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1. GROWTH MODELS AND INTERACTING PARTICLE SYSTEMS

1.1. The corner growth model. Let p ∈ (1/2,1] and take q = 1− p ∈ [0,1/2). Let H be
the space of decreasing functions ζ : Z→ Z. On the state space H we define a process,
which we call the corner growth process, as follows. Let {Nx

t ; t ≥ 0}x∈Z a sequence of
independent, standard Poisson processes. We call the process {Nx

t ; t ≥ 0} the clock process
at column x ∈ Z. Let us denote by {σ x

n ;n ∈ N} the sequence of successive jump times
of the process {Nx

t ; t ≥ 0}. Let {κx
n ;n ∈ N,x ∈ Z} a sequence of i.i.d. random variables,

independent of the Poisson processes {Nx
t ; t ≥ 0}, such that P(κx

n = +1) = p and P(κx
n =

−1) = q. Let {ζt(x); t ≥ 0,x ∈ Z} be the Markov process with values in H constructed in
the following way. At each jump time σ x

n , we read the value of κx
n . If κx

n = +1, then we
define

ζσx
n (x) = min{ζσ x

n−(x−1),ζσx
n−(x)+1}

and we define ζσ x
n (y) = ζσ x

n−(y) for y 6= x. If κx
n =−1, we define

ζσx
n (x) = max{ζσ x

n−(x)−1,ζσx
n−(x+1)}

and ζσ x
n (y) = ζσx

n−(y) for y 6= x. The reader with some familiarity on interacting particle
systems may recognize in these lines what is called the graphical construction of the pro-
cess {ζt ; t ≥ 0}. We call ζt ∈ H the height function of an interface, and we call ζt(x) the
height of the interface at column x ∈ Z. This model is called the corner growth model,
since growth (and decrease) can happen only at corners of the interface. Let us explain the
construction of the process {ζt ; t ≥ 0} in an informal way. At each column x ∈ Z we wait
an exponential time of rate 1. At the end of this exponential time, we decide to move the
column up with probability p and to move the column down with probability q. The mo-
tion is accomplished if and only if the resulting height function is in H. Otherwise nothing
happens. This procedure is done independently at each column x ∈ Z.

We say that a height function ζ (x) is eventually flat if there exist integers M−, M+ such
that ζ (x) = ζ (M−) for any x ≤ M− and such that ζ (x) = ζ (M+) for any x ≥ M+. If the
initial profile ζ0 of the corner growth process is eventually flat, it is easy to check that the
process {ζt ; t ≥ 0} is well-defined. In fact, in that case, at any time t ≥ 0 there are at most
M+−M− columns on which the process ζt may change. Therefore, {ζt ; t ≥ 0} corresponds
to a continuous-time Markov chain in a denumerable state space, on which jumps occur
with rate at most M+−M−. In particular, there are no explosions to take care of. The
situation for an arbitrary initial height ζ0 is more delicate. One possibility is to verify
that the graphical construction described above can be carried out for any initial height
ζ0 ∈H. Another option is to verify that the construction of interacting particle systems due
to Liggett (see Chap. 1 of [Lig]) applies in our situation. Both alternatives have advantages
and disadvantages. There is an interesting bijection between the corner growth model and
the so-called asymmetric simple exclusion process. This relation will be described in detail
in Section 1.2. At this point, we only point out that Liggett’s construction of the exclusion
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process allows to show that for any initial height ζ0, the process {ζt ; t ≥ 0} constructed
above is a well-defined, strong Markov process with state space H.

In various applications, the corner growth model is defined on the semi-line N0 =
{0,1, ...}. 1 The graphical construction can be carried out in that case with just one mod-
ification: at the column x = 0, there is no restriction on growth, that is, if κ0

n = +1, then
we put ησ0

n
(0) = ησ0

n−(0)+1. The corner growth on the semi-line N0 can be thought as a
corner growth model on Z, on which we define ζ0(x) = +∞ for any x < 0 (and therefore
ζt(x) = +∞ for any t ≥ 0, and any x < 0). The corner growth model on the semi-line
{...,−1,0} can be defined in a similar way.

