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DETERMINE THE POLYNOMIALS OVER E?
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Abstract. We show that under conditions of regularity, if E′ is isomorphic
to F ′ then the spaces of homogeneous polynomials over E and F are isomor-
phic. Some subspaces of polynomials more closely related to the structure of

dual spaces (weakly continuous, integral) are shown to be isomorphic in full
generality.

1. Introduction.

In a recent paper [DD] Dı́az and Dineen show that if E′ is isomorphic to F ′, and
E′ has the Schur property and the approximation property, then for any n the spaces
of n-homogeneous polynomials over E and F are isomorphic. Thus, in a sense, the
dual spaces determine the polynomials over the spaces. The purpose of this note
is to investigate further conditions assuring the existence of isomorphisms between
spaces of polynomials. We also look into the preservation or non-preservation of
some classes of polynomials by these isomorphisms, since it has seemed to us that
the mere fact that two spaces of polynomials are isomorphic does not do justice to
the rich structure of such spaces (note for example that P (kRn) is isomorphic to
P (n−1Rk+1)).

In section 2 we show that we can assure the existence of an isomorphism under
regularity conditions on the spaces. Recall that a Banach space E is called Arens-
regular if all linear operators E → E′ are weakly compact, and symmetrically
Arens-regular if this is so for all symmetric linear operators (see [AGGM], [GI]). In
section 3 we investigate the preservation of some subspaces of polynomials under
the maps defined in section 2. We find -with no condition over E or F - that if E′ is
isomorphic to F ′, then the spaces of n -homogeneous integral polynomials over E
and F are isomorphic; and the same holds true for the spaces of weakly continuous
polynomials. Finally, in section 4 we give some examples.

The authors are grateful to S. Dineen for introducing them to the problem, and
for helpful conversations.

Before going into the problem, we discuss some preliminaries and fix notation.
Throughout, E and F will be real or complex Banach spaces. P (nE) denotes the
space of all n-homogeneous continuous scalar-valued polynomials over E. This is
easily seen to be isomorphic to the space of all continuous symmetric n-linear forms,
which we denote Ln

s (E). Thus each polynomial P has an associated symmetric mul-
tilinear form A such that P (x) = A(x, ..., x). There are many interesting subclasses
of polynomials. Among them: Pw(nE), the class of those polynomials which are
weakly continuous on bounded sets; PI(nE), the class of integral polynomials; and
Pwsc(nE), the class of weakly sequentially continuous polynomials. For more on
polynomials over Banach spaces, see [D], [M], [GJLl].

1



2 SILVIA LASSALLE AND IGNACIO ZALDUENDO

Our approach to the problem will be

s : P (nE) → P (nF )

in the following way. If y is an element of F , define the linear morphism

ỹ : Lk
s(E) → Lk−1

s (E)

by ỹ(B)(x1, ..., xk−1) = s(Bx1...xk−1)(y) , where Bx1...xk−1 is the element of E′

obtained by fixing the k − 1 variables x1, ..., xk−1. Now if P is an n-homogeneous
polynomial over E, and A is its associated symmetric n-linear form, A can be
assigned an n-linear form s̃(A) over F by setting

s̃(A)(y1, ..., yn) = (ỹ1 ◦ · · · ◦ ỹn)(A).

Note that s̃(A) need not be symmetric. We can, however define an n-homogeneous
polynomial over F by putting s(P )(y) = s̃(A)(y, ..., y).

In the case s = JE′ : E′ → E′′′ (the natural inclusion), the morphism s obtained
is the well-known Aron-Berner extension of polynomials from a Banach space E
to its bidual[AB], [Z2]. In this particular case we will use the notation P and A
for s(P ) and s̃(A) respectively. The lack of symmetry of A is at the heart of the
matter that concerns us here, so we take a moment to refer to some properties of
A. First, although A need not be symmetric, the elements of E and those of E′′

can always be permuted in the variables of A. Also, A is always w∗-continuous in
its first variable. It can be seen [U], [ACG], that symmetry of A is equivalent to its
w∗ -continuity in all variables, and also to the weak compactness of the operator
E → P (n−1E) associated to P . Symmetry of A is always obtained if the space E
has the property of symmetric regularity mentioned above.

2. s and the Aron-Berner extension.

Since the Aron-Berner extension is a well studied object, we will find it very
convenient to write s and s̃ in terms of the Aron-Berner extension. This is what
we do in the following lemma.

Lemma 2.1. For any y1, ..., yn in F , and all symmetric n-linear forms A over E,
s̃(A)(y1, ..., yn) = A(s′(JF (y1)), ..., s′(JF (yn))). In particular,
s(P ) = overlineP ◦ s′ ◦ JF .

