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Abstract

We derive Banach-Stone theorems for spaces of homogeneous polynomials. We
show that every isometric isomorphism between the spaces of n-homogeneous ap-
proximable polynomials on real Banach spaces E and F is induced by an isometric
isomorphism of E′ onto F ′. With an additional geometric condition we obtain the
analogous result in the complex case. Isometries between spaces of n-homogeneous
integral polynomials and between the spaces of all n-homogeneous polynomials are
also investigated.

1 Introduction

Isometries between Banach spaces are those morphisms which preserve the metric structure

of the spaces. In 1932 Banach [3] showed that if K and L are compact metric spaces and

T is an isometric isomorphism from C(K), the space of continuous real valued functions

on K, to C(L), the space of real valued functions on L, then there is a homeomorphism

Θ from L into K and a continuous functions h on L with |h(y)| = 1 such that

(Tf)(y) = h(y)f ◦Θ(y)

for all f in C(K) and all y in L. Later, Stone [40] extended the result to the case where

K and L are compact Hausdorff sets, a result which is now refereed to as the Banach-

Stone Theorem. In the seventy years since Banach’s and Stone’s results it has emerged

that isometries between a wide range of Banach function spaces have the above form with
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the condition on h relaxed to be an element of the range rather than satisfy |h(y)| = 1.

Examples of this phenomenon are the isometries of H∞(∆) and H1(∆) characterised by

deLeeuw, Rudin and Wermer [15], the isometries of the Hardy spaces Hp, 1 < p < ∞,

p 6= 2, by Forelli [22], the isometries of the Bergman spaces, Lp
α, 0 < p < ∞, and weighted

Bergman spaces given by Kolaski [28, 29], the isometries of the Bloch spaces, Bo and B, due

to Cima and Wogen [12], and the isometries of weighted spaces of holomorphic functions,

Hvo(U) and Hv(U), on bounded subsets U of Cn, [4]. In this paper we will prove results

of this type for spaces of homogeneous polynomials on Banach spaces E and F . Our Θ

will turn out to be the transpose of an isometric isomorphism from E ′ into F ′.

Before proceeding we introduce some definitions and notation. Throughout the paper E

and F are Banach spaces and SE is the unit sphere of E. A function P : E → K (K = R,C)

is said to be a (continuous) n-homogeneous polynomial if there is a (continuous) n-linear

map LP : E × E × . . .× E︸ ︷︷ ︸
n−times

→ K such that P (x) = LP (x, . . . , x) for all x ∈ E. Continuous

n-homogeneous polynomials are bounded on the unit ball and we denote by P(nE) the

Banach space of all continuous n-homogeneous polynomials on E endowed with the norm:

P → ‖P‖ := sup‖x‖≤1 |P (x)|.
An n-homogeneous polynomial P ∈ P(nE) is said to be of finite type if there is {φj}k

j=1

in E ′ such that P (x) =
∑k

j=1±φj(x)n for all x in E. The closure of the finite type n-

homogeneous polynomials in P(nE) are called the approximable polynomials. We use

Pf (
nE) to denote the space of finite type n-homogeneous polynomials and PA(nE) to

denote the space of all n-homogeneous approximable polynomials.

We say that an n-homogeneous polynomial P on a Banach space E is nuclear if there

is bounded sequence (φj)
∞
j=1 ⊂ E ′ and a sequence (λj)

∞
j=1 in `1 such that

P (x) =
∞∑

j=1

λjφj(x)n

for every x in E. The space of all nuclear n-homogeneous polynomials on E is denoted

by PN(nE) and becomes a Banach space when the norm of P is given as the infimum of∑∞
j=1 |λj| ‖φj‖n taken over all representations of P of the form described above. This norm

is called the nuclear norm of P and is denoted by ‖P‖N . When E ′ has the approximation

property (PN(nE), ‖ · ‖N) is isometrically isomorphic to
⊗̂

n,s,πE ′ under the map induced

by φn → φ⊗ φ⊗ . . .⊗ φ.

A polynomial P on E is said to be integral if there is a regular Borel measure µ on
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(BE′ , σ(E ′, E)) such that

P (x) =

∫

BE′
φ(x)n dµ(φ) (1)

for every x in E. We write PI(
nE) for the space of all n-homogeneous integral polynomials

on E. We define the integral norm of an integral polynomial P , ‖P‖I , as the infimum of

‖µ‖ taken over all regular Borel measures which satisfy (1).