1.2. The asymmetric simple exclusion process. As in Sect. 1.1, let p ∈ (1/2,1] and take
q = 1− p ∈ [0,1/2). Let Ω be the space of binary sequences η : Z→{0,1}. In this model
we say that the elements x ∈ Z are sites, and we interpret the 1’s as particles. We say
that the elements η ∈ Ω are configurations of particles. We say that, in the configuration
η ∈ Ω there is a particle at site x ∈ Z if η(x) = 1. If η(x) = 0 we say that the site x ∈ Z
is empty. Let {N x

t ; t ≥ 0}x∈Z be a sequence of independent, standard Poisson processes.
Let {sx

n;n ∈ N} the sequence of successive jumps of the process {N x
t ; t ≥ 0}. And let

{kx
n;n ∈ N,x ∈ Z} be a sequence of i.i.d. random variables, independent of the Poisson

processes {N x
t ; t ≥ 0}x∈Z. An attentive reader may have noticed that the processes and

random variables we have just defined are exactly the same ones defined at the beginning
of Sect. 1.1. Later on we will comment on why we have chosen different notations for
the same objects. Let {ηt ; t ≥ 0} be the Markov process with values in Ω constructed in
the following way. At each jump time sx

n we check the value of ηsx
n−(x). If ηsx

n−(x) = 0,
nothing happens. If ηsx

n−(x) = 1, we read the value of kx
n. If kx

n = +1, we check the value
of ηsx

n−(x+1). If ηsx
n−(x+1) = 1, nothing happens. If ηsx

n−(x+1) = 0, we define

ηsx
n(y) =

 0, y = x
1, y = x+1

ηsx
n−(y), y 6= x,x+1.

If kx
n = −1, we check the value of ηsx

n−(x− 1). If ηsx
n−(x− 1) = 1, nothing happens. If

ηsx
n−(x−1) = 0, we define

ηsx
n(y) =

 0, y = x
1, y = x−1

ηsx
n−(y), y 6= x,x−1.

What we have described above is the graphical construction of the asymmetric simple
exclusion process (which we call ASEP for ease of notation). The evolution {ηt ; t ≥ 0} can
be described as follows. At each site x∈Z we wait an exponential time of rate 1. At the end
of this exponential time we decide to move the particle at site x; nothing happens if there
is no particle at site x at that time. The particle attempts to jump to x+1 with probability
p, and it attempts to jump to x− 1 with probability q. The jump is accomplished only if
the destination site is empty at the time of the jump. Otherwise nothing happens. This
procedure is done independently at each site x ∈ Z. Liggett’s result quoted in the previous
section (Chap. 1 of [Lig]) is actually formulated in terms of the exclusion process {ηt ; t ≥
0}, and it shows that the process ηt ; t ≥ 0} is well defined for any initial configuration
η0 ∈Ω.

It turns out that there is a beautiful connection between the corner growth model {ζt ; t ≥
0} described in Sect. 1.1 and the ASEP process described above. Let us say that the corner

1We use N0 for the set of non-negative integers {0,1, ...} and N for the set of positive integers {1,2, ...}.
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growth model {ζt ; t ≥ 0} is given. Each column on the corner growth model will represent
a particle on the ASEP. Let us start constructing the initial configuration of particles η0. Let
us define x0 = 0 and for ` ∈ N, let us define x` in an inductive way: x` = x`−1 +1+ζ0(`−
1)−ζ (`). For ` < 0, we use a similar inductive procedure: x` = x`+1−1+ζ (`+1)−ζ (`).
Then we define η0(x`) = 1 for ` ∈ Z and η0(x) = 0 if x 6= x` for any ` ∈ Z. In other words,
the height differences between consecutive columns on the corner growth model represent
the distance between consecutive particles on the ASEP. Define x`(t) = x`+ζ0(`)−ζt(`),
and define

ηt(x) =
{

1, if x = x`(t) for some ` ∈ Z
0, otherwise.

