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Abstract. We give a simple proof of the fact that orthogonally additive
polynomials on C(K) are represented by regular Borel measures over
K. We also prove that the Aron-Berner extension preserves this class
of polynomials.

Introduction.

The main result of this paper is due to Benyamini, Lassalle and Llavona
[3], and also to Pérez-Garćıa and Villanueva [9]. It is the following.

Theorem. For any orthogonally additive polynomial P over C(K) —i.e.,
those for which P (u + v) = P (u) + P (v) when u ⊥ v, (that is, uv = 0)—,
there is a regular Borel measure µ over K such that

P (u) =
∫

K
uk dµ for all u ∈ C(K).

We viewed their result as a linearization result: k-homogeneous orthog-
onally additive polynomials are linearized through the map C(K) → C(K)
given by u 7→ uk. In [5], a general linearization procedure had been recently
constructed and we set out to prove the theorem as an application of that
construction, for the space of orthogonally additive polynomials. The result-
ing proof is short and simple, and therefore we believe that this presentation
of the Benyamini-Lassalle-Llavona-Pérez-Garćıa-Villanueva theorem may be
of interest.

The tools we use are standard functional analysis and topology, plus the
linearization theorem mentioned above and the Aron-Berner extension of a
homogeneous polynomial to the bidual [2]. We also study the Aron-Berner
extension of orthogonally additive polynomials and show that this class is
preserved by the extension morphism.
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We refer to [7, 8] for notation and general results regarding polynomials
on infinite dimensional spaces.

1. The Proof.

Let K be a compact Haussdorff space. We define, for each closed or open
A ⊂ K,

rA : C(K) → C(K)′′ given by rA(u) = u1A

where 1A is the indicator function of A. Clearly rA is a continuous linear
transformation, and ‖rA‖ ≤ 1. Now for each P ∈ Pk(C(K)) and A ⊂ K
closed or open, define

PA = P ◦ rA,
where P is the Aron-Berner extension of P . Note that (PA)B = PA ◦ rB =
P ◦ rA∩B = PA∩B.

Lemma 1.1. Given a closed subset A of K and u, v ∈ C(K), there are nets
(ui), (vi) ⊂ C(K) w∗-converging to u1A and v1Ac respectively, with uj ⊥ vi

for all j ≥ i.

Proof. We construct such nets converging to 1A and 1Ac . The nets in the
statement of the lemma are then (uui) and (vvi). Let M(K) be the space
of regular Borel measures on K. We will use, as an indexing set

I = {(µ1, . . . , µn;
1
m

) : n,m ∈ N,µ1, . . . , µn ∈M(K)}

ordered by (ν1, . . . , νk; 1
r ) ≥ (µ1, . . . , µn; 1

m) if {µ1, . . . , µn} ⊂ {ν1, . . . , νk}
and m ≤ r. Given i = (µ1, . . . , µn; 1

m), by regularity of the measures there
is an open set V ⊂ K such that |µr(V − A)| < 1

m for r = 1, . . . , n. Since
K is normal, there is an open U such that A ⊂ U ⊂ U ⊂ V . Also, take
ui : K → [0, 1] and vi : K → [0, 1] continuous and such that ui = 1 on A

and supp (ui) ⊂ U , vi = 1 on V c and supp (vi) ⊂ U
c. Note that ui ⊥ vi, and

also that having defined this for all i ≤ j (and there are finitely many such
i’s!), the definition for j can be made with a smaller U , so that uj ⊥ vi. We
have for r = 1, . . . , n∣∣∣∣∫

K
ui − 1A dµr

∣∣∣∣ ≤ ∫
U−A

|ui − 1A| d|µr| ≤ |µr(U −A)| ≤ |µr(V −A)| < ε,

∣∣∣∣∫
K
vi − 1Ac dµr

∣∣∣∣ ≤ ∫
V −A

|vi − 1Ac | d|µr| ≤ |µr(V −A)| < ε.

