
E′ AND ITS RELATION WITH
VECTOR-VALUED FUNCTIONS ON E

DANIEL CARANDO AND SILVIA LASSALLE

Abstract. We study the relation between different spaces of vector-valued
polynomials and analytic functions over dual-isomorphic Banach spaces. Un-

der conditions of regularity on E and F , we show that the spaces of X-valued
n-homogeneous polynomials and analytic functions of bounded type on E and
F are isomorphic whenever X is a dual space. Also, we prove that many of

the usual subspaces of polynomials and analytic functions on E and F are
isomorphic without conditions on the involved spaces.

Introduction

Any Banach spaces E and F whose duals are isomorphic have, of course, the same
linear forms. However, they do not necessarily have the same polynomials. Dı́az
and Dineen showed in [11] that if E′ and F ′ are isomorphic and E′ has the Schur
property and the approximation property then, for any n, the spaces of scalar-valued
n-homogeneous polynomials over E and F are isomorphic. In [5] and [22] it was
shown that the result holds under conditions of regularity where the approximation
and the Schur properties play no roll. In [22] the classical subspaces of polynomials
were also studied and it was proved with no further conditions on E or F that
those scalar-valued polynomials closely related to the structure of the dual spaces
are isomorphic whenever E′ and F ′ are isomorphic.
Our interest in these notes is to study the X-valued case of this problem: if E′

and F ′ are isomorphic, are P (nE; X) and P (nF ; X) (the spaces of X-valued n-
homogeneous polynomials on E and F ) isomorphic? We are also interested in how
the different subspaces of polynomials are determined by E′.
One of the main difficulties to be dealt with in the vector-valued situation is that
the natural generalization of the morphism constructed in [22] or [5] takes an X-
valued polynomial on E to an X ′′-valued polynomial on F . Also, when we restrict
the question to certain classes of polynomials, things are more complicated than in
the scalar-valued case (specially for the integral polynomials).
The paper is organized as follows: In the first section we construct the morphism
between the spaces of polynomials and give the general results. In the second, we
deal with different classes of polynomials: finite type, nuclear, approximable, weakly
continuous on bounded sets, regular, integral and extendible polynomials. We
obtain without any assumption on the involved spaces the (isometric) isomorphism
of each of the subspaces (except for that of extendible polynomials) whenever E′

and F ′ are (isometrically) isomorphic. The third section is devoted to the study of
different spaces of holomorphic functions on dual-isomorphic spaces.

Throughout, E, F , X and W are Banach spaces, E′ is the dual space of E and
JE : E → E′′ is the natural embedding of E into its bidual. P (nE; X) and
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Ls(nE;X) denote, respectively, the spaces of continuous n-homogeneous polyno-
mials and continuous symmetric n-linear mappings from E to X. If P ∈ P (nE; X)
and A is its associated symmetric n-linear operator (i.e., P (x) = A(x, . . . , x)) we
define some natural mappings which are associated to P and A:
Given x ∈ E, we denote Ax the (n− 1)-linear operator given by

Ax(x1, . . . , xn−1) = A(x, x1, . . . , xn−1)

and Px the corresponding polynomial. Moreover, the mappings TA : E → Ls(n−1E; X)
and TP : E → P (n−1E; X) are defined as TA(x) = Ax and TP (x) = Px respectively.

We refer to [15] for general properties of polynomials, multilinear mappings and
holomorphic functions on Banach spaces.

1. Construction of the morphism

For any linear map s : E′ → F ′ we construct a morphism relating the spaces of
polynomials on E and on F . In order to do this we define, via the Aron-Berner
extension [1] and the construction in [22], a continuous linear map

s̃ : Ls(nE; X) → L(nF ; X ′′).

If Φ is a symmetric scalar-valued n-linear form on E, Φ is its Aron-Berner extension
and s′ is the transpose of s, then s̃(Φ) is defined for any y1, . . . , yn ∈ F as follows
(see [22, Lemma 1]):

s̃(Φ)(y1, . . . , yn) = Φ(s′(JF (y1)), . . . , s′(JF (yn))).

Now, we define for a symmetric n-linear function A : En → X, y1, . . . , yn ∈ F and
ϕ ∈ X ′

s̃(A)(y1, . . . , yn)(ϕ) = s̃(ϕ ◦A)(y1, . . . , yn)
Although s̃(A) it is not necessarily symmetric, the X ′′-valued n-homogeneous poly-
nomial over F given by s(P )(y) = s̃(A)(y, . . . , y), for all y ∈ F, is well defined. It
is clear that if we take s = JE′ : E′ → E′′′, the morphism s is the Aron-Berner
extension. In this particular case we use the notation P and A for s(P ) and s̃(A)
respectively.
In what follows we often write y instead of JF (y). Also, we do not specify, unless it
is necessary, the image of the function s̃(A), understanding that for any X-valued
function A, s̃(A) is an X ′′-valued map.
The following results, that were obtained for the scalar-valued case in [22], remain
true for the vector-valued case. Their proof are an immediate consequence of the
extended definition of s̃ and s and the scalar-valued results.