It is shown in [17] (see also [18, Section 2.2]) that PI(
nE ′) is isometrically isomorphic

to PA(nE)′ via the Borel transform B given by BΨ(φ) = Ψ(φn) for φ ∈ E ′, Ψ ∈ PA(nE)′.

We use this identification without further reference.

A class of n-homogeneous polynomials on E is a pair consisting of a subspace, PC(nE),

of P(nE) and a norm, ‖ · ‖C, under which (PC(nE), ‖ · ‖C) is a Banach space.

The spaces of n-homogeneous approximable, nuclear and integral polynomials are all

examples of classes of polynomials.

Let us review what is known about isometries and more generally isomorphisms of

spaces of homogeneous polynomials.

In [14] Dı́az and Dineen posed the following question: If E and F are Banach spaces and

E ′ is isomorphic to F ′ does this imply that P(nE) is isomorphic to P(nF )? They obtained

a positive solution in the case where E ′ has both the Schur property and the approximation

property. In [7] a positive solution is also obtained in the case where E and F are stable

Banach spaces while both [7] and [30] show that Arens regularity of E alone gives us an

affirmative answer. (The fact that stability gives a positive solution is actually implicit in

[14, Proposition 3].) A positive solution is also obtained in [30] under the assumption that

both E and F are symmetrically Arens regular. In addition it is shown that this result

is also true for the classes of nuclear, approximable, K-bounded, integral, extendible n-

homogeneous polynomials along with the space of n-homogeneous polynomials which are

weakly continuous on bounded sets irrespective of further conditions on E or F . In [10]

these results are extended to spaces of vector-valued homogeneous polynomials although

the techniques required are different. In [30] we are provided with a method of constructing

an isometry of spaces of homogeneous polynomials on E and F from an isometry of E ′

into F ′ as follows: Given a Banach space E we use JE to denote the canonical embedding

of E into its bidual E ′′. There is no Hahn-Banach Theorem for homogeneous polynomials

of degree 2 or greater. However, Aron and Berner [1] and Davie and Gamelin [13] show

that for every P ∈ P(nE) there is a norm-preserving extension of P to P ∈ P(nE ′′) such

that P ◦ JE(x) = P (x) for all x ∈ E. This extension is the key that allows us to lift any
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morphism s from E ′ to F ′ to a morphism s from PC(nE) to PC(nF ), defined by

s(P ) = P ◦ s′ ◦ JF .

In the case where s is an (isometric) isomorphism s̄ is also an (isometric) isomorphism.

This paper is organised as follows. In Section 2 we characterise ‘canonical’ isomorphisms

between spaces of approximable polynomials in terms of both the algebraic and geometric

structures. In the third section we examine the converse of the question of Dı́az and

Dineen [14] for the case of approximable polynomials. Specifically we show that if E and

F are real Banach spaces, n is a positive integer and T : PA(nE) → PA(nF ) is an isometric

isomorphism then there is an isometric isomorphism s : E ′ → F ′ such that T (P ) = ±P ◦s′◦
JF for all P ∈ PA(nE). In Section 4 we show that this result extends to complex Banach

spaces when we have additional information on the extreme points of the unit ball of

PI(
nF ′). Isometries between the classes of integral and of all n-homogeneous polynomials

are discussed in Section 5.

For further reading on polynomials on Banach spaces we refer the reader to [18] and

to [20] for further information on isometries of Banach spaces.

2 Canonical and power-preserving mappings

Let E be a real or complex Banach space and n be a fixed positive integer. We define an

equivalence relation ≡ on E ′ by φ ≡ ψ if

φn = ψn.

We let E ′/ ≡ denote the set of all ≡ equivalence classes. Given φ in E ′ we use [φ] to

denote the equivalence class of φ in E ′/ ≡.

Let E and F be real or complex Banach spaces, n be a positive integer and T : PA(nE)

→ PA(nF ) be an isomorphism. We define ST
E′ by

ST
E′ = {φ ∈ E ′ : ‖T (φn)‖ = 1}.

We use ST
E′/ ≡ to denote the set {[φ] : φ ∈ ST

E′} and SE′/ ≡ to denote the set {[ψ] : ψ ∈
E ′, ‖ψ‖ = 1}.