Proof. We proceed by induction on n. If A ∈ E′, we have s̃(A)(y) = s(A)(y) =
JF (y)(s(A)) = s′(JF (y))(A) = A(s′(JF (y))). Now suppose the result true for
(n − 1)-linear forms. We first show that the (n − 1)-linear form over E′′ obtained
from A by fixing s′(JF (yn)) in the last variable coincides with ỹn(A):

Let z1, ..., zn−1 ∈ E′′. We have

A(z1, ..., zn−1, s
′(JF (yn))) = (z̃1 ◦ · · · ◦]zn−1)( ^s′(JF (yn))(A))

and

ỹn(A)(z1, ..., zn−1) = (z̃1 ◦ · · · ◦]zn−1)(ỹn(A))

(where the tildes over elements of E′′ refer to JE′ ). Thus it will be enough to

check that the (n− 1)-linear forms over E, ^s′(JF (yn))(A) and ỹn(A), coincide. Let
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x1, ..., xn−1 ∈ E. Then

^s′(JF (yn))(A)(x1, ..., xn−1) = s′(JF (yn))(Ax1...xn−1)
= JF (yn)(s(Ax1...xn−1))
= s(Ax1...xn−1)(yn)
= ỹn(A)(x1, ..., xn−1).

Now, using our inductive hypothesis

s̃(A)(y1, ..., yn) = (ỹ1 ◦ · · · ◦ ỹn)(A)
= (ỹ1 ◦ · · · ◦]yn−1)(ỹn(A))
= s̃(ỹn(A))(y1, ..., yn−1)
= ỹn(A)(s′(JF (y1)), ..., s′(JF (yn−1)))
= A(s′(JF (y1)), ..., s′(JF (yn))).

�

In what follows we will usually write y instead of JF (y), for elements y ∈ F ,
even when we consider them elements of F ′′ via the natural inclusion.

Corollary 2.1. If A is symmetric, then s̃(A) = A ◦ (s′ × · · · × s′). Thus s̃(A)
is also symmetric, and if P is the homogeneous polynomial associated to A, then
s(P ) = P ◦ s′.

Proof. Clearly s̃(A) is symmetric, for

s̃(A)(y1, ..., yn) = A(s′(y1), ..., s′(yn)).

Let y1, ..., yn denote elements of F , and w1, ..., wn elements of F ′′. We will show,
by induction on k, that

s̃(A)(w1, ..., wk, yk+1, ..., yn) = A(s′(w1), ..., s′(wk), s′(yk+1), ..., s′(yn)).

Recall that the Aron-Berner extension of any symmetric n-linear form is w∗-continuous
in its first variable, and furthermore elements of F and F ′′ always commute. Also,
s′ is w∗−w∗ -continuous. Consider a net (yα) of elements of F, w∗ -converging to
w1. Then, for k = 1,

s̃(A)(w1, y2, ..., yn) = limα s̃(A)(yα, y2, ..., yn)
= limα s̃(A)(yα, y2, ..., yn)
= limα A(s′(yα), s′(y2), ..., s′(yn))
= A(s′(w1), s′(y2), ..., s′(yn)).

Now suppose the equality holds for k − 1. We have

s̃(A)(w1, ..., wk, yk+1, ..., yn) = limα s̃(A)(yα, w2, ..., wk, yk+1, ..., yn)
= limα s̃(A)(w2, ..., wk, yα, yk+1, ..., yn)
= limα A(s′(w2), ..., s′(wk), s′(yα), s′(yk+1), ..., s′(yn))
= limα A(s′(yα), s′(w2), ..., s′(wk), s′(yk+1), ..., s′(yn))
= A(s′(w1), s′(w2), ..., s′(wk), s′(yk+1), ..., s′(yn)).

Therefore s̃(A)(w1, ..., wn) = A(s′(w1), ..., s′(wn)), and s(P )(w) = P (s′(w)). �

Corollary 2.2. Let P ∈ P (nE), and let A be its associated symmetric n-linear
form, and suppose s : E′ → F ′ is an isomorphism. Then if A is symmetric,
(s−1 ◦ s)(P ) = P.
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Proof. Note that s̃(A) is symmetric. Thus for x1, ..., xn ∈ E, we have

s̃−1(s̃(A))(x1, ..., xn) = s̃(A)((s−1)′(x1), ..., (s−1)′(xn))
= A(s′((s−1)′(x1)), ..., s′((s−1)′(xn)))
= A(x1, ..., xn)
= A(x1, ..., xn).

Since s̃(A) is the symmetric n-linear form associated to s(P ), for any x ∈ E we
have s−1(s(P ))(x) = P (x). �

Theorem 2.1. If E and F are symmetrically Arens-regular, and E′ and F ′ are
isomorphic (resp. isometric), then for any n, P (nE) and P (nF ) are isomorphic
(resp. isometric).