Lemma 1.1. a) If A is symmetric, then s̃(A) = A ◦ (s′ × · · · × s′). Thus, s̃(A)
is also symmetric, and if P is the homogeneous polynomial associated to A, then
s(P ) = P ◦ s′.
b) Suppose that s : E′ → F ′ is an isomorphism, P ∈ P (nE; X) and A is its
associated symmetric n-linear function. If A is symmetric then (s−1 ◦ s)(P ) = P.

Note that in the second statement, s̃(A) is an element of Ls(nF ; X ′′) and then we
are considering the morphism s̃−1 acting on elements of Ls(nF ; X ′′) and taking
its values in L(nE; Xiv). However, the result assures that s̃−1(s̃(A)) belongs to
Ls(nE;X), whenever A is symmetric. Since in symmetrically regular spaces the
Aron-Berner extension of a symmetric multilinear mapping is also symmetric, we
obtain the next theorem, the scalar-valued case of which was given in [5, 22].
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Theorem 1.2. If E and F are symmetrically Arens-regular, and E′ and F ′ are
(isometrically) isomorphic, then for any n, s : P (nE;X) → P (nF ; X ′′) is an (iso-
metric) isomorphism with its image.

In general, s(P ) does not take its values in X, even when (s−1 ◦ s)(P ) = P . For
example, consider two non-isomorphic spaces E and F whose duals are isomorphic.
The isomorphism s : E′ → F ′ induces a mapping s : L(E; E) → L(F ; E′′). If IdE is
the identity operator on E, then s(IdE) = Id′′E ◦s′ ◦JF = IdE′′ ◦s′ ◦JF and it takes
its values in E if and only if s′(F ) is contained in E. But this would mean that s is
the transpose of an isomorphism between E and F , leading us to a contradiction.
However, if X is a dual space (say X = W ′), something can be done. We define
sW : P (nE; W ′) → P (nF ; W ′) by

sW (P )(y)(w) = s (w ◦ P ) (y) for y ∈ F , w ∈ W .

Note that s is applied to the scalar-valued polynomial w ◦P = P (·)(w). Therefore,

s (w ◦ P ) (y) = w ◦ P (s′(y)) = P (s′(y))(w) =
(
P ◦ s′ ◦ JF (y)

)
(w).

This gives us an equivalent expression for sW (P ) :

sW (P )(y) =
(
P ◦ s′ ◦ JF (y)

)
|W .

This second expression may seem more natural, but the first one matches better
the proof of the following:

Theorem 1.3. If E and F are symmetrically Arens-regular, and E′ and F ′ are
(isometrically) isomorphic, then for any n, P (nE;W ′) and P (nF ; W ′) are (iso-
metrically) isomorphic.

Proof. Defining s−1
W : P (nF ; W ′) → P (nE; W ′) in the obvious way, we have for

P ∈ P (nE; W ′), x ∈ E and w ∈ W,

s−1
W ◦ sW (P )(x)(w) = s−1 (w ◦ sW (P )) (x) .

For y ∈ F , we have w ◦ sW (P )(y) = sW (P )(y)(w) = s (w ◦ P ) (y) and by [22, Thm.
4],

s−1
W ◦ sW (P )(x)(w) = s−1 (s (w ◦ P )) (x)

= (w ◦ P ) (x)
= P (x)(w).

The reverse composition is analogous. Note that ‖sW (P )‖ ≤ ‖P‖ ‖s‖n. Then, if s
is an isometry the isometric result follows. �

In [16], P. Galindo, D. Garćıa, M. Maestre and J. Mujica give a construction similar
to sW using the sequence of operators introduced by Nicodemi in [23]. Although
the main interest in [16] is the extension of multilinear operators, the proof of
Theorem 9.3 can be adapted to obtain an analogous result to Theorem 1.3. We
thank the referee for pointing out this fact. Though it is not obvious at first
glance, the construction given in this paper coincides with the Nicodemi extension
operators when applied to symmetric multilinear operators, which was proven in
[21]. Therefore, following the proof of [16, Thm. 9.3] it is possible to obtain the
same isomorphism as in Theorem 1.3. However, our expression for sW will prove
useful to study the usual subclasses of polynomials and analytic functions.

In the previous theorem W ′ can be replaced by any Banach space X which is
complemented in its bidual. For the isometry, the projection X ′′ → X must be a
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norm one operator. Also, the hypothesis E and F are simmetrically Arens-regular
can be replaced by either E or F is Arens regular (since if E′ and F ′ are isomorphic
and one of them is Arens regular, then so is the other).

2. s and some subspaces of polynomials

As it happens in the scalar valued case, it is natural to expect that those subspaces
of polynomials which are closely related to E′ are also preserved by s. Since s
ranges in P (nF ; X ′′) one of the main tasks is to show that s(P ) is X-valued for
any P in the corresponding class. We will see that in many cases, an isomorphism
between the dual spaces induces an isomorphism between the different subspaces of
polynomials. Besides the classes of polynomials which are constructed by means of
linear mappings (such as finite type, nuclear and approximable polynomials) this is
true for weak-type, integral and regular polynomials, without any assumption on
the spaces E, F or X.
On the other hand, we know that the weakly sequentially continuous polynomials
are not, in general, preserved via the morphism s ( [22]).