We need some technical lemmata and definitions.

Lemma 1 Let E be a real or complex Banach space of dimension at least 3. Then, ST
E′ is

simply connected.
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Proof: Consider ψ and −ψ in ST
E′ and the punctured distorted spheres U = ST

E′ \ {ψ}
and V = ST

E′ \ {−ψ}. We show that {U, V } satisfies the hypothesis of Van Kampen’s

Theorem (see, for instance, [33]). It is clear that U , V are open sets and cover ST
E′ so we

have to show that U , V are simply connected and U ∩ V is path connected. Moreover, we

prove that U, V are contractible. Consider, for instance, V and define F : [0, 1] × V → V

by F (t, φ) =
(1− t)φ + tψ

‖T (((1− t)φ + tψ)n)‖1/n
, which is continuous since T is an isomorphism and

(1 − t)φ + tψ = 0 if and only if φ = −ψ. In addition, F (0, φ) = φ and F (1, φ) = ψ,

therefore, F is a contraction. In an analogous way it can be shown that U is contractible.

To show that U ∩V is path connected, take φ0 ∈ U ∩V . If φ ∈ U ∩V such that {φ, φ0, ψ}
is a linear independent set then, σφ,φ0(t) =

(1− t)φ + tφ0

‖T (((1− t)φ + tφ0)n)‖1/n
defines a path in

U ∩ V connecting φ and φ0. If φ belongs to the span of {ψ, φ0}, consider η ∈ U ∩ V such

that {φ, φ0, η} is a linear independent set. Now, define σ̃φ,φ0(t) by

σ̃φ,φ0(t)

{
σφ,η(2t) for t ∈ [0, 1

2
]

ση,φ0(2t− 1) if t ∈ [1
2
, 1].

Then σ̃φ,φ0 is the mapping required, and this completes the proof. ¥

Definition 2 We say that T : PC(nE) → PC(nF ) is power-preserving or T is a power-

preserver if for all φ ∈ E ′ with φn ∈ PC(nE) we have that T (φn) = ±ψn for some ψ in

F ′.

Definition 3 Given a power-preserving isomorphism T : PA(nE) → PA(nF ) we call the

function t : ST
E′/ ≡→ SF ′/ ≡ the mapping induced by T to be the unique mapping which

satisfies the property t([φ]) = [ψ] where T (φn) = ψn for all φ ∈ ST
E′.

Lemma 4 Let E and F be real or complex Banach spaces of dimension at least 3, n be a

fixed positive integer and T : PA(nE) → PA(nF ) be a power-preserving isomorphism. Then,

the continuous function t : ST
E′/ ≡→ SF ′/ ≡ induced by T can be lifted to a continuous

function t̃ : ST
E′ → SF ′. Further, if ψo is such that t([φo]) = [ψo] then, there exists a unique

isomorphism s : E ′ → F ′ so that s(φo) = ψo and [s(φ)] = t([φ]) for all φ ∈ ST
E′.

Proof: Fix φo in ST
E′ . Consider t ◦ [ · ] : ST

E′ → SF ′/ ≡. This function is continuous. As

ST
E′ is simply connected we have that the fundamental group at the point φo, π(ST

E′ , φo),

is trivial. Choose ψo in SF ′ so that t([φo]) = [ψo]. Then by [31, Theorem 5.1] there is

a unique continuous mapping t̃ : ST
E′ → SF ′ so that t̃(φo) = ψo and [t̃(φ)] = t([φ]) for all
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φ ∈ ST
E′ . Set s(φ) = ‖T (φn)‖1/nt̃

(
φ/‖T (φn)‖1/n

)
when φ 6= 0 and s(0) = 0 to get a unique

continuous homogeneous function s : E ′ → F ′ so that s(φo) = ψo and s(φ) = t̃(φ) for all

φ ∈ ST
E′ . Let X be a finite dimensional subspace of E. Then X ′ is a subspace of E ′.

