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Abstract. We study the extendibility of integral vector-valued poly-
nomials on Banach spaces. We prove that an X-valued Pietsch-integral
polynomial on E extends to an X-valued Pietsch-integral polynomial
on any space F containing E, with the same integral norm. This is not
the case for Grothendieck-integral polynomials: they do not always ex-
tend to X-valued Grothendieck-integral polynomials. However, they are
extendible to X-valued polynomials. The Aron-Berner extension of an
integral polynomial is also studied. A canonical integral representation
is given for domains not containing `1.

Introduction

In this note we study extendibility properties of Pietsch and Grothen-
dieck integral polynomials. Generally, polynomials on Banach spaces do
not extend to larger spaces, even in the scalar valued case [18]. In other
words, there is no Hahn-Banach extension theorem for polynomials. How-
ever, since the symmetric injective tensor product respects subspaces, scalar-
valued integral polynomials are extendible. For vector-valued polynomials,
the word “extendible” needs to be properly defined. We say that a polyno-
mial P : E → X is extendible if for any Banach space F containing E, there
exists P̃ : F → X extending P ([18], see also [5]). The problem of extending
polynomials (and multilinear mappings) has been studied by many authors
(see, for example, [4, 7, 8, 15, 16, 19, 24]). It is important to remark that in
the definition, the extension of P must be X-valued. Another consideration
to take into account regarding extendibility is the preservation of the norm.
Even when there are extensions of P , the norm of P may not be preserved
by any of these extensions. Moreover, the infimum of the extension norms
might be strictly greater than the norm of ‖P‖ (see [19] for a concrete finite-
dimensional example). Since we focus on Grothendieck and Pietsch integral
polynomials, we discuss the preservation of the respective integral norms.

In order to extend holomorphic functions of bounded type, Aron and
Berner showed in [4] how to extend a continuous homogeneous polynomial
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defined on a Banach space E to a polynomial on E′′, the bidual of E (see also
[3]). For X-valued mappings, the Aron-Berner extension may take values
in X ′′ (and therefore it would not be actually an extension). An important
feature of the Aron-Berner extension (even when it is not X-valued) is that
it preserves the norm [5, 10, 15].

The paper is organized as follows. In the first section we state some
general results about integral polynomials. In the second one, we prove that
a Pietsch-integral polynomial P : E → X extends to an X-valued Pietsch-
integral polynomial over any F ⊃ E, with the same integral norm. This
is not the case for Grothendieck-integral polynomials: if a Grothendieck-
integral polynomial P : E → X extends to an X-valued Grothendieck-
integral polynomial over any F ⊃ E, P turns out to be Pietsch-integral.
What is possible to obtain is an X ′′-valued Grothendieck-integral extension
of P , but this is not an extension in the proper sense. However, we show
that Grothendieck-integral polynomials are extendible: they extend to (non-
integral) X-valued polynomials. The third section deals with the Aron-
Berner extension of a (Pietsch or Grothendieck) integral polynomial. We
show that this extension is also integral, with the same integral norm. We
also present a canonical expression for this extension in the case that E does
not contain an isomorphic copy of `1.

We refer to [12, 20] for notation and results regarding polynomials in
general, to [11, 14, 21, 22] for tensor products of Banach spaces and to
[11, 13, 1, 2] for integral operators, polynomials and multilinear mappings.

1. Definitions and general results

Throughout, E, F and X will be Banach spaces. The space of continuous
n- homogeneous polynomials from E into X will be denoted by P(nE,X).
This is a Banach space endowed with the norm ‖P‖ = sup{‖P (x)‖ : ‖x‖ ≤
1}. If P ∈ P(nE, X), P̌ : E× . . .×E → X and LP : ⊗n

s E → X will denote,
respectively, the continuous symmetric n-linear form and the linear operator
associated with P .

Following [18], we will say that a polynomial P : E → X is extendible if
for any Banach space F containing E there exists P̃ ∈ P(nF, X) an extension
of P . We will denote the space of all such polynomials by Pe(nE, X). For
P ∈ Pe(nE, X), its extendible norm is given by

‖P‖e = inf{c > 0 : for all F ⊇ E there is an extension of P to F
with norm ≤ c}.
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In order to study extendibility, the natural (isometric) inclusions E ↪→
C(BE′ , w

∗) and E ↪→ `∞(BE′) are useful. It was shown in [5, Theorem 3.1]
that a polynomial P : E → X is extendible if and only if P extends to
C(BE′ , w

∗), whenever X is a Cl space. This is not true for arbitrary spaces:
without conditions on X, a polynomial P : E → X is extendible if and only
if P extends to `∞(BE′) [5, Theorem 3.2].