2.1. Finite type, nuclear and approximable polynomials. The formula s(P ) =
P ◦ s′ ◦JF shows that the subclasses of finite type, nuclear and approximable poly-
nomials are preserved by s.

Let P be an n-homogeneous polynomial of finite type, say P =
∑m

j=1 ϕn
j wj , where

wj ∈ X and ϕj ∈ E′, j = 1, . . . , m. Then, s(P ) =
∑m

j=1 s(ϕj)n wj and we have
that s(P ) is an X-valued finite type polynomial.
When P is an approximable n-homogeneous polynomial, there are n-homogeneous
finite type polynomials Pk ∈ Pf (nE; X) approximating P in norm. The continuity
of s and the completeness of X assure that s(P ) is also an X-valued approximable
polynomial.
Finally, recall that an n-homogeneous continuous polynomial P is said to be nu-
clear if there exists a representation of P such that P =

∑
j≥1 ϕn

j wj , where
(wj)j∈IN ⊆ X is a bounded sequence and (ϕj)j∈IN ⊆ E′ is a sequence verifying∑

j≥1 ‖ϕj‖n < ∞.

The space of n-homogeneous nuclear polynomials, PN (nE; X) is a Banach space
endowed with the norm

‖P‖N = inf

∑
j≥1

‖ϕj‖n ‖wj‖ :
∑
j≥1

ϕn
j wj a representation of P

 .

Then, if P =
∑

j≥1 ϕn
j wj is nuclear, s(P ) =

∑
j≥1 s(ϕj)n wj is also X-valued. On

the other hand,

‖s(P )‖N ≤ inf
{∑

j≥1 ‖s(ϕj)‖n ‖wj‖ :
∑

j≥1 ϕn
j wj a representation of P

}
≤ ‖s‖n ‖P‖N .

Thus, the mapping s : PN (nE; X) → PN (nF ; X) is a continuous operator.
Now, if s : E′ → F ′ is an isomorphism, s−1 ◦ s(ϕn) =

(
s−1 ◦ s(ϕ)

)n = ϕn for
ϕ ∈ E′. This means that s is an isomorphism for the classes of finite type and
nuclear polynomials. By density and continuity, this is also true for the space of
approximable polynomials Pa(nE;X). The isomorphism is isometric if so is s.
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2.2. Weakly continuous polynomials on bounded sets. Let Pw(nE; X) be
the space of polynomials which are weakly continuous on bounded sets. For a
Banach space E such that E′ has the approximation property, it was shown in
[3] that Pw(nE; X) ≡ Pa(nE, X). So if we consider a Banach space F whose dual
is isomorphic to E′, by the results of the previous section, we have Pw(nE; X) '
Pw(nF ;X). Also, it was shown in [22] that the isomorphism holds for the scalar-
valued case, even when E′ does not have the approximation property. The natural
question is if the result is valid for the general case. The following lemma will be
often used:

Lemma 2.1. Let A ∈ Ls(nE; X). If TA : E → Ls(n−1E;X) is a weakly compact
operator then, A is symmetric.

Recall that polynomials that are weakly continuous on bounded sets are precisely
those which are K-bounded, for some K a compact subset of E′, (see [24], [4]
for the scalar-valued case and [8] for the vector-valued case). For any bounded
set K, the Aron-Berner extension of an X-valued K-bounded polynomial is an
X ′′-valued K-bounded polynomial (see [7]). Moreover, the associated linear map
of a w-continuous polynomial is a compact operator [3], and this assures that its
Aron-Berner extension is in fact X-valued (as we will see in Proposition 2.5). As a
consequence of this and with almost the same proof as in [22] we have:

Lemma 2.2. Let P ∈ P (nE;X) be K-bounded (K ⊆ E′), then s(P ) ∈ P (nF ; X)
is s(K)-bounded (s(K) ⊆ F ′) and

‖s(P )‖s(K) ≤ ‖P‖K .

Proposition 2.3. If s : E′ → F ′ is an (isometric) isomorphism, then

s : Pw(nE; X) → Pw(nF ;X)

is an (isometric) isomorphism.

2.3. Regular Polynomials. We say that P : E → X is a regular polynomial
if its associated linear operator TP is weakly compact. We denote PR(nE; X) the
class of X-valued n-homogeneous regular polynomials on E endowed with the usual
norm.
We describe the vector-valued version of the inclusion of (P (kE))′′ into P (kE′′)
studied in [2] and [20], which was introduced in [19]. First, define, for z ∈ E′′,
the mapping ez : P (kE; X) → X ′′ by ez(P ) = P (z). Let β : (P (kE;X))′′ →
P (kE′′; X ′′) be given by

β(Λ)(z)(x′) = Λ(x′ ◦ ez),

for Λ ∈ (P (nE;X))′′, z ∈ E′′ and x′ ∈ X ′.
With the definitions and the diagram

E′′ T ′′P−→ (P (n−1E; X))′′
β−→ P (n−1E′′; X ′′)

we state next lemma:

Lemma 2.4. TP = β ◦ T ′′P .