Consider T |cN
n,s,εX

′ :
⊗̂

n,s,εX
′ → ⊗̂

n,s,εF
′. The proof of [39, Exercise 4.5.5] (see also [39,

Theorem 4.5.5]) gives us a linear operator tX′ : X ′ → F ′ so that T (φn) = (tX′(φ))n for all

φ ∈ X ′. Then (tX′(φ))n = T (φn
o ) = ψn

o and so tX′(φ) ≡ ψo. By uniqueness of lifting we

get that s|X′ = λtX′ for some λ with |λ| = 1. Since this holds for all finite dimensional

subspaces of E ′, s is linear.

Clearly, as s is linear it must be injective. We claim that it is also surjective. Suppose

that this is not the case. Let Y ⊂ F ′ denote the range of s. It follows by [38, Lemma 1.2]

that Y is a closed subspace of F ′. As T (φn) = (s(φ))n for all φ ∈ E ′ and {φn : φ ∈ E ′}
spans Pf (

nE) =
⊗

n,sE
′ we have that T (Pf (

nE)) =
⊗

n,s Y . Since T is both continuous

and open it follows that T (PA(nE)) =
⊗̂

n,s,εY which is strictly contained in PA(nF ).

Thus, s is a bijection. ¥

Definition 5 An isomorphism T : PC(nE) → PC(nF ) is said to be canonical if T (P ) =

±P ◦ s′ ◦ JF for all P ∈ PC(nE) and some isomorphism s : E ′ → F ′.

Theorem 6 Let E and F be real or complex Banach spaces of dimension at least 3, n be

a positive integer and T : PA(nE) → PA(nF ) be an isomorphism. Then the following are

equivalent:

(a) T is canonical,

(b) T is power preserving,

(c) there is an isomorphism S : PA(2nE) → PA(2nF ) such that S(PQ) = T (P )T (Q) for

all P, Q ∈ PA(nE),

(d) If P1, Q1, P2, Q2 ∈ PA(nE) satisfy

P1Q1 = P2Q2

then,

T (P1)T (Q1) = T (P2)T (Q2).
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Proof: Clearly we have that (a) implies (b). Now suppose that (b) holds. Then, Lemma 4

gives us an isomorphism s : E ′ → F ′ so that

T (φn)(y) = ±(s(φ))n(y) = ±φn ◦ s′ ◦ JF (y)

for all φ ∈ E ′ and y ∈ F . By linearity we get that

T (P )(y) = ±P ◦ s′ ◦ JF (y)

for all finite type polynomials P on E. Continuity extends the result to PA(nE) which

shows that T is canonical.

Suppose that (a) holds and that T (P ) = P ◦ s′ ◦ JF for some isomorphism s : E ′ → F ′.

Then define S : PA(2nE) → PA(2nF ) by S(R) = R ◦ s′ ◦ JF for R ∈ PA(2nE). As the

Aron-Berner extension is multiplicative (see [13]) we have that S(PQ) = T (P )T (Q) for

all P,Q ∈ P(nE). Statement (d) follows from (c).

Finally, let us show that (d) implies (b). Fix φ ∈ E ′ and choose ψ ∈ E ′ which is linearly

independent of φ. For k = 0, 1, . . . , n let Qk ∈ PA(nF ) be defined by Qk = T (φkψn−k). As

(d) holds we have that Q2
k = Qk+1Qk−1 for k = 1, . . . , n− 1. We can rewrite this as

Q0(y)/Q1(y) = Q1(y)/Q2(y) = · · · = Qn−1(y)/Qn(y)

for all y in F . An old result of Mazur and Orlicz [32] allows us to show that we have

unique factorization of polynomials on infinite dimensional spaces. Let us write the rational

function

Q0/Q1 = Q1/Q2 = · · · = Qn−1/Qn

in its lowest possible form as R/S. We have that deg R = deg S = p. As ψ is not a linear

multiple of φ we have that p > 0. However,

Qo(y)/Qn(y) = (Q0/Q1) (y) (Q1/Q2) (y) . . . (Qn−1/Qn) (y) = (R(y)/S(y))n

for all y ∈ F and therefore we have that p ≤ 1 and so both R and S are linear. In

particular, we have that

T (φn)(y) = Qo(y) = λ (R(y))n

for some constant λ and therefore T is a power-preserver. ¥

The above result illustrates that there is a connection between the isometric properties

of spaces of homogeneous polynomials and their ‘algebraic’ structure. This phenomenon

can be observed in other function spaces and algebras, see for example, [9], [15], [23], [34]

and [35].
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3 Isometries between spaces of approximable polyno-

mials on real Banach spaces

The isometric properties of Banach spaces are those properties which are intrinsically

connected with the shape of the unit ball. To understand these properties we can naturally

lead to examine certain subsets of points in the unit sphere which are invariant under

isometries. These include extreme points, exposed points and denting points.

