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Abstract. Our main result is a representation theorem for n-homogeneous

orthogonally-additive polynomials on Banach lattices.

The representation theorem is used to study the linear span of the set of

zeros of homogeneous real-valued orthogonally-additive polynomials. We show

that in certain lattices every element can be represented as the sum of two or

three zeros or, at least, can be approximated by such sums.

We also indicate how these results can be used to study weak topologies

induced by orthogonally-additive polynomials on Banach lattices .

1. Introduction

A continuous scalar-valued map P on a Banach space X is called a homogeneous
polynomial of degree n (or a n-homogeneous polynomial) if P (x) = Φ(x, . . . , x),
where Φ is a continuous n-linear form on X . (Vector-valued polynomials are defined
similarly.) We only consider continuous polynomials and will therefore usually omit
the adjective continuous.

A polynomial is continuous iff it is bounded on the unit ball of X . We denote by
P(nX) the Banach space of n-homogeneous scalar-valued continuous polynomials
equipped with the norm

‖P‖ = sup
‖x‖≤1

‖P (x)‖.

We shall use standard notation and terminology, see [D] and [M] for notation
and results regarding polynomials and [LT] for notation and basic theory of Banach
lattices.

Recall that two elements x, y in a Banach lattice are called orthogonal (or dis-
joint) if |x| ∧ |y| = 0.

Definition 1.1. Let X be a Banach lattice. A polynomial P on X is said to be
orthogonally-additive if P (x+ y) = P (x)+P (y) whenever x, y ∈ X are orthogonal.
The set of all n-homogeneous orthogonally-additive scalar-valued polynomials on
X is denoted by Po(

nX).

There are various weak topologies induced on a Banach space X by the poly-
nomials on X . Two of the authors studied in [LL] the analogs of these topologies
induced by the class of orthogonally-additive polynomials on Lp and lp. Their
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main tool was a theorem of Sundaresan [S] which gave an explicit representation of
n-homogeneous orthogonally-additive polynomials on these spaces.

Our main result, Theorem 2.3, is a representation theorem for polynomials in
Po(

nX), which generalizes [S]. It turns out that Po(
nX) can be identified with the

linear functionals on the n-concavification X(n) of X . (In fact, the representation
theorem holds for vector-valued polynomials as well.)

In section 4 we generalize the results of [LL] on weak polynomial topologies,
induced by the orthogonally-additive polynomials on Lp and lp, to general Köthe
function spaces. To this end we need to study the zero sets of real-valued n-
homogeneous orthogonally-additive polynomials. This is done in section 3. Since
there has recently been some growing interest in the zero sets of real-valued poly-
nomials (see e.g. [AGZ], [ABRZ]), we analyze these zero sets in some more detail
than is really necessary for the study of the weak topologies.

Fix P ∈ Po(
nX) and denote its zero set P−1(0) by Z and the subspace that

Z generates by H . Note that the homogeneity of the polynomial implies that
Z is a symmetric cone, i.e., x ∈ Z implies that λx ∈ Z for all λ ∈ R. Put

DkZ = {
∑k

i=1 zi : zi ∈ Z} and then H =
⋃

k≥1 DkZ.

We show that many Banach lattices X (including the Köthe function spaces)
have the property that for suitable n’s the subspace H is dense in X for every
n-homogeneous orthogonally-additive polynomial P on X . In fact, the sets D3Z or
even D2Z are already either all of X or are dense in it.

2. Representation of Orthogonally-Additive Polynomials

Let X be a Banach lattice. To simplify the presentation we shall assume that X
is a lattice of functions on some set (or a lattice of equivalence classes of measurable
functions on a measure space (Ω, Σ, µ)) with the usual order. Theorem 2.3 below
holds for general lattices without this restriction, but the assumption simplifies the
presentation and makes it more intuitive. In particular, working on a function lat-
tice simplifies the functional calculus on X . For example, if f ∈ X and α > 0, then
fα is defined explicitly by fα(s) = |f |α(s)signf(s). We shall use standard lattice
inequalities without further mention (see for example [LT, Proposition 1.d.2]).

