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Abstract

For a Banach space E we define the class PK(NE) of K-bounded N -homogeneous
polynomials, where K is a bounded subset of E′. We investigate properties of K which relate
the space PK(NE) with usual subspaces of P(NE). We prove that K-bounded polynomials
are approximable when K is a compact set where the identity can be uniformly approximated
by finite rank operators. The same is true when K is contained in the absolutely convex hull
of a weakly null basic sequence of E′. Moreover, in this case we prove that every K-bounded
polynomial is extendible to any larger space.

1. Introduction

If E is a Banach space and K is a bounded subset of its dual, we say that a scalar valued
N -homogeneous polynomial P on E is K-bounded if there is a positive constant C such that the
inequality |P (x)| ≤ C sup{|γ(x)|N : γ ∈ K} holds for all x ∈ E. Note that continuity is equivalent
to BE′ -boundedness, and also (see Proposition 3.2) that finite type polynomials correspond to
K-bounded with K finite.

A result of E. Toma [12] (see also [5]) states that a continuous homogeneous polynomial is
weakly continuous on bounded sets if and only if it is K-bounded for some compact set K. Our
interest in K-bounded polynomials was originally motivated by this result. The closure of the
space of finite type polynomials is the space of ‘approximable’ polynomials and is a subspace of
the space of polynomials which are weakly continuous on bounded sets. Thus, we set out to clarify
the relationship between ‘approximable’ and ‘K-bounded’ (with K something between ‘finite’ and
‘compact’). We obtain several sufficient conditions for approximability of a polynomial and are
naturally led to consider also the problem of extendibility (to any larger Banach space) of K-
bounded polynomials for several types of subsets K of E′. Note that all finite type polynomials
(and even all integral polynomials [6]) are extendible, but the same does not hold for approximable
polynomials.

The paper is organised as follows. In section 2, we set our notation and give a few basic
properties about K-bounded polynomials, as well as a new (isometric) version of a result of Aron
and Galindo regarding the Aron-Berner extension of a K-bounded polynomial. Section 3 is devoted
to the search for conditions on K which ensure approximability and extendibility.

1



2 K-bounded polynomials

2. Basic properties

Throughout, E will be a Banach space over the scalar field IK = IR or C, and E′ will denote its
dual space. The space of continuous N -homogeneous polynomials from E into IK will be denoted
by P(NE). This is a Banach space with the norm ‖P‖ = sup{|P (x)| : ‖x‖ ≤ 1}. If P ∈ P(NE),
∨
P will denote the continuous symmetric N -linear form associated with P .

A polynomial P ∈ P(NE) is said to be of finite type if there exists a finite subset {ϕi}m
i=1 of

E′ such that

P (x) =
m∑

i=1

ϕN
i (x)

for complex E. When E is a real Banach space and N is even, the representation must take
into account the signs, so P (x) =

∑m
i=1 ϕ

N
i (x) −

∑n
j=1 ψ

N
i (x). We will denote by Pf (NE) the

space of N -homogeneous polynomials of finite type and its closure, in (P(NE), ‖ · ‖), by Pc(NE).
Polynomials in Pc(NE) will be called approximable.

Pw(NE) will denote the space of polynomials which are weakly continuous on bounded sets.
This is a closed subspace of P(NE), and we have

Pf (NE) ⊂ Pc(NE) ⊂ Pw(NE) ⊂ P(NE) (1)

Let K be a bounded subset of E′. For x ∈ E, we define

‖x‖K = sup
γ∈K

|γ(x)|

which is a continuous semi-norm on E.

Definition 2.1. We say that an N -homogeneous polynomial P is K-bounded if there exists a
positive constant C such that

|P (x)| ≤ C ‖x‖N
K (2)

for all x in E. The smallest constant C that verifies (2) is called ‖P‖K .