An extreme point of the (closed) unit ball of E, BE is a point x with the property that

whenever x = λy + (1− λ)z for y, z in BE and 0 < λ < 1, then, x = y = z.

As we will also use the notation given below in Section 4 we state it for both the real

and complex cases.

Let X be a Banach space and n be a positive integer. It is shown in [5, Proposition 1]

that the set of (real) extreme points of the unit ball of PI(
nX) is contained in {±ϕn : ϕ ∈

X ′, ‖ϕ‖ = 1}. Hence, given a Banach space X and a positive integer n we use En(X ′) to

denote the set

{ϕ ∈ X ′ : ϕn is an extreme point of BPI(nX)}.

Theorem 7 Let E and F be real Banach spaces and T : PA(nE) → PA(nF ) be an iso-

metric isomorphism. Then, there is a isometric isomorphism s : E ′ → F ′ such that

T (P ) = ±P ◦ s′ ◦ JF for all P ∈ PA(nE).

Proof: Since T is an isometry we have that T ′ maps extreme points of BPI(nF ′) to extreme

points of BPI(nE′) . Therefore, by [5, Propositions 1], for each y ∈ En(F ′′) we can find

x ∈ En(E ′′) so that T ′(yn) = ±xn. Let us see that this equality extends to give us that T ′

is a power-preserver. Given y ∈ F ′′, ‖y‖ = 1, by [5, Proposition 5] and the Bishops-Phelps

Theorem we can find a sequence {yk} ⊂ En(F ′′) so that yk → y in norm. By choosing

a subsequence, if necessary, we may suppose that either T ′(yn
k ) = xn

k or T ′(yn
k ) = −xn

k

for all k. By [38, Lemma 1.2 (a)] we have that {xn : x ∈ E ′′, ‖x‖ = 1} is closed in

PI(
nE ′). Thus, there is x ∈ E ′′ so that T ′(yn) = ±xn. Since it is bijective, T ′ maps

{±yn : y ∈ F ′′, ‖y‖ = 1} onto {±xn : x ∈ E ′′, ‖x‖ = 1}. By homogeneity it follows that T ′

is a power-preserver.

We claim that either T ′(yn) = xn or T ′(yn) = −xn for all y ∈ SF ′′ and hence for all y

in F ′′. Suppose this not the case and assume that n is even. (The odd case is immediate.)

Consider the disjoint sets A = {y ∈ SF ′′ : T ′(y) = xn} and B = {y ∈ SF ′′ : T ′(y) = −xn}
which have union equal to the sphere of F ′′. Let us prove that A is open. Suppose that
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u ∈ A is the limit of a sequence (uk)k in B. Then T ′(un
k) = −vn

k converges to T ′(un).

Choose φ ∈ F ′ so that T ′(un)(φ) = δ > 0. Then we have that −vk(φ)n converges to the

positive number δ, which is impossible. Similarly, B is open and as SF ′′ is connected A or

B must be empty.

Without loss of generality we assume that T ′(yn) = xn for all y ∈ F ′′. Let i : F ′′ →
PI(

nF ′) denote the n-homogeneous polynomial i(y) = yn. Given φ and ψ in E ′ and

0 ≤ k ≤ n the Borel Transform gives us that φkψn−k may be regarded as a continuous

linear functional on PI(
nE ′) with φkψn−k(xn) = φk(x)ψn−k(x) for all x ∈ E ′′. Hence, for

any φ, ψ in E ′ the function φkψn−k ◦ T ′ ◦ i belongs to PA(nF ′). Fix φ in E ′ and consider

ψ ∈ E ′ which is not a linear multiple of φ. Let us use Qk to denote the n-homogeneous

approximable polynomial given by Qk = T (φn−kψk) = φn−kψk ◦T ′ ◦ i. For y ∈ F ′′ we have

that

Q0(y)/Q1(y) = Q1(y)/Q2(y) = · · · = Qn−1(y)/Qn(y) = φ(x)/ψ(x)

where xn = T (yn). Therefore we have that

Q0(y)/Q1(y) = Q1(y)/Q2(y) = · · · = Qn−1(y)/Qn(y)

for all y in F ′′.