If (Ω, µ) is a finite measure space, L∞(Ω, µ) has the metric extension
property, which means that L∞(Ω, µ) is complemented in any larger space
with a norm-one projection. Consequently, any polynomial defined on this
space is extendible and the extendible and usual norms coincide. This fact
and [5, Theorem 3.4] enable us to ensure that any polynomial that factors
through some L∞ is extendible.

A polynomial P ∈ P(nE, X) is Pietsch-integral (P-integral for short)
if there exists a regular X-valued Borel measure G, of bounded variation on
(BE′ , w

∗) such that

P (x) =
∫

BE′
γ(x)n dG(γ)

for all x ∈ E. The space of n-homogeneous Pietsch-integral polynomials
is denoted by PPI(nE, X) and the integral norm of a polynomial P ∈
PPI(nE, X) is defined as

‖P‖PI = inf {|G|(BE′)} ,

where the infimum is taken over all measures G representing P .
The definition of Grothendieck-integral (G-integral for short) polyno-

mials is analogous, but taking the measure G to be X ′′-valued. The space
of Grothendieck-integral polynomials is denoted by PGI(nE, X).

Following [14], we will write εs for the injective symmetric tensor norm
on ⊗n

s E. Consequently, ⊗n
s,εs

E will stand for the symmetric tensor product
⊗n

s E endowed with the injective symmetric tensor norm.

In [9, Proposition 2.5] and [23, Corollary 2.8], the authors show that
there is a correspondence between (G and P)-integral polynomials from E

to X and (G and P)-integral operators from ⊗n
s,εs

E to X. In [6, Proposition
2.10] we show that this correspondence is actually an isometric isomorphism
for P-integral polynomials. Next proposition states the analogous isometric
result for G-integral polynomials. Although it could be deduced from [6],
we give a direct proof for the sake of completeness.

Proposition 1.1. The spaces PGI(nE,X) and LGI(⊗n
s,εs

E, X) are isomet-
rically isomorphic.
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Proof. For P ∈ PGI(nE,X), let G be a X ′′-valued measure on BE′ represent-
ing P and set µ = |G|. Define R : ⊗n

s,εs
E → L∞(µ) by R(x(n)) = x̂n, where

x̂n(γ) = γ(x)n for γ ∈ BE′ . Clearly, ‖R‖ ≤ 1. If LP is the linearization of
P , we have the following diagram

(1)
⊗n

s,εs
E

LP−→ X −→ X ′′

R ↓ ↗S

L∞(µ)
j−→ L1(µ)

where j is the natural inclusion and S(f) =
∫
BE′

fdG for f ∈ L1(µ). This
factorization shows that LP is G-integral. Since ‖j‖ ≤ |G|, ‖R‖ ≤ 1, ‖S‖ ≤ 1
and this holds for any measure G representing P , we have ‖LP ‖GI ≤ ‖P‖GI .

Conversely, suppose that T ∈ LGI(⊗n
s,εs

E, X). Given ε > 0, T admits
a factorization as the one in diagram (1), with T instead of LP , and with
‖S‖ ≤ 1, ‖j‖ ≤ ‖T‖GI and ‖R‖ ≤ 1.

We choose G ∈ M(BE′ ; X ′′) a representing measure for the integral op-
erator S ◦ j, so that S ◦ j(f) =

∫
BE′

fdG and |G| = ‖S ◦ j‖GI ≤ ‖T‖GI + ε.
Therefore, P, the polynomial associated to T , can be written as

P (x) =
∫

BE′
γ(x)n dG(γ) .

This means that P is G-integral and ‖P‖GI ≤ |G| ≤ ‖T‖GI + ε. This holds
for any ε > 0 and the isometry follows. ¤

Any G-integral operator T : E → X identifies with a linear form on
E ⊗ε X ′ with norm ‖T‖GI (in fact, this can be taken as the definition of
G-integral operators). Now, the previous proposition allows us to identify
a G-integral polynomial with a linear form on (⊗n

s,εs
E ⊗ε X ′) with norm

‖P‖GI . On the other hand, if we consider G-integral mappings with range
in a dual space Y ′, there is an isometric isomorphism between LGI(E, Y ′)
and (E ⊗ε Y )′ [11, Proposition 10.1]. From Proposition 1.1 we extend this
to n-homogeneous G-integral polynomials. Since G-integral operators with
range in a dual space are automatically P-integral [13, Corollary VIII.2.10],
we have:

Corollary 1.2. a) PGI(nE, X) ↪→ (⊗n
s,εs

E ⊗ε X ′)′ isometrically.
b) PGI(nE, Y ′) = PPI(nE, Y ′) = (⊗n

s,εs
E ⊗ε Y )′ isometrically.