Proof. Let z0, z ∈ E′′, for any x′ ∈ X ′ we have:

(1) (β ◦ T ′′P (z0))(z)(x′) = T ′′P (z0)(x′ ◦ ez) = z0(T ′P (x′ ◦ ez)).
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Now, let x be in E. Following the notation in [26] we have

T ′P (x′ ◦ ez)(x) = x′ ◦ ez(TP (x)) = TP (x)(z)(x′)

= x′ ◦ TP (x)(z) = z ◦ · · · ◦ z(x′ ◦ TP (x))
= z ◦ · · · ◦ z(x′ ◦Ax) = z ◦ · · · ◦ z(x′ ◦A)(x).

Since the last expresion is w∗-continuous in x, from (1) we have that (β◦T ′′P (z0))(z)(x′) =
z0(z ◦ · · · ◦ z(x′ ◦A)) = A(z0, z, . . . , z)(x′) = (TP (z0))(z)(x′), as desired. �

The Aron-Berner extension preserves the class of regular polynomials in the follow-
ing sense:

Proposition 2.5. If P ∈ PR(nE; X) then P ∈ PR(nE′′; X).

Proof. If P is a regular polynomial, then P is also regular as a consequence of
Lemma 2.4. We see that P is X-valued by induction on n. Gantmacher’s Theorem
gives the result for n = 1. Now, suppose that the result holds for every (n − 1)-
homogeneous polynomial and let A be the symmetric n-linear function associated
to P .
For x0 ∈ E, let Px0 be the (n − 1)-homogeneous polynomial given by Px0(x) =
A(x0, x, . . . , x). We also define the operator ε1

x0
: P (n−1E; X) → P (n−2E;X) as

ε1
x0

(Q) = Qx0 . By the symmetry of A we have that TPx0
= ε1

x0
◦ TP . Since TP

is weakly compact so is TPx0
, which means that Px0 is a regular polynomial. By

inductive hypothesis Px0 is X-valued. Since Px0 =
(
P

)
x0

we can define, for z ∈ E′′,

the weakly compact mapping

E → X

x0 7→ A(x0, z, . . . , z).

The bitranspose of this operator is X-valued and in particular P (z) = A(z, z, . . . , z)
belongs to X. �

We are ready to show the isomorphism result for regular polynomials.

Proposition 2.6. If s : E′ → F ′ is an (isometric) isomorphism, then

s : PR(nE; X) → PR(nF ; X)

is an (isometric) isomorphism.

Proof. We first show that s(P ) is an element of PR(nF ; X). Let us see that Ts(P )

is a w-compact operator. Consider the diagram

F
Ts(P )−→ P (n−1F ; X)

s′ ◦ JF ↓ ↑
E′′ TP−→ P (n−1E′′; X)

If y0 ∈ F, by Lemma 1.1, we have that (Ts(P )(y0))(y) = (TP (s′ ◦ JF )(y0))((s′ ◦
JF )(y)). On the other hand, the morphism Q 7→ Q ◦ (s′ ◦ JF ) is a continuous linear
operator from P (n−1E′′;X) to P (n−1F ; X) that makes the diagram a commutative
one, and Ts(P ) is w-compact. The result follows from Lemmas 1.1 and 2.1. �

Before studying the class of integral polynomials, we present a generalization of
the results for the two previous classes. Polynomials which are weakly continu-
ous on bounded sets as well as regular polynomials can be considered in terms of
some particular operator ideals: those of compact and weakly compact operators,
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respectively. In this context, we can obtain (in a more abstract way) the results in
Propositions 2.3 and 2.6. However, in our opinion the proofs given above are more
constructive and some of the intermediate results have interest by themselves.
In order to proceed we use a factorization result given in [18]. We present a sim-
plified version for our purposes.

Corollary 2.7. [18, Cor. 5] Let U be a closed injective operator ideal. If P ∈
P (nE; X) the following are equivalent:

i) The operator TP : E → P (n−1E; X) belongs to U
ii) There exist a Banach space Y an operator U ∈ U(E; Y ) and a polynomial

Q ∈ P (nY ; X) such that P = Q ◦ U.

We denote by PU (nE; X) the subspace of P (nE; X) consisting of those polynomials
satisfying i) or ii) of the previous Corollary. We can define, for P ∈ PU (nE; X), the
norm ‖P‖U = inf{‖Q‖ ‖U‖n}, where the infimum is taken over all factorizations of
P with U ∈ U .
Suppose that U is a closed injective operator ideal which is contained in WCo (the
ideal of weakly continuous operators) verifying that for any T ∈ U , T ′′ is also in U .
Then, if P ∈ PU (nE; X) we have that P ∈ PU (nE′′;X). Indeed, if P factors as in the
Corollary then, P = Q◦U ′′. Since U is weakly compact, U ′′(E′′) ⊆ Y and therefore
P is X-valued. The fact that U ′′ ∈ U assures that P ∈ PU (nE′′; X). Moreover,∥∥P

∥∥
U ≤

∥∥Q
∥∥∥∥U

∥∥n
= ‖Q‖ ‖U‖n and taking the infimum over all factorizations.