The construction of the concavification of X also becomes more direct and in-
tuitive in the case of lattices of functions: Let q > 1, then the q-concavification
of X is the space X(q) = {f q : f ∈ X} with the usual algebraic operations and

order and with the natural quasi-norm |||f ||| = ‖f1/q‖q for f ∈ X(q). (See [KPR]
for information on quasi-norms and quasi-normed spaces.) To see that this is a
quasi-norm fix f, g ∈ X(q). Then

|||f + g||| = ‖(f + g)1/q‖q ≤ ‖(|f |1/q + |g|1/q)‖q ≤ (‖f1/q‖ + ‖g1/q‖)q

≤ 2q−1(‖f1/q‖q + ‖g1/q‖q) = 2q−1(|||f ||| + |||g|||).

A similar proof (see also [LT, page 54]) shows that if X is q-convex with q-
convexity constant M , then

|||f1 + · · · + fn||| ≤ M q(|||f1||| + · · · + |||fn|||)

for every f1, . . . , fn ∈ X(q). It follows that when X is q-convex with q-convexity
constant M = 1, then the quasi-norm ||| · ||| is actually a norm. When M > 1 the
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quasi-norm ||| · ||| is equivalent to the norm given by

|||f |||1 = inf
{

∑

|||fi||| : f =
∑

fi

}

.

In what follows we shall not pass to the equivalent norm even when X is q-convex,
and we shall only use the quasi-norm ||| · |||.

Note that the q-concavification of Lr(µ) is naturally identified with Lr/q(µ). It
follows that it is a Banach space for q ≤ r and a quasi-Banach space if r < q.

We shall need some basic facts on Baire-1 functions on compact metric spaces
and we refer to Chapter XV of Natanson’s book [Nat] for more details. (The book
only treats functions on a close interval, but the results and proofs are the same
for a general compact metric space.)

Let K be a compact metric space. A function f on K is said to be of Baire
class 1 (or a Baire-1 function) if it is the pointwise limit of a sequence of continuous
functions. The space of bounded real-valued Baire-1 functions, equipped with the
supremum norm, is a Banach lattice, which we denote by B1(K). In the next
two lemmas we shall use Lebesgue’s characterization of Baire-1 functions (see [Nat,
Theorem 1, page 141]): A real-valued function f on K is Baire-1 iff the sets {f > α}
and {f < α} are Fσ for every α ∈ R.

The first lemma is well known.

Lemma 2.1. The simple functions are dense in B1(K).

Proof. Fix f ∈ B1(K) and assume, without loss of generality, that 0 ≤ f(k) ≤ 1 for
every k ∈ K. Fix N and put Ai = {k ∈ K : i−1

N < f(k) < i+1
N } for 0 ≤ i ≤ N . By

Lebesgue’s theorem the sets Ai are Fσ and clearly K = ∪Ai. We now find disjoint
Fσ sets Bi ⊂ Ai such that ∪Bi = K. (This is just Lemma 2, page 140 in [Nat],
which we reproduce for the sake of the reader.) Indeed, since the Ai’s are Fσ there
are closed sets Cn and disjoint subsets M0, . . . , MN ⊂ N so that Ai = ∪n∈Mi

Cn.
Put Dn = Cn \

(

∪j<n Cj

)

. Then the Dn’s are pairwise disjoint Fσ sets (because
closed subsets of K are Gδ). Hence so are the disjoint sets Bi = ∪n∈Mi

Dn. Clearly
Bi ⊂ Ai and ∪Bi = K.

The simple function gN =
∑ i

N χBi
is then a Baire-1 function which satisfies

‖f − gN‖ ≤ 1/N . ¤

Lemma 2.2. Let K be a compact metric space and let P be a real-valued polynomial
on C(K). Then P extends to a polynomial Q on B1(K). If P is orthogonally-
additive, then so is Q.

Proof. The extension is given explicitly as follows: fix g ∈ B1(K) and a bounded
sequence of continuous functions gj converging pointwise to g. Then put Q(g) =
limP (gj). Since C(K) has the Dunford-Pettis property and since the gj’s are a
weak Cauchy sequence in C(K), it follows from PeÃlczyński [Pel1, Corollary 3] that
the limit actually exists and is independent of the choice of the sequence gj .