In [9], integral polynomials are defined as those which can be identified
with continuous linear functionals on ⊗n

s,εs
E ⊗ε X ′. Therefore, we have
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shown that the definition in [9] is equivalent to the one given above for G-
integral polynomials and also that the G-integral norm of the polynomial
coincide with the norm of the linear functional.

2. Extension of integral polynomials

We have mentioned that L∞ spaces play a crucial role when extending
polynomials. Therefore, we start this section by showing a natural example
of integral polynomial on these spaces.

Lemma 2.1. Let (Ω, Σ, µ) be a finite measure space and G : Σ → X a
vector measure which is absolutely continuous with respect to µ. Then

(2) P0(f) =
∫

Ω
fn(w) dG(w)

is a Pietsch-integral n-homogeneous polynomial on L∞(Ω, µ) with ‖P0‖PI ≤
|G|.

Also, for any compact Hausdorff space K and any regular, Borel mea-
sure G on K, the polynomial on C(K) given in (2) is Piestch-integral with
‖P0‖PI ≤ |G|.
Proof. For the first statement, by [6, Proposition 2.10] it is enough to prove
that LP0 , the linearization of P0, belongs to LPI(⊗n

s,εs
L∞(µ), X).

Define the linear operator R : ⊗n
s,εs

L∞(µ) → L∞(µ) by R(f (n)) = fn. As
a consequence of Maharam’s theorem [11, B.7], R has norm one. Now, if
we define S(f) =

∫
Ω fdG for all f ∈ L1(µ) and if j : L∞(µ) → L1(µ) is the

natural inclusion, we have the commutative diagram:

⊗n
s,εs

L∞(µ)
LP0−→ X

R ↓ ↑ S

L∞(µ)
j−→ L1(µ)

Therefore, LP0 is P-integral. Since ‖j‖ ≤ |G|, by the isometry given in [6,
Proposition 2.10] we have ‖P0‖PI = ‖LP0‖PI ≤ |G|.

The statement for C(K) can be proved analogously. Also, it can be seen
as a consequence of the first result. Indeed, just take µ = |G| and factor P0

via the natural mapping C(K) → L∞(µ). ¤

A scalar-valued integral polynomial P on a Banach space E can be ex-
tended to any larger space F , in such a way that the extension P̃ is also
integral and P and P̃ have the same integral norm. This follows from the
fact that the symmetric injective tensor product respects subspaces and the
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Hahn-Banach theorem applied to the linearization of P (see, for example,
[7]). Next proposition states a similar result for Pietsch-integral vector-
valued polynomials.

Theorem 2.2. Let F be a Banach space containing E. Any P ∈ PPI(nE,X)
can be extended to P̃ ∈ PPI(nF,X), with ‖P‖PI = ‖P̃‖PI . As a conse-
quence, ‖P‖e ≤ ‖P‖PI .

Proof. Let P ∈ PPI(nE,X), let G be a measure representing P and consider
µ = |G|. We write P = P0 ◦ i, where i : E → L∞(BE′ , µ) is the natural
inclusion and P0 : L∞(BE′ , µ) → X is the polynomial,

P0(f) =
∫

Ω
fn(w) dG(w).

Since L∞(BE′ , µ) has the metric extension property, we have ĩ : F →
L∞(BE′ , µ) a norm one extension of i. Therefore, P̃ = P0 ◦ ĩ extends
P . By Lemma 2.1, P0 is P-integral and therefore P̃ is P-integral, with
‖P̃‖PI ≤ ‖P0‖PI ‖̃i‖n ≤ |G|. This holds for any measure G representing P

and then ‖P̃‖PI ≤ ‖P‖PI . The other inequality holds since P̃ is an extension
on P . The inequality ‖P‖e ≤ ‖P‖PI is a straightforward consequence of the
definition of the extendible norm and the inequality ‖P̃‖ ≤ ‖P̃‖PI = ‖P‖PI .