Since ‖ · ‖K is a continuous semi-norm on E, every K-bounded polynomial is continuous. The
space of K-bounded N -homogeneous polynomials will be denoted by PK(NE). On PK(NE), ‖·‖K

is a norm and (PK(NE), ‖ · ‖K) is a Banach space.
We also say that an N -linear form Φ : EN → IK is K-bounded if there exists a positive constant

C such that
|Φ(x1, . . . , xN )| ≤ C ‖x1‖K · · · ‖xN‖K (3)

for all (x1, . . . , xN ) ∈ EN and ‖Φ‖K will be the smallest constant C verifying (3).
Clearly, everyK-bounded Φ is continuous. From the polarization formula, we have the following

inequalities

‖P‖K ≤ ‖
∨
P ‖K ≤ NN

N !
‖P‖K

It follows that there exists a one to one correspondence between K-bounded N -homogeneous
polynomials and K-bounded symmetric N -linear forms.
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Remark 2.2. For every x, y ∈ E, and every P ∈ PK(NE), if ‖x− y‖K = 0, then P (x) = P (y).

|P (x)− P (y)| ≤ |
∨
P (x, . . . , x)−

∨
P (y, x, . . . , x)|+ |

∨
P (y, x, . . . , x)−

∨
P (y, y, x, . . . , x)|

+ · · ·+ |
∨
P (y, . . . , y, x)−

∨
P (y, . . . , y)|

≤ ‖
∨
P ‖K ‖x− y‖K ‖x‖N−1

K + ‖
∨
P ‖K ‖x− y‖K ‖y‖K ‖x‖N−2

K

+ · · ·+ ‖
∨
P ‖K ‖x− y‖K ‖y‖N−1

K

≤ N ‖
∨
P ‖K ‖x− y‖K max{‖x‖K , ‖y‖K}N−1.

Remark 2.3. Since K1 ⊂ K2 ⊂ E′ implies ‖x‖K1 ≤ ‖x‖K2 for all x ∈ E, every K1-bounded
polynomial P is K2-bounded, with

‖P‖K2 ≤ ‖P‖K1 .

Also, if K ⊂ E′ and K̂ = Γ(K) is its closed, convex, balanced hull, then ‖x‖K = ‖x‖
K̂

for

all x ∈ E. Indeed, let γ0 ∈ Γ(K), say γ0 =
n∑

i=1

αiγi, where γi ∈ K, αi ∈ IK for i = 1, . . . , n and∑n
i=1 |αi| ≤ 1. Then, for all x ∈ E, we have

|γ0(x)| =

∣∣∣∣∣
n∑

i=1

αiγi(x)

∣∣∣∣∣ ≤ sup
j=1,...,n

|γj(x)|
n∑

i=1

|αi| ≤ sup
γ∈K

|γ(x)| = ‖x‖K

and
‖x‖

K̂
= sup

γ∈K̂

|γ(x)| = sup
γ∈Γ(K)

|γ(x)| ≤ ‖x‖K .

From this and the fact that K ⊂ K̂, it follows that ‖x‖K = ‖x‖
K̂

. Therefore, PK(NE) =
P

K̂
(NE) with ‖P‖K = ‖P‖

K̂
.

Since ‖ · ‖K is a continuous semi-norm on E, then ◦K = {x ∈ E : ‖x‖K = 0} is a closed
subspace of E. On E/◦K, we can define the following norm

|‖Π(x)|‖ = ‖x‖K

where Π : E → E/◦K is the quotient projection. The completion of E/◦K, (EK , |‖ · |‖) is a Banach
space.

Lemma 2.4. Let K be a bounded subset of E′. Then the spaces (PK(NE), ‖·‖K) and (P(NEK), ‖ · ‖)
are isometrically isomorphic.

Proof. For P ∈ PK(NE) we define Q : E/◦K → IK by

Q(Π(x)) = P (x) ∀x ∈ E.

Q is well defined because of remark 2.2. Also, Q is an N -homogeneous polynomial and

‖Q‖ = sup{|Q(y)| : y ∈ E/◦K, |‖y‖| = 1} = sup{|Q(Π(x))| : x ∈ E, |‖Π(x)|‖ = 1}
= sup{|P (x)| : x ∈ E, ‖x‖K = 1} = ‖P‖K

Thus Q is continuous and can be extended to an N -homogeneous polynomial on EK with the
same norm; this extension will still be called Q.
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Conversely, let Q ∈ P(NEK). Clearly, P (x) = Q(Π(x)) is a K-bounded N -homogeneous
polynomial and ‖P‖K = ‖Q‖.