We now check that when P is orthogonally-additive, then so is Q. Indeed, fix
f, g ∈ B1(K) with disjoint supports. By Lebesgue’s characterization of Baire-
1 functions there are two increasing sequence Fn and Gn of closed sets so that
{|f | > 0} = ∪Fn and {|g| > 0} = ∪Gn. For each fixed n the two sets Fn and
Gn are closed and disjoint, hence there are continuous functions ϕn and ψn with
disjoint supports, ‖ϕn‖ = ‖ψn‖ = 1, so that ϕn ≡ 1 on Fn and ψn ≡ 1 on Gn.

Pick now two bounded sequences of continuous functions, fn and gn, which
converge pointwise to f and g respectively. Then, by the construction, the products
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fnϕn and gnψn also converge pointwise to f and g respectively, and they clearly
satisfy |fnϕn| ∧ |gnψn| = 0. By the orthogonal-additivity of P

Q(f + g) = limP (fnϕn + gnψn) = lim
(

P (fnϕn) + P (gnψn)
)

= Q(f) + Q(g).

¤

Remark. In [Pel2] PeÃlczyński actually shows that weakly compact vector-valued
polynomials on C(K) extend to the space of all bounded Baire functions (and not
just to B1(K)). We do not need this stronger result.

Although we are mainly interested in the representation of scalar-valued poly-
nomials, Theorem 2.3 applies to vector-valued ones as well, so we introduce the
necessary notation.

Let X be a Banach (or quasi-Banach) lattice and let E be a Banach space. We
denote the space of bounded linear operators from X to E by L(X, E) and the
space of E-valued orthogonally-additive polynomials by Po(

nX, E).
For each linear operator T ∈ L(X(n), E) define a continuous n-homogeneous

orthogonally-additive polynomial PT from X to E by the formula PT (f) = T (fn)
for f ∈ X . Then PT is induced by the continuous n-linear map A(f1, . . . , fn) =
T (f1 · . . . · fn) and it is orthogonally-additive because (f + g)n = fn + gn whenever
f and g have disjoint supports. It turns out that this is the general form of such a
polynomial.

Theorem 2.3. Let X be a Banach lattice of functions and let E be a Banach
space. Fix n ∈ N. Then the map T → PT is a linear isometry of L(X(n), E) onto
Po(

nX, E). In particular, when E is the scalar field, the map ϕ → Pϕ is a surjective

linear isometry between
(

X(n), ||| · |||
)∗

and Po(
nX).

Proof. We denote the quasi-norm of an operator T ∈ L(X(n), E) by |||T |||, i.e.,
|||T ||| = sup|||g|||≤1‖Tg‖.

The map T → PT is clearly linear. It is an isometry by the definition of ||| · |||:

‖PT ‖ = sup
‖f‖≤1

‖PT (f)‖ = sup
‖f‖≤1

‖T (fn)‖ = sup
|||g|||≤1

‖T (g)‖ = |||T |||.

To show that the map is surjective fix P ∈ P0(
nX, E) and put T (f) = P (f1/n).

It is clear that T is 1-homogeneous and continuous. We only need to check that T
linear. It is then clear that P = PT .

Thus fix f1, f2 ∈ X(n) and assume first that they are simple functions. Passing
to the algebra of sets generated by the atoms of f1 and f2 we may assume that
the two functions are actually linear combinations of the same disjointly supported
characteristic functions, i.e., f1 =

∑

aiχEi
and f2 =

∑

biχEi
, where the sets Ei

are disjoint. Then (f1 + f2)
1/n =

∑

(ai + bi)
1/nχEi

and the orthogonal-additivity
and n-homogeneity of P yield

T (f1 + f2) = P ((f1 + f2)
1/n) = P

(

∑

(ai + bi)
1/nχEi

)

=
∑

P
(

(ai + bi)
1/nχEi

)

=
∑

(ai + bi)P (χEi
)

= P
(

∑

a
1/n
i χEi

)

+ P
(

∑

b
1/n
i χEi

)

= P (f
1/n
1 ) + P (f

1/n
2 ) = T (f1) + T (f2).