Thus, ui converges w∗ to 1A and vi to 1Ac . �

Lemma 1.2. Let P ∈ Pk(C(K)) be orthogonally additive, and A ⊂ K
closed (or open). Then P = PA + PAc and ‖P‖ = ‖PA‖+ ‖PAc‖. Also, PA

and PAc are orthogonally additive.
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Proof. For the first equality, it will be enough to see that, given u ∈ C(K),
P (u) = P (u1A) + P (u1Ac), for then

P (u) = P (u) = P (u1A) + P (u1Ac) = PA(u) + PAc(u) = (PA + PAc)(u).

Let φ be the symmetric k-linear form associated to P . Since C(K) is Arens
regular, its Aron-Berner extension φ is symmetric. Thus

P (u) = P (u1A + u1Ac) = φ(u1A + u1Ac , . . . , u1A + u1Ac)

= P (u1A) +
k−1∑
r=1

(
k

r

)
φ(u1A, . . . , u1A︸ ︷︷ ︸

k−r

, u1Ac , . . . , u1Ac︸ ︷︷ ︸
r

) + P (u1Ac).

We will show that φ(u1A, . . . , u1A︸ ︷︷ ︸
k−r

, u1Ac , . . . , u1Ac︸ ︷︷ ︸
r

) = 0 for 1 ≤ r ≤ k − 1.

Consider nets (ui), (vi) w∗-converging to u1A and u1Ac , respectively, as in
Lemma 1.1. Note that, again by Arens-regularity, we may write

φ(u1A, . . . , u1A, u1Ac , . . . , u1Ac)
= limi1 . . . limir limj1 . . . limjk−r

φ(uj1 , . . . , ujk−r
, vi1 , . . . , vir)

so that we may suppose all uj ’s to be orthogonal to all vi’s. Hence, using
the polarization formula and the fact that P is orthogonally additive,

φ(uj1 , . . . , ujk−r
, vi1 , . . . , vir) =

=
1
k!2k

∑
ε′js,ε′is

εj1 · · · εjk−r
εi1 · · · εirP (εj1uj1 + · · ·+ εjk−r

ujk−r
+ εi1vi1 + · · ·+ εirvir)

=
1
k!2k

∑
ε′is

εi1 · · · εir
∑
ε′js

εj1 · · · εjk−r
P (εj1uj1 + · · ·+ εjk−r

ujk−r
)

+
1
k!2k

∑
ε′js

εj1 · · · εjk−r

∑
ε′is

εi1 · · · εirP (εi1vi1 + · · ·+ εirvir) = 0 + 0 = 0.

Since P = PA + PAc , we have ‖P‖ ≤ ‖PA‖ + ‖PAc‖. To conclude the
second equality, set ε > 0 and let u, v be norm-one functions such that
‖PA‖ − ε

2 < PA(u) and ‖PAc‖ − ε
2 < PAc(v). Then

‖PA‖+ ‖PAc‖ − ε < PA(u) + PAc(v) = P (u1A) + P (v1Ac) = P (u1A + v1Ac)
≤ ‖P‖ = ‖P‖,

this last equality by the Davie-Gamelin theorem [6]. Thus ‖PA‖+ ‖PAc‖ =
‖P‖.

Finally, if u ⊥ v, set F = supp (u). Considering nets as above such that
ui → 1F and vi → 1F c , we obtain

PA(u+v) = P (u1A1F +v1A1F c) = P (u1A1F )+P (v1A1F c) = PA(u)+PA(v).

The same for PAc . �
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We denote by Pk
OA(C(K)) the space of orthogonally additive continuous

k-homogeneous polynomials. This is a closed subspace of Pk(C(K)).

Lemma 1.3. The extremal elements of the unit ball of Pk
OA(C(K)) are of

the form λPx, where Px(u) = u(x)k and |λ| = 1.

Proof. Consider an extremal P . For any closed or open A ⊂ K, P =
PA + PAc . If P were neither PA nor PAc both would be non-zero and

P = ‖PA‖
PA

‖PA‖
+ ‖PAc‖ PAc

‖PAc‖
would, by Lemma 1.2, be a non-trivial convex combination, contradicting
the extremality of P . Thus P = PA or P = PAc . Now consider

S = {F ⊂ K : F is closed and P = PF }.