It is known that every P ∈ P(NE) extends to E′′ via the Aron-Berner morphism [1], and that
this morphism preserves norms [7]. We will denote that extension by P . Since K ⊂ E′, it can
be considered as a subset of E′′′. Aron and Galindo [3, corollary 8] proved that the Aron-Berner
extension of a K-bounded polynomial is K-bounded, when K is a weakly compact set. Using the
construction of the preceding lemma, we will give another proof of this fact. Moreover, we will
show that the Aron-Berner morphism is a ‖ · ‖K-isometry.

Proposition 2.5. Let K be a relatively weakly compact subset of E′. Then the Aron-Berner
morphism is an isometry from (PK(NE), ‖ · ‖K) into (PK(NE′′), ‖ · ‖K) for every N ∈ IN.

Proof. For P ∈ PK(NE), let Q ∈ P(NEK) as in lemma 2.4, let Q ∈ P(NE′′K) be the Aron-
Berner extension of Q and P = Q ◦ Π′′ : E′′ → IK where Π′′ is the bitranspose of Π. Using the
characterization of the Aron-Berner extension due to Zalduendo [13, theorem 2], it is easy to check
that P is the Aron-Berner extension of P . Let us see that P is K-bounded with ‖P‖K = ‖P‖K .
For x′′ ∈ E′′,

|P (x′′)| = |Q(Π′′(x′′))| ≤ ‖Q‖ |‖Π′′(x′′)|‖N = ‖P‖K |‖Π′′(x′′)|‖N

= ‖P‖K sup
β∈BE′

K

|Π′′(x′′)(β)|N = ‖P‖K sup
β∈BE′

K

|x′′(Π′(β))|N (4)

We claim that Π′(BE′
K

) is contained in Γ(K), the closed, convex, balanced hull of K. To see
this, let β ∈ BE′

K
, then

|Π′(β)(x)| = |β(Π(x))| ≤ ‖β‖ |‖Π(x)|‖ ≤ ‖x‖K = sup
γ∈K

|γ(x)| ∀x ∈ E

By the Hahn-Banach theorem, Π′(β) belongs to the weak-star closure of Γ(K), Γ(K)
w∗

. Since
K is relatively weakly compact, Γ(K) is weakly compact. Then Γ(K) is weak-star compact and it

follows that Γ(K)
w∗

= Γ(K). Hence, Π′(BE′
K

) ⊂ Γ(K). Returning to (4),

|P (x′′)| ≤ ‖P‖K sup
ϕ∈Γ(K)

|x′′(ϕ)|N = ‖P‖K sup
ϕ∈K

|x′′(ϕ)|N = ‖P‖K ‖x′′‖N
K

Therefore, P is K-bounded and ‖P‖K = ‖P‖K .

3. Main results

We want to describe K-bounded polynomials corresponding to different classes of sets K. We
begin by considering finite dimensional subsets of E′ which will be related to finite type polynomials
as we will see in proposition 3.2. First, we need the following lemma.

Lemma 3.1. A polynomial P ∈ P(NE) is of finite type if and only if its associated operator
TP : E → P(N−1E) has finite rank.

Proof. If P (x) =
∑m

i=1 ϕ
N
i (x), then TP (x) =

∑m
i=1 ϕ(x)ϕN−1

i which is a finite rank operator.
Conversely, suppose TP is a finite rank operator and let Π : E → E/ kerTP be the quotient
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projection. We define a polynomial P̃ on E/ kerTP by P̃ (Π(x)) = P (x). To see that P̃ is well
defined, let Π(x) = Π(y). Since TP (x) = TP (y),

P (x) = TP (x)(x) = TP (y)(x) =
∨
P (y, x, . . . , x) =

∨
P (x, y, x . . . , x)

= TP (x)∨(y, x, . . . , x) = TP (y)∨(y, x, . . . , x) =
∨
P (y, y, x . . . , x)

= · · · · · · = P (y)

Since E/ kerTP is a finite dimensional space, P̃ becomes a finite type polynomial and so does P .

Proposition 3.2. Let K ⊂ E′ be a bounded set. Then every K-bounded N -homogeneous polyno-
mial is of finite type if and only if the subspace spanned by K is finite dimensional.