we obtain
∥∥P

∥∥
U ≤ ‖P‖U . The injectiveness of U assures that the norms of P in

PU (nE′′; X) and PU (nE′′; X ′′) coincide.
Note that U ⊆ WCo implies that the Aron-Berner extension of the symmetric n-
linear mapping associated to any P ∈ PU is also symmetric. From these facts,
Lemma 1.1 and a similar development as in the proof of Theorem 1.3 we can state
the following:

Theorem 2.8. Let U ⊆ WCo be a closed injective operator ideal such that for any
T ∈ U , T ′′ is also in U . If s : E′ → F ′ is an (isometric) isomorphism, then

s : PU (nE; X) → PU (nF ; X)

is an (isometric) isomorphism.

If U = WCo, PU (nE; X) is precisely the space of regular polynomials, while for
U = Co (the ideal of compact operators), PU (nE;X) is the space of weakly con-
tinuous polynomials on bounded sets. In both cases, it can be seen that ‖P‖U
coincides with ‖P‖.

2.4. Integral polynomials. Recall that a polynomial P ∈ P (nE; X) is integral if
there exists a regular X-valued Borel measure G, of bounded variation on (BE′ , w∗)
such that

P (x) =
∫

BE′

γ(x)n dG(γ)

for all x ∈ E. The space of n-homogeneous integral polynomials is denoted by
PI(nE,X) and the integral norm of a polynomial P ∈ PI(nE, X) is defined as

‖P‖I = inf {|G|(BE′)} ,

where the infimum is taken over all measures G representing P .
It was proved in [9] that the Aron-Berner extension of an n-homogeneous scalar-
valued integral polynomial P is also an integral polynomial and that the extension
morphism is an isometry, i.e.: ‖P‖I = ‖P‖I . We give a generalization to the vector-
valued case of this result using very different technics. First, recall that if T :
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G → X is an integral operator, then T ′′ : G′′ → X ′′ is an integral operator and
‖T‖I = ‖T ′′‖I (this is a consequence of Corollaries 10 and 11 of [12, Chap. VIII,
2]). Since integral operators are weakly compact, T ′′ takes its values in X. Integral
operators are not a regular ideal (i.e., an X−valued operator which is integral as
an X ′′− valued operator, need not be integral as an operator to X). However, for
the bitranspose of an integral operator we have:

Proposition 2.9. Let T : G → X be an integral operator. Then T ′′ : G′′ → X is
an integral operator and ‖T ′′‖LI(G′′,X) = ‖T ′′‖LI(G′′,X′′) = ‖T‖I

Proof. Since T is integral, given ε > 0, T admits a factorization

G
T→ X

R ↓ ↑ S

C(K)
j→ L1(µ)

where K is a compact topological space, µ is a regular Borel measure on K, j
is the natural inclusion and ‖S‖ ‖j‖ ‖R‖ ≤ ‖T‖I + ε. The mapping j is integral
with ‖j‖I = ‖j‖. Thus, it is weakly compact and j′′(C(K)′′) ⊂ L1(µ). If we
see that j′′ : C(K)′′ → L1(µ) is integral, then we have that T ′′ = S ◦ j′′ ◦ R′′ is
also integral (as an X-valued operator). We know that j′′ : C(K)′′ → L1(µ)′′ is
integral and therefore absolutely 1-summing. This operator ideal is injective, so
j′′ : C(K)′′ → L1(µ) is also absolutely 1-summing, with the same norm. Since
C(K)′′ has the metric extension property, then it is isometric to C(L) for some
L a compact topological space [10, I, 3.9]. Therefore, by [12, VI, 3, Thm. 12],
j′′ : C(K)′′ → L1(µ) is integral and ‖j′′‖LI(C(K)′′,L1(µ)) = ‖j′′‖Π1(C(K)′′,L1(µ)) =
‖j′′‖Π1(C(K)′′,L1(µ)′′) = ‖j′′‖LI(C(K)′′,L1(µ)′′) = ‖j‖. Now, T ′′ : G′′ → X is integral
and ‖T ′′‖LI(G′′,X) ≤ ‖S‖ ◦ ‖j‖ ◦ ‖R‖ ≤ ‖T‖I + ε , for any ε > 0. On the other
hand, ‖T‖I = ‖T ′′‖LI(G′′,X′′) ≤ ‖T ′′‖LI(G′′,X) and this completes the proof. �

In [25] it is shown that the spaces LI(nE, X) and LI(⊗n
ε E, X) are isometrically

isomorphic. Next Proposition shows that analogous result for n-homogeneous poly-
nomials holds. Note that it does not follow from the multilinear result, since the
integral norm of a polynomial does not coincide with the integral norm of the
associated symmetric multilinear operator (in fact, ‖A‖I ≤ ‖P‖I ≤

nn

n! ‖A‖I).

Proposition 2.10. The spaces PI(nE,X) and LI(⊗n
s,εE, X) are isometrically iso-

morphic.

