Álgebra Lineal — 2005

Práctica I: Generalidades

- 1. Sea *V* un espacio vectorial sobre *k*. Mostrar las siguientes afirmaciones:
 - a) $0v = 0, \forall v \in V$;
 - *b*) $\lambda 0 = 0, \forall \lambda \in k$;
 - c) $(-1)v = v, \forall v \in V;$
 - $d) (-v) = v, \forall v \in V;$
 - *e*) $\lambda v = 0 \Rightarrow \lambda = 0 \lor v = 0$;
 - f) -0 = 0.
- 2. *a*) Sea X un conjunto no vacío. Sea $k^X = \{f : X \to k\}$ el conjunto de todas las funciones de X a k. Mostrar que las operaciones

$$(f+g)(x) = f(x) + g(x)$$
$$(\lambda \cdot f)(x) = \lambda f(x)$$

hacen de k^X un espacio vectorial sobre k.

Decimos que estas operaciones están definidas punto a punto.

- b) ¿Bajo que condiciones es k^X de dimensión finita? Cuando se cumplen, encuentre una base.
- 3. Sea $X \subset \mathbb{R}$ un abierto no vacío. Muestre que los siguientes conjuntos son espacios vectoriales sobre \mathbb{R} .
 - a) $C^{\infty}(X) = \{f : X \to \mathbb{R} : f \text{ es infinitamente diferenciable}\};$
 - b) \mathbb{R}^X :
 - c) $C^0(X) = \{f : X \to \mathbb{R} : f \text{ es continua}\};$
 - d) $L = \{ f \in C^1(X) : \forall x \in X, f'(x) = f(x) \};$
 - e) $C^0(X) = \{f : X \to \mathbb{R} : f \text{ es derivable}\};$
 - f) $V(x_0) = \{ f \in C^1(X) : \forall x \in X, f(x_0) + 3f'(x_0) \} \text{ para } x_0 \in X.$

Determine todas las inclusiones entre estos espacios.

- 4. Sea X un conjunto no vacío, V un espacio vectorial sobre k y sea $V^X = \{f: X \to V\}$, el conjunto de todas las funciones de X en V.
 - *a*) Mostrar que es posible definir sobre V^X operaciones de suma y de producto por elementos de k de forma natural, de manera de que V^X resulte, con respecto a esas operaciones, un espacio vectorial sobre k.

- *b*) Si $Y \subset X$ es un subconjunto no vacío, ¿puede verse a V^Y como supespacio de V^X ?
- *c*) Si $W \subset V$ es un subespacio vectorial, ¿puede verse a W^X como subespacio de V^X ?
- 5. Sea $A \in M_{n,m}(k)$ una matrix $n \times m$ con coeficientes en k, y sea $S = \{x \in k^m : Ax = 0\}$ el conjunto de soluciones del sistema lineal homogéneo asociado a A.

Muestre que S es un subespacio vectorial de k^m .

- 6. Sean *S* y *T* subespacios de un *k*-espacio vectorial *V*.
 - a) $S \cap T$ es un subespacio de V.
 - *b*) Si $S \cup T$ es un subespacio de V entonces $S \subset T$ ó $T \subset S$.
- 7. Decidir cuales de los siguientes subconjuntos S son sub-k-espacios de V

a)
$$S = \{v \in \mathbb{R}^3 : v = a \cdot (1,0,0) + b \cdot (1,1,1), \text{ con } a, b \in \mathbb{R}\}, V = \mathbb{R}^3, k = \mathbb{R};$$

- *b*) $S = \{ai : a \in \mathbb{R}\}, V = \mathbb{C}, k = \mathbb{R};$
- c) $S = \{ai : a \in \mathbb{R}\}, V = \mathbb{C}, k = \mathbb{C};$
- *d*) $S = \{ f \in k[X] : f = 0 \lor \deg f \ge 2 \}, V = k[X];$
- *e*) $S = \{ f \in k[X] : f = 0 \lor \deg f \le 5 \}, V = k[X];$
- f) $S = \{M \in M_{4,4}(k) : M^t = M\}, V = M_{4,4}(k);$
- g) $S = \{M \in M_{4,4}(k) : \text{tr } M = 0\}, V = M_{4,4}(k);$
- h) $S = \{ f \in C^{\infty}(\mathbb{R}) : f''(1) = f(2) \}, V = \mathbb{R}^{\mathbb{R}}, k = \mathbb{R}.$