Proof. Suppose span(K) is finite dimensional and let {γ1, . . . , γm} ⊂ E′ be a basis of span(K)
such that K ⊂ Γ({γ1, . . . , γm}). If u : E → IKm is defined by u(x) = (γ1(x), . . . , γm(x)), then u is a
continuous linear map satisfying ‖u(x)‖∞ ≥ ‖x‖K . Given P ∈ PK(NE), we define Q : Im(u) → IK
by Q(u(x)) = P (x), which is well defined by remark 2.2. Since Q is a continuous N -homogeneous
polynomial from a subspace of IKm into IK, we can write

Q(z) =
∑
|α|=N

aα z
α1
1 · · · zαm

m ∀z = (z1, . . . , zm) ∈ Im(u)

where aα ∈ IK, α = (α1, . . . , αm) ∈ INm
0 , |α| = α1 + · · ·+ αm. Then,

P (x) = Q(u(x)) =
∑
|α|=N

aα γ1(x)α1 · · · γm(x)αm ∀x ∈ E.

In particular, P is a polynomial of finite type.
To see the converse we will use the identification given in lemma 2.4. Let P ∈ PK(NE) of finite

type; then the corresponding polynomial Q ∈ P(NEK) is of finite type too. Indeed, P being of
finite type, its associated operator TP : E → PK(N−1E) has finite rank. Since TP = TQ ◦Π, where
TQ : EK → P(N−1EK) is the operator associated to Q and Π : E → EK is the natural projection,
then TQ has finite rank. By lemma 3.1, Q is a polynomial of finite type and then every continuous
N -homogeneous polynomial on EK is of finite type. We conclude that EK is finite dimensional.
Thus the subspace spanned by K has finite dimension.

As a corollary, we have that a K-bounded polynomial of finite type can be written in terms
of K-bounded functionals (just compose with Π the functionals representing Q as a finite type
polynomial).

It is clear that every polynomial of finite type is K-bounded for a finite set K, so we have

Pf (NE) =
⋃

K ⊂ E′

K finite

PK(NE).

In [12, 5] it is shown that

Pw(NE) =
⋃

K ⊂ E′

K compact

PK(NE).



6 K-bounded polynomials

and clearly
P(NE) = PBE′ (NE)

where BE′ denotes the closed unit ball of E′.
Taking into account the inclusions given in (1), we will try to find sets K ⊂ E′ for which

K-bounded polynomials are approximable.
Since approximable polynomials are w-continuous on bounded sets, we start by considering

compact subsetsK of E′. In addition, w-continuous polynomials on bounded sets are approximable
when E′ has the approximation property. This suggests the following proposition:

Proposition 3.3. Let K ⊂ E′ be a compact set such that the identity Id : E′ → E′ can be
uniformly approximated on K by finite rank operators. Then every K-bounded N -homogeneous
polynomial is approximable.

Proof. Without loss of generality, we supposeK ⊂ BE′ . Let P ∈ PK(NE) and dP ∈ P(N−1E;E′)
its derivative. We have

E
dP−→ E′

Π ↓ ↑ Π′

EK
dQ−→ E′K

Note that

dP (BE) = Π′(dQ(Π(BE))) ⊂ Π′(dQ(BEK
)) ⊂ ‖dQ‖Π′(BE′

K
) ⊂ ‖dQ‖Γ(K)

(the last inclusion was explained in proposition 2.5). Furthermore, K1 = ‖dQ‖Γ(K) is a compact
subset of E′ on which the identity can also be uniformly approximated by finite rank operators.
Thus, for each n ∈ IN, there exists a finite rank operator In : E′ → E′ verifying

‖In(γ)− γ‖ ≤ 1
n

∀γ ∈ K1

so
‖In(dP (x))− dP (x)‖ ≤ 1

n
∀x ∈ BE .

We define Pn(x) = 1
N In(dP (x))(x). Since dPn = In ◦ dP and TPn(x)(y) = 1

N (dPn(y)) (x) then
TPn

has finite rank which implies, by lemma 3.1, that Pn is a polynomial of finite type. We also
have

|Pn(x)− P (x)| =
∣∣∣∣ 1
N

(In(dP (x))(x)− 1
N
dP (x)(x)

∣∣∣∣ ≤ 1
N

1
n

∀x ∈ BE .

Therefore, P is approximable.

It is known (see, for example, [11]) that a subset K of E′ is compact if and only if it is contained
in the closed convex balanced hull of a null sequence. By remark 2.3,⋃

K ⊂ E′

K compact

PK(NE) =
⋃

K = {γn}n ⊂ E′

‖γn‖ −→ 0

PK(NE).