K ∈ S, so S is non-empty. Let F0 =
⋂
S F . F0 is non-empty: otherwise, by

compactness the intersection of finitely-many F ’s would be empty, but this
cannot be, for we would have P = (. . . (PF1)F2 . . .)Fn = PF1∩...∩Fn = P∅ = 0.
Let x ∈ F0 and let V be any open neighborhood of x. P = PV or P = PV c .
But P cannot be PV c , for we would have x ∈ F0 ⊂ V c. So P = PV for
every open neighborhood V of x. If x1 and x2 were two different points
of F0, take non-intersecting open neighborhoods V1 and V2 of each. Then
P = PV1 = PV2 , and thus P = PV1∩V2 = P∅ = 0, absurd. Thus F0 = {x},
and P = P{x}. For any u, P (u) = P (u1{x}) = P (u(x)1{x}) = u(x)kP (1{x}).
Thus, setting λ = P (1{x}), P = λPx. Since Px and P have norm one,
|λ| = 1. �

We can now prove the main result.

Theorem 1.4. For any P ∈ Pk
OA(C(K)), there is a regular Borel measure

µ over K such that

P (u) =
∫

K
uk dµ for all u ∈ C(K).

Proof. Consider the (incomplete) linearizing predual Xα of Pk
OA(C(K)) con-

structed in [5]. Define

Xα → C(K) given by s =
∑

u

aueu 7→
∑

u

auu
k = s̃.

This is linear, one-to-one, and open. Linearity is clear. If s̃ = 0, then
0 =

∑
u auu(x)k =

∑
u auPx(u) = s(Px), where we consider s as a linear

form over Pk
OA(C(K)). This linear form s is therefore zero on all extremal

points of the unit ball of Pk
OA(C(K)) by Lemma 1.3, and must be null by

the Krein-Milman theorem. Similarly, the condition ‖s̃‖ < ε guarantees that
|s(Px)| < ε for all x ∈ K, thus |s| < ε on the unit ball B of Pk

OA(C(K)).
The topology on Xα is given by uniform convergence over equicontinuous
pointwise-compact disks of Pk

OA(C(K)). But any equicontinuous subset D
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of Pk
OA(C(K)) is norm-bounded. Say D ⊂ rB. Then |s| < rε on D. Thus

s̃ 7→ s is continuous.
Now take P ∈ Pk

OA(C(K)), and consider it as continuous linear form
LP over Xα, that is, P (u) = LP (eu) = L(uk), where L(s̃) = LP (s) is a
continuous linear form on the subspace of C(K) spanned by {uk : u ∈
C(K)}. Extend L to the closure by continuity and then to all of C(K) by
Hahn-Banach. Thus L corresponds to a regular Borel measure µ over K
such that

(1) P (u) = LP (eu) = L(uk) =
∫

K
uk dµ.

�

2. The Aron-Berner extension of an orthogonally additive
polynomial

The algebra structure of C(K) induces an algebra structure on C(K)′′ via
the Arens product (see [1]). Thus, ϕ,ψ ∈ C(K)′′ are said to be orthogonal
(ϕ ⊥ ψ) whenever their Arens product is zero: ϕ · ψ = 0. In this context,
the Aron-Berner extension preserves the class of orthogonally additive poly-
nomials on C(K). We obtain this result as a corollary to Theorem 1.4. It
can also be obtained by proceeding as in Lemma 1.2.

Corollary 2.1. If P ∈ Pk
OA(C(K)) then P ∈ Pk

OA(C(K)′′).

Proof. First, recall that for any k-homogeneous polynomial Q : X → X
and for any x′ ∈ X ′, the Aron-Berner extension of the scalar valued k-
homogeneous polynomial x′ ◦ Q is given in terms of Q : X ′′ → X ′′ by
(x′ ◦Q)(x′′) = Q(x′′)(x′), for every x′′ ∈ X ′′.

On the other hand, if we consider the polynomial Q : C(K) → C(K)
given by Q(u) = uk, then Q(ϕ) = ϕk, the kth power of ϕ in the Arens
product.

Now take P ∈ Pk
OA(C(K)), by the representation theorem there is a

regular Borel measure µ over K such that P = µ ◦Q. Then,

(2) P (ϕ) = (µ ◦Q)(ϕ) = Q(ϕ)(µ) = ϕk(µ).

Therefore, P is orthogonally additive. �
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