A careful checking shows that the process {ηt ; t ≥ 0} defined in this way has the dynamics
described above for the ASEP. Notice that this relation defines a different graphical con-
struction of the ASEP: in the construction coming from this relation with the corner growth
model, the Poisson processes {Nx

t ; t ≥ 0} are associated to the particles and not to the sites,
like in the graphical construction of this Section.

For the reader who understand what a generator of a Markov process is, we now describe
the generator of the ASEP. We say that a function f : Ω→ R is local if there exists a finite
set A ⊆ Z such that f (η) = f (ξ ) whenever η(x) = ξ (x) for every x ∈ A. For each local
function f : Ω→ R we define L f : Ω→ R as

L f (η) = ∑
x∈Z

{
pη(x)

(
1−η(x+1)

)
+qη(x+1)

(
1−η(x)

)}
∇x,x+1 f (η),

where ∇x,x+1 f (η) = f (ηx,x+1)− f (η) and for η ∈Ω we define ηx,x+1 ∈Ω as

η
x,x+1(z) =

 η(x+1), z = x
η(x), z = x+1
η(z), z 6= x,x+1.

The operator L defined in this way can be extended in a unique way to a Markov gener-
ator, which turns out to be the generator of the ASEP {ηt ; t ≥ 0}.

2. THE STOCHASTIC HEAT EQUATION

Fix T > 0. Let (X,F ,P) be a probability space endowed with a white noise W (dxdt)
defined on R× [0,T ]. We say that a measurable function z : X×R× [0,T ] is a random
function, and we usually denote it by z(x, t), without making explicit mention of the random
variable ω ∈ X. Fix a > 0. On the space of random functions z we define

|||z|||2T = sup
x∈R

t∈[0,T ]

e−a|x|E
[
z(x, t)2]

and we denote by PT the space of predictable random functions (see the definition in the
Appendix E) with |||z|||T <+∞. The space PT turns out to be a Banach space with respect
to the norm ||| · |||T .

Let Kt(x) = (2πt)−1/2e−x2/2t be the fundamental solution of the heat equation ∂tu =
1
2 ∆u in R× [0,T ]. We say that a random function z(x, t) is a mild solution of the stochastic
heat equation

∂tz =
1
2

∆z+ zW
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with initial condition z0 if supx e−a|x|E[z0(x)2]<+∞ and

z(t,x) =
∫
R

Kt(x− y)z0(y)dy+
∫ t

0

∫
Kt−s(x− y)z(s,y)W (dyds)

for any x ∈ R, and any t ∈ [0,T ]. Our objective is to prove the following proposition:

Proposition 2.1. Let {z0(x),x ∈ R} be a random function satisfying

sup
x

e−a|x|E[z0(x)2]<+∞.

Then there exist a unique mild solution on the space P of the stochastic heat equation

∂tz =
1
2

∆z+ zW

with initial condition z0.

Proof. The proof of this proposition follows closely Picard’s method in ordinary differen-
tial equations. Let us define the operator Λ0 : PT →PT defined by

Λ
0z(x, t) =

∫ t

0

∫
Kt−s(x− y)z(y,s)W (dyds).

At this point we have not shown that Λ0z ∈PT , but this fact will be a simple consequence
of the computations below. By (E.2),

E
[(

Λ
0z(x, t)

)2]
=
∫ t

0

∫
Kt−s(x− y)2E[z(y,s)2]dyds.

Notice that Kt(x)2 = (4πt)−1/2Kt/2(x). Therefore the last integral is equal to∫ t

0

1√
4πs

∫
Ks/2(x− y)E[z(t− s,y)2]dyds. (2.1)

Notice that by the definition of the triple norm ||| · |||T ,

E[z(y, t− s)2]≤ ea|x||||z|||2T . (2.2)

We have the elementary estimate ea|x| ≤ eax + e−ax. Making a simple change of variables,
we obtain the identity

∫
eaxe−x2/tdx = ea2t/4 ∫ e−x2/tdx. Using these two facts plus the

estimate (2.2) into (2.1) we see that (2.1) is bounded by

ea|x||||z|||2T
∫ t

0

ea2s/4
√

4πs
ds. (2.3)