Let us consider K = {γn}n∈IN ⊂ E′ where ‖γn‖
n→∞−→ 0. We can define a linear operator

u : E → c0 by
u(x) = (γ1(x), γ2(x), . . . , γn(x), . . .) (5)
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which is easily seen to be compact. This fact will enable us to prove that K-bounded polynomials
are approximable, given some further assumption on the image of u.

Proposition 3.4. Let K = {γn}n∈IN ⊂ E′ where ‖γn‖
n→∞−→ 0 and let u as in (5). If Im(u) has

the approximation property, then K-bounded homogeneous polynomials are approximable.

Proof. Let N ∈ IN, and P ∈ PK(NE). We define Q : Im(u) → IK by Q(u(x)) = P (x), which
again is well defined by remark 2.2 and is a continuous N -homogeneous polynomial with

‖Q‖ = sup{|Q(u(x))| : ‖u(x)‖∞ ≤ 1} = sup{|P (x)| : ‖x‖K ≤ 1} = ‖P‖K

We can extend Q to a continuous N -homogeneous polynomial on Im(u) with the same norm,
which will still be called Q. This gives us the following diagram

Im(u)
u

↗ ↓ Q

E
P→ IK

Since u(BE) ⊂ Im(u), u is compact and Im(u) has the approximation property, there exist
finite rank operators Tn : Im(u) → Im(u) such that

‖Tn(u(x))− u(x)‖∞ <
1
n

∀x ∈ BE

In this way we have a sequence of finite type polynomials {Pn}n∈IN ⊂ Pf (NE), given by
Pn(x) = (Q ◦ Tn ◦ u)(x), approximating P . Indeed,

|P (x)− Pn(x)| = |Q(u(x))−Q(Tn(u(x)))| ≤M‖u(x)− Tn(u(x))‖∞ ≤M
1
n

∀x ∈ BE

where the constant M can be chosen independent of x ∈ BE and n ∈ IN (see remark 2.2)

As a consequence of this proposition we derive the following result that Grothendieck proved
(see [11]) while studying the existence of spaces without the approximation property:

If there exists a Banach space without the approximation property then there exists a subspace
of c0 without the approximation property.

To see this, let X be a Banach space without the approximation property. We proceed as in [2].
There is a Banach space Z and a compact operator T : Z → X which is not approximable by finite
rank operators. If Y = Z⊕X ′, we define S : Y → Y ′ by S(z, x′) = (T ′x′, T z), where z ∈ Z, x′ ∈ X ′

and T ′ is the transpose of T . Thus S is a compact operator that cannot be approximated by finite
rank operators. Indeed, the existence of finite rank operators approximating S from Y into Y ′

would imply the existence of finite rank operators from Z into X ′′ approximating T . T being
compact, it would be possible to construct finite rank operators from Z into X approximating
T (see [11, lemma 1.e.6]) and that is absurd. Now, by means of the compacity of S, the 2-
homogeneous polynomial P ∈ P(2Y ), P (y) = S(y)(y), is w-continuous on bounded sets [4] but is
not approximable. Therefore, P is K-bounded, for some K = {γn}n∈IN ⊂ Y ′, where ‖γn‖ → 0,
and defining u as in (5), the subspace Im(u) of c0 fails to have the approximation property.

From the proof above, we can conclude that the existence of a Banach space without the approx-
imation property is equivalent to the existence of a homogeneous non-approximable polynomial
which is w-continuous on bounded sets.
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There is no general method to decide whether a Banach space has the approximation property
or not. However, every Hilbert space has it. Let K = {γn}n∈IN ⊂ E′, where

∑∞
n=1 ‖γn‖2 < ∞.

Now, we can modify the construction (5) by putting u : E → `2, u(x) = (γ1(x), . . . , γn(x), . . .),
which is also a compact operator. Defining the polynomial Q : Im(u) ⊂ `2 → IK by Q(u(x)) = P (x)
we note that in this case

|Q(u(x))| ≤ ‖P‖K‖u(x)‖N
∞ ≤ ‖P‖K‖u(x)‖N

2

Since Im(u) is a Hilbert space, we can proceed as in proposition 3.4 to conclude that every
K- bounded polynomial is approximable. Moreover, working on a Hilbert space we can state an
extension result. We have:

Proposition 3.5. Let K = {γn}n∈IN ⊂ E′ such that
∑∞

n=1 ‖γn‖2 < ∞. Then every K-bounded
polynomial P ∈ PK(NE) is approximable. Moreover, if G is a Banach space containing E, there
exists P̃ ∈ P(NG) which is an extension of P .

