ldots, v_n\} \subset V$ es linealmente independiente sii el conjunto $\{v_1, \ldots, v_i + \lambda v_j, \ldots, v_j, \ldots, v_n\}$