Proof. If P ∈ PI(nE,X), its linearization LP belongs to LI(⊗n
s,εE,X) and ‖LP ‖I ≤

‖P‖I [8]. Suppose that T ∈ LI(⊗n
s,εE,X). Since ⊗n

s,εE is isometrically imbedded
in C(BE′), fixed ε > 0, T factors as in previous proposition:

⊗n
s,εE

T−→ X
R ↓ ↑ S

C(BE′)
j−→ L1(µ)

The inclusion j is integral and then S ◦ j is a weakly compact operator on C(BE′).
By [12, Thm. VI.2.5], there exists a measure G ∈ M(C(BE′);X) such that S ◦
j(f) =

∫
BE′

f(γ) dG(γ) and |G| = ‖S ◦ j‖ ≤ ‖T‖I − ε (note that ‖R‖ = 1).
Therefore, P, the polynomial associated to T , can be written

P (x) =
∫

BE′

γ(x)n dG(γ) .
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This means that P is integral and ‖P‖I ≤ |G| ≤ ‖T‖I − ε for any ε > 0 and the
isometry follows. �

The next lemma is a consequence of [13, Thm. 2.2] and extends the fact that the
bitranspose of an X−valued integral operator is also X−valued.

Lemma 2.11. The Aron-Berner extension of an integral polynomial P ∈ PI(nE, X)
is a polynomial P that takes values in X.

Theorem 2.12. If P ∈ PI(nE,X), then P ∈ PI(nE′′; X) and ‖P‖PI(nE′′;X) =
‖P‖I .

Proof. Take an integral polynomial P : E → X. By Proposition 2.10, its lin-
earization LP : ⊗n

s,εE → X is integral and has the same integral norm. Thus, by
Proposition 2.9, L′′P is an X-valued integral operator (with the same norm). We
have the diagram:

(⊗n
s,εE)′′

L′′P→ X

i ↑
L

↗
⊗n

s,εE
′′

where the map i : ⊗n
s,εE

′′ ↪→ (⊗n
s,εE)′′ = PI(nE)′ is the inclusion via the identifi-

cation given in [9]. That is, for an elementary tensor z(n) ∈ ⊗n
s,εE

′′, i(z(n)) is the
linear form on PI(nE) defined by i(z(n))(R) = R(z), where R ∈ PI(nE′′) is the
Aron-Berner extension of R.
Let Q : E′′ → X be the polynomial

Q(z) = L(z ⊗ . . .⊗ z) = L′′P (i(z(n))).

By Lemma 2.10, Q is integral and ‖Q‖I ≤ ‖L′′P ‖I . To show that Q = P take
x′ ∈ X ′. Then,

x′(Q(z)) = x′ (L′′P (i(zn))) = i(zn)(L′P (x′)) .

Note that L′P (x′) ∈ (⊗n
s,εE)′ is the polynomial x′ ◦ P. Then, for all x′ ∈ X ′

x′(Q(z)) = i(zn)(x′ ◦ P ) = x′ ◦ P (z) = x′
(
P (z)

)
.

Thus, P : E′′ → X is integral and ‖P‖PI(nE′′;X) ≤ ‖L′′P ‖I = ‖LP ‖I = ‖P‖I . The
reverse inequality follows from ‖P‖I ≤ ‖P‖PI(nE′′;X) ‖JE‖ = ‖P‖PI(nE′′;X). �

In order to prove that the vector-valued integral polynomials on E are determined
by the dual space E′ we prove first that every morphism s preserves that subclass.

Lemma 2.13. If P ∈ P (nE; X) is integral, then s(P ) ∈ P (nF ; X) is also integral,
and

‖s(P )‖I ≤ ‖s‖n‖P‖I .

Proof. As we have that s(P ) = P ◦ s′ ◦ JF , the result is a consequence of the fact
that integral polynomials form a right-ideal with continuous operators. Thus, by
Theorem 2.12 we have

‖s(P )‖I = ‖P ◦ s′ ◦ JF ‖I ≤ ‖P‖I‖s‖n = ‖P‖I‖s‖n.

�

Now, we show that for any Banach spaces E, F with isomorphic dual spaces, the
respective spaces of X-valued n-homogeneous integral polynomial are isomorphic.
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Proposition 2.14. If s : E′ → F ′ is an (isometric) isomorphism, then

s : PI(nE, X) → PI(nF ; X)

is an (isometric) isomorphism.

Proof. In order to prove that s−1 ◦ s(P ) = P when P is an integral polynomial
its sufficient to prove that TA is a weakly compact operator, where A is the n-
linear symmetric function associated to P . The reverse composition is analogous.
It is known that A is an integral multilinear mapping. To see that TA is a weakly
compact operator it is enough to see that TA : E → LI(n−1E; X) is an integral
operator.
It was proved in [25] that if B : E1×E2 → X is an integral bilinear mapping, then
B1 : E1 → LI(E2;X) is an integral operator. Some modifications to the proof in
[25] would lead to the desired result. However, we prefer to provide a shorter proof
using the bilinear case.
Since A is integral, so is its linearization LA : ⊗n

ε E → X. Identifying ⊗n
ε E with

E⊗ε

(
⊗n−1

ε E
)
, we get a bilinear mapping B : E×

(
⊗n−1

ε E
)
→ X which is integral

by the multilinear version of Proposition 2.10. By the bilinear case, TA = B1 : E →
LI

(
⊗n−1

ε E; X
)

= LI

(
n−1E; X

)
is an integral operator. �

2.5. Extendible polynomials. We say that P : E → X is an extendible poly-
nomial if for any Banach space Z ⊇ E there exists Q : Z → X extending P. The
extendible norm of such a polynomial P can be defined as

‖P‖e = inf{‖Q‖; Q : C(BE′) → X extending P}.