Proof. We prove the second statement, the first one having been explained in the previous
paragraph. If E ⊂ G, for each n ∈ IN, we have an extension of γn, γ̃n ∈ G′, with the same norm.
As

∑∞
n=1 ‖γ̃n‖2 < ∞, the operator ũ : G → `2, ũ(x) = (γ̃1(x), . . . , γ̃n(x), . . .) is an extension of

u. Let Q̃ : Im(ũ) → IK, Q̃(y) = Q(Π(y)), where Π is the orthogonal projection onto Im(u). This
completes the following diagram:

G
ũ−→ Im(ũ)

i ↑ ↓ Π
Q̃

↘
E

u−→ Im(u)
Q→ IK

We may define P̃ : G → IK, P̃ (x) = Q̃(ũ(x)). Thus P̃ ∈ P(NG) and becomes an extension of
P .

In [10], Kirwan and Ryan gave the following definition:

Definition 3.6. A polynomial P ∈ P(NE) will be called extendible if, for every Banach space
G ⊃ E, there exists P̃ ∈ P(NG) which is an extension of P .

Proposition 3.5 states that if we consider K = {γn}n∈IN ⊂ E′ with
∑∞

n=1 ‖γn‖2 < ∞, then
every K-bounded polynomial is extendible. Moreover, for each G ⊃ E, there exists an extension
morphism

Λ : PK(NE) −→ P(NG)
P 7−→ Q ◦Π ◦ ũ

We will now investigate those bounded subsets K of E′ for which every K-bounded polynomial
is extendible and whether the resulting extension becomes K̃-bounded, where K̃ = {γ̃ : γ ∈ K}
and γ̃ is a norm preserving extension of γ to G. Moreover, we want to establish conditions for
the existence of an extension morphism. Still, we keep in mind the problem of approximability of
K-bounded polynomials.

Note that there are non-extendible approximable polynomials. For instance, P ∈ P(2`2), given
by P (x) =

∑∞
n=1

x2
n

n , is approximable but not nuclear, so it cannot be extendible [10, proposition 8].
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It is known that every homogeneous polynomial on c0 is approximable. Moreover, if Q ∈
P(Nc0), there exists a sequence of scalars {ai1,...,iN

}(i1,...,iN )∈D such that

Q =
∑

(i1,...,iN )∈D

ai1,...,iN
e′i1 . . . e

′
iN

(6)

where D = {(i1, . . . , iN ) ∈ INN : i1 ≥ . . . ≥ iN} is ordered by the square ordering, {e′n}n∈IN is the
unit vector basis of c′0 = `1, and the convergence of the series (6) is in the norm of P(Nc0) (see [8]).

For certain sets K, we will be able to factor K-bounded homogeneous polynomials on E by
homogeneous polynomials on c0. This will enable us to lift the property of being approximable
from polynomials on c0 to K-bounded polynomials on E and also to obtain an extension result,
as in proposition 3.5.

Proposition 3.7. Let {γn}n∈IN ⊂ E′ be a basic sequence such that γn
w→ 0 and let K = {γn}n∈IN.

If P ∈ PK(NE) then P is approximable and extendible. Furthermore, if E ⊂ G, then there exists
an extension morphism Λ : PK(NE) → P

K̃
(NG), where K̃ = {γ̃n}n∈IN, with γ̃n a norm preserving

extension of γn. The morphism is an isometry if we consider the ‖ · ‖K and ‖ · ‖
K̃

norms.

Proof. As in (5), let u : E → c0, with u(x) = (γ1(x), . . . , γn(x), . . .). Since {‖γn‖}n∈IN is
bounded, u ∈ L(E; c0) and ‖u(x)‖ = ‖x‖K . Let u : E′′ → c0, u(z) = (z(γ1), . . . , z(γn), . . .). Again,
u ∈ L(E′′; c0) and ‖u(z)‖ = ‖z‖K , for all z ∈ E′′.