We conclude that for any t ∈ [0,T ],

sup
x∈R

s∈[0,t]

e−a|x|E
[(

Λ
0z(x,s)

)2]≤C(t)|||z|||2T ,

where C(t) is equal to the integral appearing in (2.3). This bound shows that |||Λ0z||| is
finite. In order to see that Λ0z is predictable, it is enough to observe that for any predictable
random function z and any continuous, bounded function Ft(x,y) with enough decay at
infinity, the stochastic integral ∫ t

0

∫
F(x,y)z(s,y)W (dyds)

is predictable. In fact, this property follows from the measurability of the stochastic integral
with respect to Ft and from approximating F(x,y) by simple functions. Notice that C(t)→
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0 if t → 0. In particular, there exists t > 0 such that Λ0 is a contraction when restricted to
the space Pt (the space Pt is constructed changing T by t in the definition of PT ). Notice
that the function

z0(x,s) =
∫
R

Ks(x− y)z0(y)dy

belongs to Pt . Therefore a random function z is a solution of the stochastic heat equation
with initial condition z0 if and only if it solves the fixed point equation z = z0 +Λ0z. Since
Λ0 is a contraction, this fixed point equation has a unique solution. Repeating the argument
dT/te times, we prove the proposition. �
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APPENDIX A. THE POISSON PROCESS

We say that a real-valued random variable τ has an exponential distribution of rate λ

if P(τ > 0) = 1 and P(τ > t) = e−λ t for any t ≥ 0. The multiplicative property of the
exponential function has the following consequence: for any s, t > 0, P(τ > s+ t|τ > s) =
e−λ t . This property is known as the loss of memory of the exponential distribution: if we
interpret τ as a waiting time of some event, then the distribution of this waiting time, given
that the event has not yet occurred, is exponential with the same rate.

The exponential distribution has other remarkable properties: if τ1, τ2 are two indepen-
dent, exponential random variables of rates λ1, λ2, then τ =: min{τ1,τ2} has an exponential
distribution of rate λ1 +λ2. Moreover, P(τ = τ1) = λ1(λ1 +λ2)

−1 and the event {τ = τ1}
is independent of τ . Similar properties hold for arbitrary sequences {τi} of independent
random variables with exponential distributions.

A collection {Nt ; t ≥ 0} of random variables is said to be a (homogeneous) Poisson
process if the following holds:

i) With probability 1, N0 = 0 and the trajectory t 7→ Nt is right-continuous with left
limits. In that case, we say that the process {Nt ; t ≥ 0} is càdlàg.

ii) For any t ≥ 0, Nt ∈ N0 with probability 1.
iii) For any s, t ≥ 0, the increment Nt+s−Nt is independent of σ(Nu;u≤ t) and it has

the same distribution of Ns.
Notice that, given i), condition ii) implies that, with probability 1, the path t 7→ Nt

assume values in N0 for every t ≥ 0.
It turns out that these three properties characterize the distribution of {Nt ; t ≥ 0} on the

space of càdlàg trajectories D([0,∞);N0). In fact, if the process {Nt ; t ≥ 0} satisfies i), ii),
iii), then there exists a constant λ such that for any 0≤ s < t, we have

P(Nt −Ns = `) = e−λ (t−s)

(
λ (t− s)

)`
`!

.

This fact, together with the independence of increments stated in iii) characterize the finite-
dimensional distributions of {Nt ; t ≥ 0}. This fact plus the right-continuity of trajectories
stated in i), characterize the distribution of {Nt ; t ≥ 0} in D([0,∞);N0). Notice that the
trajectories t 7→ Nt are non-decreasing with probability 1, since the increments are non-
negative. The constant λ is called the rate of the Poisson process {Nt ; t ≥ 0}. If λ = 1, we
say that {Nt ; t ≥ 0} is a standard Poisson process.