It was mentioned in [22] that the spaces of scalar-valued extendible polynomials on
E and F are (isometrically) isomorphic if so are E′ and F ′. We will give a proof of
this fact in a more general context.
We have that if P : E → X is extendible, then its Aron-Berner extension P :
E′′ → X ′′ is also extendible, with

∥∥P
∥∥

e
≤ ‖P‖e. Also, P ◦ T is extendible for

any continuous linear operator T on X with ‖P ◦ T‖e ≤ ‖P‖e ‖T‖
n [6, Thm. 3.4,

Thm. 3.6]. However, the Aron-Berner extension of P needs not be X-valued. For
instance, consider the identity map id`∞ :`∞ → `∞, which is extendible since `∞
is an injective space. Its Aron-Berner extension is the identity on id(`∞)′′ which is
clearly not (`∞)-valued.
If X is a dual space, say X = W ′, we consider the morphism sW as in Theorem 1.3.
Since sW (P ) = ρ ◦ P ◦ s′ ◦ JF (where ρ : W ′′′ → W ′ is the restriction mapping),
it is clear that sW (P ) is extendible with ‖sW (P )‖e ≤ ‖P‖e ‖s‖

n, whenever P is
extendible.
To prove that an (isometric) isomorphism s : E′ → F ′ induces an (isometric)
isomorphism sW : Pe(nE, W ′) → Pe(nF, W ′) it is enough to show, by Lemma 1.1,
that the Aron-Berner extension of the symmetric n-linear mapping A associated
to each extendible polynomial P is also symmetric. Note that P can be extended
to C(BE′ , w∗), and therefore A factors through a symmetric n-linear mapping B :
C(BE′) × · · · × C(BE′) → W ′. A factors through B, which is symmetric since
C(BE′) is symmetrically Arens-regular, and this assures the symmetry of A. We
have obtained the following:

Proposition 2.15. If E′ and F ′ are (isometrically) isomorphic, then for any Ba-
nach space W , the spaces Pe(nE, W ′) and Pe(nF ;W ′) are (isometrically) isomor-
phic.
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2.6. One Example. It was shown in [22] that the subclass of weakly sequentially
continuous polynomials is not preserved, in general, by s. With the following ex-
ample we show that the class could be preserved under certain conditions.

Example 2.16. Let E be a separable Banach space such that E 6⊇ `1. If F ′ is
isomorphic to E′, then the spaces Pwsc(nE) and Pwsc(nF ) are isomorphic.

Proof. Recall that by a result of Odell and Rosenthal, a separable Banach space
contains `1 if and only if the cardinality of its bidual is greater than c. Since
E 6⊇ `1 and E′ is isomorphic to F ′, F cannot contain `1. Therefore, Pwsc(nE) =
Pw(nE) and Pwsc(nF ) = Pw(nF ) (see [3] Prop. 2.12) and the result follows from
Proposition 2.3. �

Note that we need only to impose conditions on one of the spaces.

3. Holomorphic functions

In this section we investigate the relation between the different Fréchet algebras
or spaces of holomorphic functions on Banach spaces whose duals are isomorphic.
Most of the work has already been done in the previous sections, where the be-
haviour of the mapping s (or sW ) on different spaces of polynomials was studied.
Recall that if U is an open subset of E, Hb(U, X) is the space of X-valued holo-
morphic functions of bounded type on U , that is, the functions which are bounded
on subsets V ⊂ U which are bounded and bounded away from the boundary of U .
Hb(U,X) is a Fréchet space with the family of seminorms

pV (f) = sup
V
‖f‖.

On the other hand, H∞(U, X) denotes the space of bounded holomorphic functions
from U to X. This is a Banach space when equipped with the sup norm. If X is an
algebra, Hb(U, X) and H∞(U, X) are, respectively, Fréchet and Banach algebras.

In order to derive conclusions for analytic functions from the results obtained for
polynomials, we need the following:

Lemma 3.1. Let U ⊂ E be an open subset containing 0 and f : U → X an
analytic function whose Taylor series expansion at 0, f(x) =

∑
k≥0 Pk(x), converges

uniformly on rBE. Then,
a) f ◦ s′ ◦ JF =

∑
k≥0 s (Pk) uniformly on r

‖s‖BF .
b) If X = W ′, f ◦ s′ ◦ JF (y) |W =

∑
k≥0 sW (Pk) (y) uniformly for ‖y‖ ≤ r

‖s‖ .