Since {γn}n∈IN is a basic sequence in E′, there exists a sequence {zn}n∈IN ⊂ E′′ such that
zn(γm) = δnm and so u(zn) = en, where {en}n∈IN is the unit vector basis of c0. It follows that
Im(u) is a dense subspace of c0.

Let P ∈ PK(NE). As stated in proposition 2.5, its Aron-Berner extension P belongs to
PK(NE′′). ConsiderQ : Im(u) → IK defined byQ(u(z)) = P (z). Q is a continuousN -homogeneous
polynomial with ‖Q‖ = ‖P‖K = ‖P‖K . We may extend Q to a continuous N -homogeneous
polynomial on c0, which will still be called Q, with the same norm. This gives us the following
diagram:

E′′
u→ c0

i ↑
P

↘ ↓ Q
E

P→ IK

Being a continuous N -homogeneous polynomial on c0, Q admits a representation as in (6).
Thus

P =
∑

(i1,...,iN )∈D

ai1,...,iN
γi1 . . . γiN

(7)

It can be seen that the series (7) converges in the norms of both P(NE) and PK(NE). More-
over, from the isometric isomorphism between PK(NE) and P(Nc0) it follows that the sequence
{γi1 , . . . , γiN

}(i1,...,iN )∈D (with the square ordering) is a Schauder basis of (PK(NE), ‖ · ‖K). Now
that we have proved that P is approximable, we turn to the extension morphism.

Let G ⊃ E and ũ : G → `∞ given by ũ(y) = (γ̃1(y), . . . , γ̃n(y), . . .), with γ̃n ∈ G′ a norm
preserving extension of γn. Let us consider Q ∈ P(N `∞) the Aron-Berner extension of Q ∈ P(Nc0).
Then we have the following diagram:

G
ũ−→ `∞

i ↑ ↑ J
Q

↘
E

u−→ c0
Q→ IK
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where J is the canonical inclusion from c0 into `∞.
If we define P̃ : G→ IK by P̃ (y) = Q(ũ(y)) we obtain an extension of P to G with

|P̃ (y)| = |Q(ũ(y))| ≤ ‖Q‖ ‖ũ(y)‖N = ‖P‖K ‖y‖N

K̃
∀y ∈ G

This implies that P̃ is K̃-bounded and ‖P̃‖
K̃

= ‖P‖K . Hence, the extension morphism

Λ : PK(NE) −→ P
K̃

(NG)

P 7−→ Q ◦ ũ

is an isometry.

Remark 3.8. Note that, in the previous proposition, K is a weakly null sequence, although we are
mainly concerned with norm null sequences. In the norm null case, the result is stronger in the
sense that K̃ turns out to be a norm null sequence too. In the general case, when γn

w→ 0, it is
possible to choose γ̃n converging weakly to zero but, unfortunately, the extension morphism fails
to be an isometry.

The assumption that {γn}n∈IN is a w-null basic sequence can be replaced by other conditions
which will enable us to proceed as in the previous proof.

Ovsepian and Pelczynski proved (see [LT], for example) that every infinite dimensional separable
Banach space verifies that, for each ε > 0, there exist two sequences {xn}n∈IN ⊂ E and {γn}n∈IN ⊂
E′ such that

(i) γn(xm) = δnm ∀n,m ∈ IN.

(ii) ‖xn‖ = 1; ‖γn‖ ≤ 1 + ε ∀n ∈ IN.

(iii) E = [{xn}n∈IN].

(iv) {γn}n∈IN is a total system over E, i.e. γn(x) = 0 ∀n ∈ IN implies that x = 0.

A pair of sequences in these conditions will be called an O-P system. Note that {γn}n∈IN is a
weak-star null sequence.

Proposition 3.9. Let E be an infinite dimensional separable Banach space. Let {xn}n∈IN ⊂ E
and {γn}n∈IN ⊂ E′ be an O-P system. If K = {γn}n∈IN then every K-bounded N -homogeneous
polynomial P is approximable and extendible by an extension morphism.

Proof. Let u : E → c0 be as in (5), which is well defined because {γn}n∈IN is a weak-star null
sequence. Since u(xn) = en, Im(u) is a dense subspace of c0 and we can define Q : c0 → IK such
that Q(u(x)) = P (x) for all x ∈ E. Thus P is approximable with a representation as in (7). The
extension result is derived just as in the previous proposition.
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