Notice that, according to the previous formula, P(Nt = 0) = e−λ t . Therefore, the time
of the first of {Nt ; t ≥ 0} has an exponential distribution of rate λ . The same is true for the
time between successive jumps. Moreover, these inter-jump times are independent. This
observation provides us with a way to construct the process {Nt ; t ≥ 0}. Let {τn;n ∈N} be
a sequence of i.i.d. random variables with exponential distribution of rate λ . Define S0 = 0
and for n ∈ N define

Sn =
n

∑
i=1

τi.

For t ≥ 0 define Nt as the unique number n ∈ N0 such that Sn ≤ t < Sn+1. The random
variable Nt is well-defined, since with probability 1, τn > 0 for any n ∈ N. By definition,
the process {Nt ; t ≥ 0} defined in this way is right-continuous with left limits, with values
in N0. The independence of increments follows from the independence of the sequence
{τn;n ∈ N} and the loss of memory of the exponential distribution.

Let us denote by Ft the σ -algebra generated by the random variables {Ns;s ≤ t}. The
family of increasing σ -algebras {Ft ; t ≥ 0} is called the natural filtration associated to the
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process {Nt ; t ≥ 0}. Condition iii) in the definition of the Poisson process {Nt ; t ≥ 0} imply
that the process {Mt ; t ≥ 0} defined by

Mt = Nt −λ t

is a martingale with respect to the filtration {Ft ; t ≥ 0}. The process {M2
t −λ t; t ≥ 0} is

also a martingale with respect to {Ft ; t ≥ 0}. We say in that case that λ t is the quadratic
variation of the martingale {Mt ; t ≥ 0}.

APPENDIX B. INHOMOGENEOUS POISSON PROCESSES

We say that a function λ : [0,∞)→ R is càglàd if it is left-continuous with right limits.
Let {λ (t); t ≥ 0} be a càglàd, non-negative function. We say that a collection of random
variables {Nt ; t ≥ 0} is an inhomogeneous Poisson process of rate {λ (t); t ≥ 0} if:

i) With probability 1, N0 = 0 and the trajectory t 7→ Nt is càdlàg.
ii) For any t ≥ 0, Nt ∈ N0 with probability 1.

iii) For any s, t ≥ 0, the increment Nt+s−Nt is independent of σ(Nu;u≤ t) and it has
a characteristic function given by

E
[

exp{iθ(Nt+s−Nt)}
]
= exp

{
(eiθ −1)

∫ t+s

t
λ (u)du

}
.

Let us assume that λ ∗ = supt≥0 λ (t) < +∞. In that case, the process {Nt ; t ≥ 0} can be
constructed in a simple way. Let {N∗t ; t ≥ 0} be an homogeneous Poisson point process
of rate λ ∗. Let {σn;n ∈ N} be the successive jump times of the process {N∗t ; t ≥ 0}. Let
{κn;n ∈ N} be a sequence of i.i.d. random variables with common distribution U ([0,1]),
that is, κn is a number chosen uniformly on the interval [0,1]. We define

Nn =
n

∑
i=1

1
(
κnλ

∗ ≤ λ (σn)
)
,

we define
S` = inf{σn;Nn = `}

and finally we define Nt as the unique number ` ∈ N0 such that S` ≤ t < S`+1. A formal
description of the construction is the following. The process {Nt ; t ≥ 0} can jump only
when the process {N∗t ; t ≥ 0} jumps. Each time the process {N∗t ; t ≥ 0} jumps, the process
{Nt ; t ≥ 0} jumps with probability λ (t)/λ ∗, where t is the jump time. Any similarity with
the graphical construction of the corner growth model is not a coincidence.

The process {Nt ; t ≥ 0} also has some martingales associated to it. Let {Ft ; t ≥ 0} the
natural filtration associated to the process {Nt ; t ≥ 0}. Then, the process {Mt ; t ≥ 0} given
by

Mt = Nt −
∫ t

0
λ (s)ds

is a martingale with respect to {Ft ; t ≥ 0}. The process given by

M2
t −

∫
λ (s)ds

is also a martingale with respect to {Ft ; t ≥ 0}.
Notice that in the construction of the process {Nt ; t ≥ 0} works with no modification in

the case on which {λ (t); t ≥ 0} is a collection of random variables such that the trajectories
t 7→ λ (t) are càglàd with probability 1.
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APPENDIX C. THE BASIC COUPLING