¤

If E = C(K) or E = L∞(µ), Grothendieck and Pietsch integral polyno-
mials on E coincide [11, D.6.]. We show that the result remains true for
homogeneous polynomials.

Remark 2.3. Let P be in P(nE, X), for E = C(K) or E = L∞(µ). Then,
P is Grothendieck-integral if and only if P is Pietsch-integral.

Proof. Since L∞(µ) is isomorphic to C(K) for some compact Hausdorff
space K, we assume E = C(K). The symmetric multilinear mapping P̌

associated to a G-integral polynomial P is also G-integral and defines a G-
integral linear operator LP̌ on the (full) injective tensor product (see [23]).
The n-fold injective tensor product of C(K) is isomorphic to C(K×· · ·×K).
Thus, LP̌ is P-integral and so is P . ¤

Any G-integral polynomial P : E → X is a P-integral polynomial consid-
ered with values in X ′′. Theorem 2.2 gives us a P-integral extension of P , P̃

with values in X ′′, which is also a G-integral X ′′-valued extension of P . An-
other way to obtain this extension is to identify P with a continuous linear
funcional on ⊗n

s,εs
E ⊗ε X ′, and extend it to ⊗n

s,εs
F ⊗ε X ′ by Hahn-Banach
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theorem. This extension identifies with a G-integral polynomial from F to
X ′′ extending P (and which is, by the way, also P-integral).

A natural question arises: is it possible to obtain a Grothendieck-integral
X-valued extension of P to any larger space? We answer that question
by the negative: suppose we can extend P to a G-integral polynomial on
C(BE′). By Remark 2.3, this extension is P-integral and therefore, so is P .
Since there are G-integral polynomials that are not P-integral (see [1] and
[11, Proposition D9]), the conclusion follows.

Consequently, a G-integral polynomial P : E → X cannot in general
be extended to an X-valued integral polynomial. However G-integral poly-
nomials are extendible: they can be extended to (non-integral) X-valued
polynomials to any larger space.

Proposition 2.4. Any Grothendieck-integral polynomial P : E → X is
extendible (to X-valued polynomials) and ‖P‖e ≤ ‖P‖GI .

Proof. If P : E → X is a G-integral polynomial, by Proposition 1.1,
Lp : ⊗n

s,εs
E → X is a G-integral operator with the same integral norm.

Consider the inclusion E ⊂ `∞(BE′). Since LP is G-integral, it is absolutely
2-summing with ‖LP ‖2−sum ≤ ‖LP ‖GI . We have that ⊗n

s,εs
E is isometri-

cally a subspace of ⊗n
s,εs

`∞(I) and therefore LP extends to an (absolutely
2-summing) operator L̃ : ⊗n

s,εs
`∞(I) → X with ‖L̃‖ ≤ ‖LP ‖2−sum ≤ ‖P‖GI .

We can define P̃ : `∞(I) → X as P̃ (a) = L̃(a(n)). P̃ extends P and
‖P̃‖ ≤ ‖P‖GI . An appeal to [5] completes the proof. ¤

3. The Aron-Berner extension of an integral polynomial

In [6] it is shown that the Aron-Berner extension of a P-integral poly-
nomial P : E → X is a P-integral polynomial from E′′ to X, with the
same integral norm. This statement involves two facts. On the one hand,
the Aron-Berner extension is X-valued. On the other hand, it is integral
when considered with range in X. This is not immediate, since P-integral
polynomials are not a regular ideal. An analogous result for G-integral
polynomials can be obtained from the Pietsch-integral case. However, for
G-integral polynomials is easy to give a direct proof.

Proposition 3.1. If P ∈ PGI(nE, X), then AB(P ) ∈ PGI(nE′′, X) and
‖AB(P )‖GI = ‖P‖GI .

Proof. Let P : E → X be a G-integral polynomial. By Proposition 1.1, its
linearization LP : ⊗n

s,εs
E → X is G-integral and has the same integral norm.
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Thus, L′′P is a G-integral operator from E′′ to X ′′ (with the same norm).
Moreover, since LP is weakly compact, L′′P takes its values in X and, by
[11, 10.2] L′′P is G-integral from E′′ to X, with the same norm. Now, the
linearization of AB(P ) is L′′P ◦ i, where the map i : ⊗n

s,εs
E′′ ↪→ (⊗n

s,εs
E)′′

is the (norm one) inclusion via the identification given in [7]. Therefore,
AB(P ) is G-integral from E′′ to X with the same G-integral norm as P .