If the lattice X is such that every element of X is a limit of simple functions,
then the theorem follows by approximating f1 and f2. To prove the additivity for
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a general lattice we may assume, by composing P with linear functionals on E,
that P is scalar-valued. We shall assume that the scalar field is R. Only simple
modifications are needed in the complex case.

The following standard construction enables us to pass from X to a C(K) space,
with K compact and metrizable: Fixing f1, f2 ∈ X , put h = |f1| + |f2| and let

N =
{

f ∈ X : |f | ≤ λh for some λ > 0
}

.

For f ∈ N put ‖f‖N = inf{λ > 0 : |f | ≤ λh}. Then ‖f‖ ≤ ‖f‖N for every
f ∈ N . One checks easily that (N, ‖ ·‖N) is complete, hence a Banach lattice under
the order induced from X . Also h is a strong unit in N and N is an abstract
M -space (see Lindenstrauss and Tzafriri [LT, Definition 1.b.1]). The same is true
for the closed sublattice (M, ‖ · ‖N ) of N generated by f1 and f2. By Kakutani’s
representation theorem [LT, Theorem 1.b.6] M is isometric and order-isomorphic to
a C(K)-space, and since it is separable, it follows that K is compact and metrizable.

Let P1 be the composition of P with the formal identity from M to X . Then P1

is a continuous n-homogeneous polynomial which is orthogonally-additive because
the orders on X and M coincide. By lemma 2.2 P1 extends to an orthogonally-
additive polynomial Q on B1(K). Since by lemma 2.1 every function in B1(K)
is a limit of simple functions, the argument in the beginning of the proof gives

that Q
(

(g1 + g2)
1/n

)

= Q(g
1/n
1 ) + Q(g

1/n
2 ) for every g1, g2 ∈ B1(K). In particular

P1

(

(f1 + f2)
1/n

)

= P1(f
1/n
1 )+P1(f

1/n
2 ) for the given functions f1 and f2, and then

the same identity holds also for P . ¤

Remarks. 1. Sundaresan [S] proved that for 1 ≤ n ≤ p < ∞ the space Po(
nLp)

can be identified with Lp/(p−n), and similarly for lp. For p > n he showed that
Po(

nLp) = {0} and Po(
nlp) = l∞. These are special cases of Theorem 2.3 and the

known representations of the duals of Lr and lr for 0 < r < ∞.
2. The case X = C(K) of Theorem 2.3 was recently proved independently by

Pérez-Garćıa and Villanueva [PV].
3. It should be noted that the representation theorem is trivial for discrete

lattices, i.e., for spaces with an unconditional basis {ej}. Indeed, if f =
∑

ajej,

then P (f1/n) = P
(
∑

a
1/n
j ej

)

=
∑

ajP (ej), which is clearly linear.
4. For earlier results on representation of orthogonally-additive functions on

certain classes of Banach lattices see, e.g., [DO, FK, MM, MS, Pi, S] and their
references.

From now on we shall turn to real-valued polynomials, i.e., to Po(
nX). The

successful application of the theorem depends on a good description of the dual of
X(n). To this end we shall restrict ourselves from now on to Köthe function spaces.

Definition 2.4. A Banach lattice X of equivalent classes of locally integrable
measurable functions on a complete σ-finite measure space (Ω, Σ, µ) is called a
Köthe function space if

• If g ∈ X and if f is measurable and |f(ω)| ≤ |g(ω)| a.e., then f ∈ X and
‖f‖ ≤ ‖g‖.

• χE ∈ X for every E ∈ Σ with finite measure.

The class of Köthe function spaces contains many of the common Banach lattices.
Moreover, by [LT, Theorem 1.b.14] every order continuous Banach lattice with a
weak unit is isomorphic as a Banach space and as a lattice to a Köthe function
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space. We shall use the easy fact that order continuous Köthe function spaces
satisfy the Dominated Convergence Theorem: if fn → 0 in measure and if there is
a g ∈ X so that |fn| ≤ g for every n, then ‖fn‖ → 0.