One of the main advantages of the graphical construction of the corner growth model
and the ASEP is that we can construct various processes starting from different initial
configurations, using the same Poisson processes. Let us consider the ASEP; what we are
going to describe can also be done for the corner growth model. Let η ,ξ ∈Ω be two initial
configurations of particles. Let {ηt ; t ≥ 0} be the ASEP constructed in Sect. 1.2 with initial
configuration η , and let {ξt ; t ≥ 0} the ASEP with initial configuration ξ and constructed
using the same random variables {sx

n;n ∈ N,x ∈ Z}, {kx
n;n ∈ N,x ∈ Z}. We call the pair

{(ηt ,ξt); t ≥ 0} a basic coupling between these two processes. This basic coupling has a
remarkable property: if η(x)≥ ξ (x) for every x∈Z, then ηt(x)≥ ξt(x) for every t ≥ 0 and
every x ∈ Z. In fact, we can check, in a case by case basis, that this ordering is preserved
at each jump time sx

n. This property is locally conserved in the following sense. Take x ∈ Z
and let us assume that η(y)≥ ξ (y) for any y≥ x. Take

σ = min{sx
n;n ∈ N,sx

n > sx−1
1 }.

Then, ηt(y) ≥ ξt(y) for any t ≤ σ and any y ≥ x+ 1. In fact, the time σ represents the
first time that the value of η(y) outside {x− 1,x, ...} influences the value of ηt(z) for
z ≥ x. Since sx−1

1 has an exponential distribution of rate 1, we can prove that P(σ ≤ t) =
O(t2) when t → 0. Therefore, for any y ≥ x+ 1 we have that P(ηt(y) ≥ ξt(y)) ≤ O(t2).
Similar statements can be shown for initial configurations of particles coinciding on a given
interval.

APPENDIX D. THE GENERATOR OF AN INTERACTING PARTICLE SYSTEM

Let us consider Ω = {0,1}Z, that is, Ω is the set of binary sequences η = {η(x),x∈Z}.
It can be shown that the product topology on Ω coincides with the topology generated by
the metric d : Ω×Ω→ [0,∞) defined by

d(η ,ξ ) = ∑
x∈Z

|η(z)−ξ (z)|
2|z|

.

Let C (Ω) be the space of functions Ω→ R which are continuous with respect to this
metric. Notice that the space (Ω,d) is compact, and therefore any function f ∈ C (Ω) is
bounded. We say that a function f : Ω→R is local if there exists a finite set A⊆Z such that
f (η) = f (ξ ) whenever η(x) = ξ (x) for every x∈ A. We denote by supp(F) the smallest of
these sets A. We observe that any local function f is continuous. Moreover, the set of local
functions is dense on C (Ω). Let D([0,∞);Ω) denote the set of càdlàg paths from [0,∞) to
Ω, that is, the sets of right-continuous trajectories with well-defined let limits at any time
t ∈ [0,∞). Let {ηt ; t ≥ 0} be a Markov process with values in Ω. For any η ∈ Ω, let us
denote by Pη the distribution in D([0,∞);Ω) of the process {ηt ; t ≥ 0} satisfying η0 = η .
We denote by Eη the expectation with respect to Pη . For any function f ∈ C (Ω), let us
define Pt f : Ω→ R as

Pt f (η) = Eη [ f (ηt)]

for any η ∈ Ω. Notice that Pt f is well-defined, since any function f ∈ C (Ω) is bounded.
We say that a a function f ∈ C (Ω) belongs to Dom(L) if the limit

lim
t→0

Pt f − f
t
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exists with respect to the uniform topology of C (Ω). For f ∈Dom(L) we define L f : Ω→
R as

L f (η) = lim
t→0

Pt f (η)− f (η)

t
. (D.1)

It turns out that (L,Dom(L)) is a densely defined operator in C (Ω). This operator is called
the generator of the Markov process {ηt ; t ≥ 0}.