Repeating the argument of Theorem 6 we obtain a continuous linear functional R on

F ′′ such that Qo(y) = ± (R(y))n.

Whence, we have

T (φn)(y) = Qo(y) = ±R(y)n

for all y ∈ F ′′. Restricting to F , we see that T (φn) = ±(R|F )n proving that T is a power-

preserver. Theorem 6 now gives us that there is an isomorphism s : E ′ → F ′ such that

T (P ) = ±P ◦ s′ ◦ JF for all P ∈ PA(nE). Since T is an isometry it follows that s must

also be an isometry. ¥

The following Theorem may be regarded as a converse to the observation in [30, Sec-

tion 3] which states that PA(nE) and PA(nF ) are isomorphically isomorphic when E ′ and

F ′ are isometrically isomorphic.

Theorem 8 Let E and F be real Banach spaces such that PA(nE) and PA(nF ) are iso-

metrically isomorphic for some integer n. Then, E ′ and F ′ are isometrically isomorphic.

Under the additional assumption that E ′ and F ′ have the approximation property from

[2] we obtain:
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Corollary 9 Let E and F be real Banach spaces with duals which have the approximation

property. Let T : Pw(nE) → Pw(nF ) be an isometric isomorphism. Then, there is an

isometric isomorphism s : E ′ → F ′ such that T (P ) = ±P ◦ s′ ◦ JF for all P ∈ Pw(nE).

4 Isometries of spaces of approximable polynomials

on complex Banach spaces

Let us now turn to the complex case.

Theorem 10 Let E and F be complex Banach spaces and n be a positive integer with

En(F ′′)
w∗

= E2n(F ′′)
w∗

. Let T : PA(nE) → PA(nF ) be an isometric isomorphism. Then,

there is an isometric isomorphism s : E ′ → F ′ such that T (P ) = P ◦ s′ ◦ JF for all

P ∈ PA(nE).

Proof: Fix φ in E ′ and consider ψ ∈ E ′ which is not a linear multiple of φ. As in

Theorem 6 let Qk = T (φn−kψk) = φn−kψk ◦ T ′ ◦ i. For y ∈ En(F ′′) we get that

Q0(y)/Q1(y) = Q1(y)/Q2(y) = · · · = Qn−1(y)/Qn(y) = φ(x)/ψ(x)

where xn = T ′(yn). As each Qk is weak∗-continuous we get that

Qk(y)Qk+2(y) = Qk+1(y)2

for all y ∈ En(F ′′)
w∗

= E2n(F ′′)
w∗

, k = 0, . . . , k − 2. As the extreme points of PI(
2nF ′)

separate PA(2nF ), [26, page 75], we have that

Qk(y)Qk+2(y) = Qk+1(y)2

for all y ∈ F ′′. Hence, we get that

Q0(y)/Q1(y) = Q1(y)/Q2(y) = · · · = Qn−1(y)/Qn(y)

for all y ∈ F ′′.

Proceeding as in Theorem 6 we obtain a continuous linear functional R on F ′′ such

that

T (φn)(y) = R(y)n

for all y ∈ F ′′. Therefore, T is a power-preserver and it follows from Theorem 6 that T is

canonical. Moreover, it is of the form T (P ) = P ◦ s′ ◦ JF for all P ∈ PA(nE) with s an

isometric isomorphism from E ′ into F ′. ¥
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To obtain examples of complex Banach spaces where the equality En(F ′′)
w∗

= E2n(F ′′)
w∗

holds we need the concepts of complex extreme points and weak∗-exposed points.

A point x is said to be a complex extreme point of the (closed) unit ball of E if

‖x + λy‖ ≤ 1 for all λ ∈ C with |λ| = 1 implies y = 0. Every real extreme point of BE is

a complex extreme point. To distinguish between real and complex extreme points we use

ExtR(E) and ExtC(E).

We recall that a unit vector x in a Banach space E is exposed if there is a unit vector

φ ∈ E ′ so that φ(x) = 1 and φ(y) < 1 for y ∈ BE \ {x}. If E = X ′ is a dual space and the

vector φ which exposes x is in X we say that x is weak∗-exposed.