¤

We turn our attention to the validity of a canonical integral representation
for the Aron-Berner extension of an integral polynomial. If P : E → X is
an integral polynomial and G is a representing measure for P (X or X ′′-
valued), we want to know if the Aron-Berner extension of P can be written
as

(3) AB(P )(z) =
∫

BE′
z(γ)ndG(γ).

For scalar-valued polynomials, the validity of this expression is equivalent
to E not containing an isomorphic copy of `1. We show that this remains
true for vector-valued polynomials. In fact, if E contains `1, the function
γ 7→ z(γ) is not µ-measurable for some measure µ, so expression (3) cannot
hold.

Theorem 3.2. Suppose E does not contain isomorphic copies of `1. If P is
a (Grothendieck or Pietsch)-integral polynomial with representing measure
G, then AB(P )(z) =

∫
BE′

z(γ)ndG(γ).

Proof. If E does not contain `1, the function γ 7→ z(γ) is Borel-measurable
on (BE′ , w

∗) and we can define the polynomial Q(z) =
∫
BE′

z(γ)ndG(γ).
Let us see that Q = AB(P ). The symmetric n-linear mapping associated to
Q is given by Q̌(z1, . . . , zn) =

∫
BE′

z1(γ) · · · zn(γ)dG(γ). We are done if we

show that for fixed z1, . . . , zn−1, the mapping z 7→ Q̌(z1, . . . , zn−1, z) is w∗

to w∗ continuous from E′′ to X ′′. We fix ϕ ∈ X ′.

Q̌(z1, . . . , zn−1, z)(ϕ) =
∫

BE′
z(γ)z1(γ) · · · zn−1(γ)dϕ ◦G(γ)

=
∫

BE′
z(γ)dµ,

where µ is the scalar measure given by dµ = z1(γ) · · · zn−1(γ)dϕ ◦ G(γ).
The measure µ can be written as a linear combination of probability mea-
sures. Since E does not contain `1, each z ∈ E′′ satisfies the barycentric
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calculus [17]. Therefore, if γ0 ∈ E′ is the corresponding linear combination
of the barycenters of the probability measures, we have

∫
BE′

z(γ)dµ = z(γ0),
which is w∗-continuous in z. ¤

If E contains an isomorphic copy of `1, expression (3) does not hold.
However, by Proposition 3.1 (and the analogous result for Pietsch-integral
polynomials in [6]) AB(P ) is an integral polynomial if P is. It is natural
to ask if AB(P ) admits an integral expression involving the measures that
represent P . In [7] such an expression is shown for scalar-valued polynomials.
The same expression holds for vector-valued polynomials, and the proof of it
is essentially contained in the proof of the previous theorem. If P : E → X

is an integral polynomial with representation P (x) =
∫
BE′

γ(x)ndG(γ), we
define S : L1(|G|) → E′ as S(f)(x) =

∫
BE′

f(γ)γ(x)d|G|(γ). With this
notation, we have:

Proposition 3.3. The Aron-Berner extension of P may be written as

AB(P )(z) =
∫

BE′

(
S′(z)(γ)

)n
dG(γ).

Note that Proposition 3.1 can be seen as a corollary of the previous propo-
sition, Lemma 2.1 and the ideal property of integral polynomials.

Acknowledgements 3.4. The authors wish to thank Chris Boyd for his
helpful comments and remarks.

References

[1] R. Alencar, Multilinear mappings of nuclear and integral type, Proc. Amer. Math.
Soc. 94 (1985), 33–38.

[2] R. Alencar, On reflexivity and basis for P(mE), Proc. R. Ir. Acad. 85A, No. 2
(1985), 131–138.

[3] R. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951),
839–848.

[4] R. Aron and P. Berner, A Hahn-Banach extension theorem for analytic mappings,
Bull. Soc. Math. France 106 (1978), 3–24.

[5] D. Carando, Extendible polynomials on Banach spaces, J. Math. Anal. Appl. 233
(1999), 359–372.

[6] D. Carando, S. Lassalle, E′ and its relation with vector-valued functions on E, to
appear in Ark. Mat.

[7] D. Carando and I. Zalduendo, A Hahn-Banach theorem for integral polynomials,
Proc. Amer. Math. Soc. 127 (1999), 241–250.
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