By the discussion in [LT, page 29] it follows that when X is an order continuous
Köthe function space, then its dual is given by integrals. More precisely, every con-
tinuous linear functional on X is given by ϕ(f) =

∫

fξdµ, where ξ is a measurable
function such that fξ ∈ L1(µ) for every f ∈ X . This representation also holds for
quasi-Banach lattice, hence for functionals on (X(n), ||| · |||) (which is order continu-
ous whenever X is). Note, however, that when X is not n-convex it may very well
happen that (X(n), ||| · |||)

∗ = {0}. This happens, for example, when X = Lp and
p < n.

We summarize the results of this section in the way they will be used in the next
sections:

Corollary 2.5. Let X be an order continuous Köthe function space. Then every
n-homogeneous orthogonally-additive polynomial P ∈ Po(

nX) can be represented as

P (f) =

∫

fnξdµ

for some measurable function ξ on Ω.

3. Sums of zeros

In this section we study the zero sets of n-homogeneous orthogonally-additive
polynomials on order continuous Köthe function spaces and the subspaces that
these zero sets generate. Recall that the zero set of the polynomial P is denoted

by Z and that DkZ = {
∑k

j=1 zj : zj ∈ Z}. We shall always assume that µ is a
nonnegative measure.

Theorem 3.1. Let X be an order continuous Köthe function space and let P (f) =
∫

fnξdµ be a n-homogeneous orthogonally-additive polynomial on X.

1. If n is even and ξ does not have a constant sign, then X = D2Z.

2. If n > 1 is odd and
∫

A ξdµ 6= 0 for at least three disjoint measurable subsets A,
then X = D3Z.

Proof. Fix f ∈ X , and we first prove (1). Denote the restrictions of f to the disjoint
sets {ξ > 0} and {ξ ≤ 0} by f1 and f2 respectively and put aj = P (fj). Then
a1 ≥ 0 ≥ a2 (because n is even). If a1 6= 0 and a2 6= 0 choose λ ∈ R such that
a1 + λna2 = 0. It then follows that both z1 = f1 + λf2 and z2 = f1 − λf2 are in Z
and f = λ+1

2λ z1 + λ−1
2λ z2.

If a2 = 0 (say), then take any g supported in {ξ < 0} such that P (g) = −a1,
and then P (f ± g) = 0 and f = (f + g)/2 + (f − g)/2.

To prove (2) choose three disjointly supported functions f1, f2, f3 with P (fi) 6= 0
such that f is a linear combination of the fi’s. (This is possible by the assumption
on the measure ξdµ.) Put P (fi) = a−n

i and let

z1 = a1f1 − a2f2

z2 = a2f2 − a3f3

z3 = a1f1 + a2f2 − 21/na3f3.
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Clearly zi ∈ Z, and since the matrix





a1 −a2 0
0 a2 −a3

a1 a2 −21/na3



 is invertible it follows

that the zi’s and the fi’s span the same three dimensional subspace of X . In
particular f is a linear combination of the zi’s, i.e., f ∈ D3Z. ¤

Remark. The conditions of the theorem are necessary:

1. If n is even and ξ has a constant sign, then clearly Z = {f ∈ X : fξ = 0 a.e. dµ},
i.e., f ∈ Z iff the support of f is disjoint from the support of ξ.

2. If n > 1 is odd and the measure ξdµ consists of just two atoms, then Z is a
one-codimensional subspace. Indeed, every f ∈ X is constant on the two atoms
and we denote these values by f1, f2 respectively. Also denote by α1, α2 the ξdµ

measures of the atoms. Then Z = {f ∈ X : f1α
1/n
1 = −f2α

1/n
2 }.

3. If n > 1 is odd we really need to pass to D3Z and it is no longer true that
X = D2Z. A simple example is P (f) =

∫

f3dµ (i.e., ξ ≡ 1) on Lp[0, 1] for p ≥ 3.
In this case χE /∈ D2Z for any measurable set of positive measure. Indeed, assume
for contradiction that χE = f1+f2 with fi ∈ Z and choose g such that f1 = 1

2χE +g

and f2 = 1
2χE − g. Then

0 = P (f1) + P (f2) =

∫

(
1

2
χE + g)3 +

∫

(
1

2
χE − g)3 =

∫

χE(
1

4
+ 3g2)

which is impossible because E has positive measure.