Corollary 11 Let E and F be complex separable Banach spaces with `1 6↪→ F ′. Suppose

that ExtR(F ′′) = ExtC(F ′′). Let T : PA(nE) → PA(nF ) be an isometric isomorphism.

Then, there is an isometric isomorphism s : E ′ → F ′ such that T (P ) = P ◦ s′ ◦ JF for all

P ∈ PA(nE).

Proof: Using [25, Theorem 3.3] we observe that the unit ball of F ′′ is the weak∗-closed

convex hull of its extreme points. This in turn is equal to the weak∗-closed convex hull of

Expw∗(F
′′), the set of weak∗-exposed points of the unit ball of F ′′, (see [21, Page 640]).

Applying [26, Theorem II.13.B] we see that ExtR(F ′′) ⊆ Expw∗(F
′′)

w∗
. It follows from [19,

Propositions 3 and 5] that Expw∗(F
′′) ⊆ En(F ′′) ⊆ ExtC(F ′′) for all n. Therefore, we have

that En(F ′′)
w∗

= E2n(F ′′)
w∗

and an application of Theorem 10 completes the proof. ¥

We also get:

Corollary 12 Let E and F be complex reflexive Banach spaces with ExtR(F ) = ExtC(F ).

Let T : PA(nE) → PA(nF ) be an isometric isomorphism. Then, there is an isometric

isomorphism s : E ′ → F ′ such that T (P ) = P ◦ s′ ◦ JF for all P ∈ PA(nE).

Proof: The proof is similar to that of Corollary 11 but we use [21, Proposition 4.18]

instead of the result on [21, Page 640]. ¥

In particular we get

Corollary 13 Let E be a reflexive JB∗-triple and n be a positive integer. Suppose that

T : PA(nE) → PA(nF ) is an isometric isomorphism. Then there is a continuous linear

isometry s : E ′ → F ′ such that T (P ) = P ◦ s′ ◦ JF for all P ∈ PA(nE).

11



Proof: It follows from [27] (see also [6]) that ExtR(E) = ExtC(E). Now apply Corol-

lary 11. ¥

The reflexive JB∗-triples are listed in [11].

From the proofs of Theorem 7 and Theorem 10 we obtain the following proposition.

Proposition 14 Let E and F be real or complex Banach spaces and T : PA(nE) →
PA(nF ) be an isomorphism such that T ′ is a power-preserver then, T is also a power-

preserver.

We know of no complex Banach space E or positive integer n where we do not have

En(E ′′)
w∗

= E2n(E ′′)
w∗

. It follows from [19] that En(E) = E2n(E) whenever the real and

complex extreme points of the unit ball of a finite dimensional Banach space E coincide

or whenever each point of the unit ball of E ′′ is a weak∗-exposed point. By Corollary 11

we have that each isometry of the space of n-homogeneous approximable polynomials on

the complex Banach spaces Lp(µ) and `p, 1 ≤ p < ∞ are canonical. From [19, Example 4]

it also follows that every isometry of P(ncm
o ) is canonical.

5 Isometries between other spaces of homogeneous

polynomials

Let us begin by considering spaces of integral polynomials.

Theorem 15 Let E and F be real Banach spaces and n be a positive integer. Suppose that

`1 6↪→
⊗̂

n,s,εE and that T : PI(
nE) → PI(

nF ) is an isometric isomorphism. Then, there is

an isometric isomorphism s : E ′ → F ′ such that T (P ) = ±P ◦ s′ ◦ JF for all P ∈ PI(
nE).

Proof: Since T is an isometry T maps the extreme points of the unit ball of PI(
nE) onto

the extreme points of the unit ball of PI(
nF ). Arguing as in Theorem 7 we get that T

maps {φn : φ ∈ E ′} bijectively onto {ψn : ψ ∈ F ′} or {−ψn : ψ ∈ F ′}. As in the proof

of Theorem 7 we obtain an isometry s : E ′ → F ′ so that T (φn) = s(φ)n or −s(φ)n for all

φ ∈ E ′. Without loss of generality we assume that T (φn) = s(φ)n for all φ ∈ E ′. Since

`1 6↪→
⊗̂

n,s,εE [5, Theorem 2] also [8, Theorem 1.5] tells us that we have that PI(
nE) is

12



isometrically isomorphic to PN(nE). Therefore, we have that

T (P ) =T (
∞∑

k=1

λkφ
n
k)

=
∞∑

k=1

λkT (φn
k)

=
∞∑

k=1

λks(φk)
n

=P ◦ s′ ◦ JF .