Let us consider the ASEP {ηt ; t ≥ 0} defined in Sect. 1.2. Let f : Ω→R be a local func-
tion, and let us try to compute the limit (D.1). Take ` ∈N0 such that supp( f )⊆ {−`, ..., `}.
Let η ,ξ ∈Ω be such that η(x) = ξ (x) for any x∈ {−(`+1), ..., `+1}. Let {(ηt ,ξt); t ≥ 0}
the basic coupling described in Appendix C. Since P(ηt(x) 6= ξt(x)) = O(t2) for any
x ∈ {−`, ..., `}, we see that L f (η) = L f (ξ ), if the limit defining any of the two quantities
L f (η), L f (ξ ) exist. Since f is a bounded function, events with probability O(t2) does not
influence the value of L f (η). Therefore, if we look at the process constructed by turning
off all the Poisson processes {Nx

t ; t ≥ 0} for x /∈ {−(`+ 1), ..., `+ 1}. In that case we are
leading with a finite number of Poisson point processes, for which we can compute the
limit above in an explicit way, obtaining that

L f (η) =
`

∑
x=−(`+1)

{
pη(x)

(
1−η(x+1)

)
+qη(x+1)

(
1−η(x)

)}
∇x,x+1 f (η).

APPENDIX E. THE WHITE NOISE AND STOCHASTIC INTEGRATION

Let H be a (real) Hilbert space. Let {un;n ∈ N} be a orthonormal basis of H. Let
{ϕn;n ∈N} be a sequence of i.i.d. random variables of common distribution N (0,1), that
is, each random variable ϕn has Gaussian distribution of unit variance. The white noise in
H is formally defined as W = ∑n ϕnun. The definition is just formal, because the series
does not convergent in H with probability 1. It can be shown that the white noise W can
be defined as a random element of some Sobolev space of negative index associated to
the basis {un;n ∈ N}, but this description will not be useful for our purposes. A simpler
definition, which will be enough for us is the following. Let H be a Hilbert space. Denote
by ‖ · ‖ the norm in H and by 〈·, ·〉 the inner product in H. Let F ⊆ H a vector space,
and assume that F is dense in H. We say that a family of real-valued random variables
W = {W ( f ); f ∈ F} defined on some probability space (X,F ,P) is a white noise if:

i) for any finite subset { f1, ..., f`} of F, the vector (W ( f1), ...,W ( f`)) is Gaussian,
ii) for any function f ∈ F, E[W ( f )2] = ‖ f‖2.

Two important consequences of this definition are the following. By the polarization
identity, we have E[W ( f )W (g)] = 〈 f ,g〉 for any f ,g ∈ F. In particular, W ( f ) and W (g)
are independent if and only if f and g are orthogonal. Take f ∈H and let { fn;n ∈N} be in
F such that ‖ fn− f‖ → 0 as n→ ∞. Then, there exists a random variable W ( f ) such that
E[(W ( fn)−W ( f ))2]→ 0 as n→ ∞. The collection of random variables {W ( f ); f ∈ H}
obtained in this way also satisfies the conditions i), ii) of the definition of the white noise
W , this time for F=H.

The existence of the white noise W can be obtained starting from the formal definition
W = ∑n ϕnun. In fact, it is enough to define

W ( f ) = ∑
n∈N

ϕn〈un, f 〉.

The series in convergent in L2(P), due to the fact that ∑n〈un, f 〉2 < +∞ and the indepen-
dence of the random variables {ϕn;n ∈ N}. Notice that the choice of the basis {un;n ∈ N}
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is not relevant: if {vn;n ∈ N} is another orthonormal basis of H, the sequence {ϕ ′n;n ∈ N}
defined by ϕ ′n = W (vn) is i.i.d. with common distribution N (0,1), and W admits the
formal representation ∑n ϕ ′nvn.

Let us consider the case H = L2(R× [0,∞)), that is, H is the space of functions f :
R× [0,∞)→ R which are square-integrable with respect to the Lebesgue measure. It will
be useful to look at W as a random measure. For any set A⊆R× [0,∞) of finite Lebesgue
measure we define W (A) = W (1(A)). Let us denote by |A| the Lebesgue measure of the
set A. The “measure” W satisfies the properties

i) for any A such that |A|<+∞, W (A) has distribution N (0, |A|),
ii) for any disjoint sets A, B, W (A) and W (B) are independent.