Proof. a) Since f =
∑

k≥0 Pk converges uniformly on rBE′′ [1], we have that f ◦s′ ◦
JF (y) =

∑
k≥0 Pk ◦ s′ ◦ JF (y) =

∑
k≥0 s (Pk) (and the series converges uniformly),

whenever ‖s′ ◦ JF (y)‖ ≤ r. In particular, this holds if ‖y‖ ≤ r
‖s‖ .

b) The statement follows applying the restriction mapping ρ : W ′′′ → W ′ to the
equality obtained in a). �

Suppose E and F are symmetrically regular and X = W ′ is a dual space. If
f ∈ Hb(E,W ′), we can define sW (f) ∈ Hb(F, W ′) by sW (f)(y) = f ◦ s′ ◦ JF (y) |W ,
which coincides with

∑
k≥0 sW (Pk) (y). To see that sW (f) is a bounded type

holomorphic function, observe that if f has infinite radius of uniform convergence,
by Lemma 3.1 (b), sW (f) has also infinite radius of uniform convergence. Theo-
rem 1.3 (applied to each polynomial on the expansion of f) and the fact that the
Aron-Berner extension is multiplicative, give the first statement of the following
proposition.
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Proposition 3.2. Let E and F are symmetrically Arens-regular whose duals are
isomorphic. Then:
a) Hb(E; W ′) and Hb(F ; W ′) are isomorphic Fréchet spaces.
If the isomorphism between E′ and F ′ is isometric, then
b) Hb(BE ; W ′) and Hb(BF ; W ′) are isomorphic Fréchet spaces.
c) H∞(BE ;W ′) and H∞(BF ;W ′) are isometrically isomorphic Banach spaces.
If W ′ is a Banach algebra (in particular, if W ′ is the scalar field), sW is an iso-
morphism of Fréchet/Banach algebras.

Proof. To prove b), we have to show that if f ∈ Hb(BE ; W ′), then sW (f) ∈
Hb(BF ; W ′). But this follows from the fact that s′ ◦ JF (rBF ) is contained in
rBE , since s is an isometry. The result is now a consequence of Lemma 3.1 (b) and
Theorem 1.3. The proof of c) is analogous. �

The scalar-valued case of the first statement is in [5]. It is worthwhile to note
that s needs be an isometric isomorphism for s to be an isomorphism in b) and c)
in the previous proposition, even for the scalar-valued case. The same holds for
Propositions 3.3 and 3.4.

As we have seen in the first section, the assumption that X be a dual space cannot
be omitted, unless restrictions are made on the polynomials which are involved.
Naturally, the same occurs with analytic functions. We need not make assumptions
on X for those classes of analytic functions related to spaces of polynomials where s
has a good behaviour. We point this out with two examples: holomorphic functions
which are uniformly weakly continuous on bounded sets and boundedly integral
functions.
Let Hwu(E; X) be the space of holomorphic function which are uniformly weakly
continuous on bounded sets. Analogously, Hwu(BE ; X) consists of holomorphic
functions on BE which are uniformly weakly continuous on rBE for r < 1. A
function f : E → X belongs to Hwu(E; X) if and only if it has an infinite radius of
uniform convergence (at 0) and every polynomial in its Taylor series expansion is
weakly continuous on bounded sets (for Hwu(BE ; X), the radius must be at least
1). Therefore, from Proposition 2.3 and Lemma 3.1 (a) we have:

Proposition 3.3. a) If E′ and F ′ are isomorphic, then Hwu(E;X) and Hwu(F ; X)
are isomorphic Fréchet spaces.
b) If E′ and F ′ are isometrically isomorphic, Hwu(BE ; X) and Hwu(BF ; X) are
isomorphic Fréchet spaces.
If X is a Banach algebra (in particular, if X is the scalar field), s is an isomorphism
of Fréchet algebras.

Now we study the boundedly integral functions introduced for the scalar-valued
case in [14]. A function f : BE → X is integral if there exists an X-valued measure
G on (BE′ , w∗) such that

(2) f(x) =
∫

BE′

1
1− γ(x)

dG(γ) .

Integral functions are holomorphic and each polynomial in its Taylor series expan-
sion is integral.bb
A function f : BE → X is boundedly integral if fr = f(r·) is integral for any
0 < r < 1. Proposition 11 in [14] (which readily extends to the vector-valued case)
states that a holomorphic function f =

∑
k Pk is boundedly integral (f ∈
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HbI(BE , X)) if and only if each Pk is an integral polynomial and rI := 1
lim sup‖P‖I

is at least 1.
On the other hand, a function f : E → X is boundedly integral if f |nBE

is integral
in the sense of expression (2), with a measure defined on 1

nBE′ , for all n ∈ IN . It
can be seen that f =

∑
k Pk is boundedly integral on E if and only if each Pk is an

integral polynomial and rI = +∞.
As a consequence of Proposition 2.14 and Lemma 3.1 we have:

Proposition 3.4. a) If E′ and F ′ are isomorphic, HbI(E; X) and HbI(F ; X) are
isomorphic Fréchet spaces.
b) If E′ and F ′ are isometrically isomorphic, HbI(BE ; X) and HbI(BF ; X) are
isomorphic Fréchet spaces.

Acknowledgements
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