¥

Corollary 16 Let E and F be real Banach spaces and n be a positive integer. Suppose

that E ′ has the Radon-Nikodým property (RNP) and that T : PI(
nE) → PI(

nF ) is an

isometric isomorphism. Then, there is an isometric isomorphism s : E ′ → F ′ such that

T (P ) = ±P ◦ s′ ◦ JF for all P ∈ PI(
nE).

Theorem 15 does not cover the case of real Banach space E = F = `1. In this case we

have the following result.

Theorem 17 Let T : PI(
n`1) → PI(

n`1) be an isometric isomorphism. Then, there is an

isometric isomorphism s : `1 → `1 such that T (P ) = ±P ◦ s, for all P ∈ PI(
n`1).

Proof: Let us first observe that the n-fold injective tensor product of `1,
⊗̂

n,ε`1, has

the Radon-Nikodým property. To see this we use induction on n. Suppose that we have

proved that
⊗̂

k,ε`1 has RNP. We note that
⊗̂

k+1,ε`1 may be regarded as the space of

unconditionally convergent series in
⊗̂

k,ε`1. It follows from [16, Page 219] that
⊗̂

k+1,ε`1

has RNP and our claim is proved.

We therefore have that
⊗̂

n,s,ε`1 has RNP. Applying [24, 4), Page 103] we conclude

that T is the transpose of an isometry S : P(nco) → P(nco). The result now follows from

Theorem 7. ¥

Let us now turn our attention to isometries between spaces of homogeneous polynomi-

als.

Theorem 18 Let E and F be real Banach spaces and n be a positive integer. Suppose

that E is Asplund and E ′ has the approximation property. Let T : P(nE ′) → P(nF ′) be

an isometric isomorphism. Then, there is an isometric isomorphism s : F ′ → E ′ such that

T (P ) = ±P ◦ s, for all P ∈ P(nE ′).

13



Proof: Since E is Asplund it follows from [5, Theorem 3] or [8, Theorem 1.4] that PI(
nE)

is isometrically isomorphic to PN(nE) while [37, Theorem 1.9] gives us that PN(nE) has

RNP. Since E ′ has the approximation property we have that PN(nE)′ = P(nE ′). By [24,

Theorem 10] we have that PN(nE) is isometrically isomorphic to PN(nF ), while [24, 4),

Page 103] implies that T is the transpose of an isometry S : PN(nF ) → PN(nE). The

result now follows from Corollary 16. ¥

Corollary 19 Let E and F be reflexive Banach spaces with the approximation property

and T : P(nE) → P(nE) be an isometric isomorphism. Then, there is an isometric iso-

morphism s : F → E such that T (P ) = P ◦ s for all P ∈ P(nE).

Theorem 20 Let E and F be real Banach spaces and n be a positive integer. Suppose

that E ′ has the approximation property and that `1 6↪→ P(nE ′). Let T : P(nE ′) → P(nF ′)

be an isometric isomorphism. Then, there is an isometric isomorphism s : F ′ → E ′ such

that T (P ) = ±P ◦ s, for all P ∈ P(nE ′).

Proof: Since `1 6↪→ P(nE ′) we have that `1 6↪→ PA(nE ′) i.e. `1 6↪→
⊗̂

n,s,εE
′′. Since

symmetric tensor products respect subspaces we have `1 6↪→
⊗̂

n,s,εE. Applying [5, Theorem

1] we have that PI(
nE) is isometrically isomorphic to PN(nE) which is in turn isometrically

isomorphic to
⊗̂

n,s,πE ′, as E ′ has the approximation property.

From [24, Theorem 10] we conclude can that PN(nE) is isometrically isomorphic to

PN(nF ). This time [24, Corollary 13] implies that T is the transpose of an isometry

S : PN(nF ) → PN(nE). Again, the result follows from Theorem 15. ¥

The above results for real Banach spaces extend to complex Banach spaces under the

additional assumption that En(F ′)
w∗

= E2n(F ′)
w∗

.
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