It turns out that these two properties are equivalent to the two properties defining the white
noise W .

Since W can be interpreted as a random measure in R× [0,∞), it is natural to ask which
kind of functions can we integrate with respect to W . We will write W (dxdt) when we
want to look at W as a measure. Integration of functions f : R× [0,∞) is immediate:
we just define

∫
f W (dxdt) = W ( f ). But we would like to integrate random functions as

well. It turns out that not any random function can be integrated with respect to W (dxdt).
Up to here, time and space are treated in the same way; this will change in a moment.
For each T ≥ 0, let us denote by FT the σ -algebra generated by the random variables
{W (A);A⊆R× [0,T ]}. We say that a random function f is elementary if it is of the form

f (x, t,ω) = X(ω)1(a < t ≤ b)1(x ∈ A)

for some b > a≥ 0, some measurable set A⊆R with |A|<+∞ and some bounded random
variable X ∈Fa. The assumption X ∈Fa is the crucial one. We say that a function f is
simple if it is of the form f1 + ...+ f` for some elementary functions f1, ..., f`, that is,

f (x, t,ω) =
`

∑
i=1

Xi(ω)1(ai < t ≤ bi)1(x ∈ Ai) (E.1)

for some intervals {(ai,bi]}i, some measurable sets {Ai}i of finite Lebesgue measure and
some bounded random variables {Xi}i with Xi ∈ Fai . Breaking the intervals {(ai,bi]}i
and the sets {Ai}i into finite pieces if necessary, we can assume that the intervals (ai,bi]
are either disjoint or equal, and that if they are equal, then the corresponding sets Ai are
disjoint.

For an elementary function f as above, we define the stochastic integral
∫∫

f W (dxdt)
as ∫∫

f W (dxdt) = X(ω)W (A× (a,b]).

If f is a simple function like in (E.1), then we define
∫

f W (dxdt) by linearity:∫∫
f W (dxdt) =

`

∑
i=1

Xi(ω)W (Ai× (ai,bi]).

The terms on the previous sum are not correlated among them. In fact, if (ai,bi]∩(a j,b j] =
∅ and ai < a j, then

E
[
Xi(ω)W (Ai× (ai,bi])X j(ω)W (A j× (a j,b j])

]
=

= E
[
Xi(ω)W (Ai× (ai,bi])X j(ω)E

[
W (A j× (a j,b j])

∣∣Fa j

]]
= 0,
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since W (A j × (a j,b j]) is independent of Fa j and X j is Fa j -measurable. If (ai,bi] =

(a j,b j], then Ai ∩A j = ∅, and the same argument can be carried out. In particular, we
have the formula

E
[(∫∫

f W (dxdt)
)2]

=
`

∑
i=1

E
[
X2

i
]
(bi−ai)|Ai|= E

[∫∫
f 2dxdt

]
(E.2)

In the same way that Parseval’s identity allows to extend the definition of the Fourier trans-
form to functions in L2(R), this identity allows to extend the definition of the stochastic
integral. Let us denote by P the closure of the set of simple functions in L2(P(dω)dxdt).
For a random function f ∈P , we define the stochastic integral

∫∫
f W (dxdt) as∫∫

f W (dxdt) = lim
n→∞

∫∫
fnW (dxdt),

where { fn;n ∈ N} is a sequence of simple functions such that

lim
n→∞

E
[∫∫

( f − fn)
2dxdt

]
= 0.

The identity (E.2) shows that
∫∫

f W (dxdt) is well defined and it does not depend on the
choice of the approximating sequence { fn;n∈N}. The random functions f ∈P are called
predictable functions.

For any T ∈ [0,∞) and any f ∈P , we define∫ T

0

∫
R

f W (dxdt) =
∫∫

f 1(0≤ t ≤ T )W (dxdt).

It turns out that this integral is FT -measurable. This will be important when dealing with
stochastic PDE’s.
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