The next result shows that when n > 1 and the measure space is non-atomic,
then D2Z, which (as we saw above) is not necessarily equal to X , is at least dense
in it.

Theorem 3.2. Let X be an order continuous Köthe function space on a non-atomic

measure space. Let n > 1 be an odd integer and let P (f) =
∫ 1

0 fnξdµ. Then the set
D2Z is dense in X.

Proof. Fix f ∈ X and we start with a few reductions. We may assume that f and
ξ are nonnegative. Indeed, Ω decomposes as the disjoint union of four sets on each
of which f and ξ have constant sign, and it suffices to approximate f on each of
these sets separately. We may also assume by approximation that the support of f ,
which we denote by E, has finite measure and then, by normalizing µ and ξ, that
µ(E) = P (χE) = 1.

Fix m ∈ N and put t = tm = (m+1)n

2m+1 .

Claim. There is a partition of E to 2m+2 disjoint sets B and {Aj}
m
j=−m such that

µ(Aj) = 1
(2m+1)(t+1) = P (fχAj

) for every j and such that µ(B) = t
t+1 = P (fχB).

Indeed, note that ν(A) = P (fχA) =
∫

A
fnξdµ is a non-atomic probability mea-

sure on E (by our normalization that P (χE) = 1). By Liapounoff’s theorem
(see [R, Theorem 5.5]) the range of the vector measure (µ, ν) is convex. Since
µ(∅) = ν(∅) = 0 and µ(E) = ν(E) = 1, it follows that there is a subset A−m ⊂ E
such that µ(A−m) = ν(A−m) = 1

(2m+1)(t+1) . The set A−m+1 is obtained similarly

by applying Liapounoff’s theorem to E \ A−m. We continue inductively to obtain
the other Aj ’s and then take B = E \ ∪m

−mAj .
This proves the claim.

Define two functions by
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gm(ω) =







f(ω) ω ∈ B
jf(ω) ω ∈ Aj , j ≥ 1

(j − 1)f(ω) ω ∈ Aj , j ≤ 0

and

hm(ω) =















0 ω ∈ B
(j + 1)f(ω) ω ∈ Aj , j ≥ 1

0 ω ∈ A0

(j − 1)f(ω) ω ∈ Aj , j ≤ −1

and we check that they are in Z. To show that P (gm) = 0 write (by the orthogonal-
additivity of P )

P (gm) =

m
∑

j=1

(

P (gmχAj
) + P (gmχA1−j

)
)

+
(

P (gmχA−m
) + P (gmχB)

)

.

For each 1 ≤ j ≤ m the j’th term in the sum vanishes because

P (gmχAj
) = jnP (fχAj

) =
jn

(2m + 1)(t + 1)
= −P (gmχA1−j

).

The remaining term also vanishes. Indeed, P (gmχB) = P (fχB) = t
(t+1) and the

choice of t and of A−m gives

P (gmχA−m
) = −(m + 1)nP (fχA−m

) =
−(m + 1)n

(2m + 1)(t + 1)
=

−t

1 + t
.

We omit the computation, similar to the first computation above, which shows
that P (hm) = 0.

Since

(gm − hm)(ω) =







f(ω) ω ∈ B
−f(ω) ω ∈ Aj , j ≥ 0

0 ω ∈ Aj , j ≤ −1
,

it follows that f − (gm − hm) = f ·
(

2χ∪j≥0Aj
+ χ∪j≤−1Aj

)

. But µ(∪Aj) = 1
t+1 <

2m+1
(m+1)n → 0 as m → ∞. Thus gm − hm → f by the Dominated Convergence

Theorem in the order continuous lattice X .
¤

4. Weak polynomial topologies

In analogy with the weak topology ω on a Banach space, it is natural to define
the weak polynomial topology wp, where a net xα converges to x iff P (xα) → P (x)
for every polynomial P on X (see Carne, Cole and Gamelin [CCG]). It turns out
that wp is not a vector space topology: addition, although clearly continuous in
each variable separately, is not necessarily continuous as a function of two variables.
This led Garrido, Jaramillo and Llavona [GJL] to introduce and study the maximal
locally convex topology, τp, weaker than wp. It is given by the seminorms

dP (x) = inf
{

|P (y1 − y0)|
1

n + |P (y2 − y1)|
1

n + . . . + |P (x − yk)|
1

n

}

where P is a n-homogeneous polynomial, and the infimum is taken over all k-chain
{0 = y0, y1, . . . , yk = x}.

Note that the seminorm associated with a linear functional ϕ ∈ X∗ is given by
dϕ(x) = |ϕ(x)|, hence the weak topology ω satisfies ω ⊂ τp. One also checks easily
that τp ⊂ wp ⊂ ‖ · ‖, where ‖ · ‖ denotes the norm topology on X .
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Lassalle and LLavona [LL] introduced analogous topologies on Banach lattices.
These topologies are defined similarly by using only the orthogonally-additive poly-
nomials and they are denoted by wpo and τ respectively. As before τ ⊂ wpo. When
X is an order continuous Köthe function space every linear functional is given by
an integral, hence orthogonally-additive. It follows that ω ⊂ τ .

The paper [LL] is devoted to the study of the special case of lp and Lp. Their
main result in this direction is

Theorem 4.1. A net {xα} in Lp (respectively lp) is τ -convergent to x iff it is
weakly convergent to x and ‖xα − x‖2k → 0, where k is the largest integer with
2k ≤ p (respectively the smallest with 2k ≥ p).

The main tool in [LL] is Sundaresan’s identification [S] of orthogonally-additive
n-homogeneous polynomials on Lp as the dual of Lp/n (respectively lp/n). By
Theorem 2.3 this tool is now available in general lattices.

The representation of orthogonally-additive polynomials gives explicit formulas
for the seminorms dP . This makes it possible to analyze their zero sets and the
subspaces generated by these zeros, as we did in section 3. This is important for
the analysis of the τ topology: It was observed in [GJL] that if P is a homogeneous
polynomial on X and z ∈ H = span{ker(P )}, then dP (x) = dP (x + z) for every

x ∈ X . Indeed, assume that z =
∑m

j=1 zj with P (zj) = 0 and put yi =
∑i

j=1 zj.
Extending any chain from 0 to x by adjoining successively the x + yi’s at the end
of the given chain gives a new chain from 0 to x + z so that P is zero on the new
differences. Hence dP (x + z) ≤ dP (x), and dP (x) ≤ dP (x + z) similarly. It follows
in particular that

dP ≡ 0 for every polynomial P for which H is dense in X.

It follows that in the analysis of τ we need only consider polynomials whose zero
sets do not span a dense subspace of X .

Corollary 4.2. Let X be an order continuous Köthe function space on a measure

space (Ω, µ) and let xα be a net in X which converges weakly to x. Then xα
τ
→ x iff

dP (xα −x) → 0 for every n-homogeneous orthogonally-additive polynomial P (f) =
∫

fnξdµ on X with even n and nonnegative ξ.

Proof. By Theorem 3.1 dP ≡ 0 unless P is as above, or when n > 1 is odd and
ξdµ has just two nonzero atoms. In the latter case, write P (f) = fn

1 α1 + fn
2 α2 and

consider the linear functional ϕ(f) = f1α1 + f2α2. Then one checks directly that
dP (fα − f) → 0 iff ϕ(fα − f) → 0. ¤

Theorem 4.1 for Lp, say, follows immediately, because by Remark 1 after The-
orem 2.3 the only non-zero continuous homogeneous orthogonally-additive polyno-
mials on Lp are of degree n ≤ p, and by Corollary 4.2 only the even degree ones give
nontrivial seminorms and influence the topology. The fact that Lp is rearrangement
invariant and the density of simple functions in L∗

p/n = Lp/(n−p) yield easily that

we may assume that ξ ≡ 1. Finally, Hölder’s inequality implies that we only need
to consider the largest admissible even n.

The same procedure can, of course, be used for other lattices, and we shall not
give detailed examples. We just mention that one can identify explicitly the con-
cavifications of, say, Orlicz or Lorentz spaces, and then use them to give analogous
results on τ for these lattices.
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