Proof. Let s : E′ → F ′ be the isomorphism. Since E is symmetrically Arens-
regular, for any symmetric n -linear form A over E we have that A is symmetric.
Thus for any n-homogeneous polynomial P over E, (s−1 ◦s)(P ) = P . Analogously,
for any n-homogeneous polynomial Q over F , (s ◦ s−1)(Q) = Q. Note also that

‖s(P )‖ = ‖P ◦ s′ ◦ JF ‖ ≤ ‖P‖‖s‖n,

and the same for s−1 and Q. �

Remark 2.1. If one has morphisms s : E′ → F ′, and t : F ′ → G′, and A is the
symmetric form associated to a homogeneous polynomial P , then symmetry of A
implies (t ◦ s)(P ) = t ◦ s(P ).

Remark 2.2. It is easy to see that if E′ and F ′ are isomorphic, and one is Arens-
regular, then so is the other. Indeed, say s : E′ → F ′ is an isomorphism, and F is
Arens-regular. If T : E → E′ is a linear map, consider the diagram

E′′ T ′

→ E′

↑ ↓
F ′′ L′′

→ F ′

↑
L

↗
F

where L = s ◦T ′ ◦ s′ ◦ JF . Since L is weakly compact, its bitranspose L′′, has range
in F ′ by Gantmacher’s theorem. Thus T ′ = (s′)−1 ◦ L′′ ◦ s−1 is weakly compact,
since L′′ is. Then so is T . Thus symmetric regularity of both spaces in the corollary
can be replaced by regularity of one of them.

Remark 2.3. Note that for s = JE′ , Corollary 2 recovers the following result of
[AGGM]: If E is symmetrically regular, then P = P ◦ ρ, where ρ : Eiv → E′′ is the
restriction map; thus there are no new ‘evaluations’ beyond E′′.

3. s and some subspaces of polynomials.

Since s : E′ → F ′ is a morphism between dual Banach spaces, it is natural
to expect that those types of polynomials over E which are more closely related
to E′ will be preserved by the morphism s : P (nE) → P (nF ). The formula
s(P ) = P ◦s′◦JF proved in the previous section shows immediately that finite type,
nuclear, and approximable polynomials are all preserved by s. In this section we
show that the same is true for weakly continuous and integral polynomials, and that
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if E′ and F ′ are isomorphic, then Pw(nE) is isomorphic to Pw(nF ), and PI(nE) is
isomorphic to PI(nF ), with no further assumptions on E or F . Perhaps surprisingly,
the class of weakly sequentially continuous polynomials is not, in general, preserved
by s. We provide examples of this situation in the last section.

Recall that weakly continuous polynomials over E can be characterized [AG] as
those for which there exists a compact set K contained in E′ for which

| P (x) |≤ c sup
γ∈K

| γ(x) |n

holds for all x ∈ E. We will denote the seminorm on the right hand side of the
inequality by ‖x‖K , and say that P is K-bounded. The smallest possible c is called
the K-norm of P and denoted ‖P‖K .

Lemma 3.1. If P is K-bounded, then s(P ) is s(K)-bounded and

‖s(P )‖s(K) ≤ ‖P‖K .

Proof. It was proved in [AG], [CDDL] that P is K-bounded if P is and that ‖P‖K ≤
‖P‖K . Thus for any y ∈ F ,

| s(P )(y) | = | (P ◦ s′ ◦ JF )(y) |
≤ ‖P‖K sup

γ∈K
| γ((s′ ◦ JF )(y)) |n

≤ ‖P‖K sup
γ∈K

| s(γ)(y) |n

= ‖P‖K‖y‖n
s(K)

�

Thus s preserves weakly continuous polynomials.

Proposition 3.1. If s : E′ → F ′ is an isomorphism (resp. isometry), then

s : Pw(nE) → Pw(nF )

is an isomorphism (resp. isometry).

Proof. Given P ∈ Pw(nE), its associated linear operator E → P (n−1E) is compact
[AHV]. Thus the Aron-Berner extension of its associated n-linear form is symmetric
and we have, by the results of the previous section, (s−1 ◦ s)(P ) = P . Analogously,
for Q ∈ Pw(nF ), one has (s ◦ s−1)(Q) = Q. Note also that

‖s(P )‖ = ‖P ◦ s′ ◦ JF ‖ ≤ ‖P‖‖s‖n,

and the same for s−1 and Q. �

We recall [CZ] that the Aron-Berner extension of an integral polynomial is integral.
Furthermore, if µ is a measure representing P , and one defines

U : L1(µ) → E′

by

U(f)(x) =
∫

BE′

f(γ)γ(x)dµ(γ),

U is a norm-one map and the Aron-Berner extension of P may be written

P (z) =
∫

BE′

U ′(z)ndµ.
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With this notation, we prove the following lemma.

Lemma 3.2. If P is integral, then s(P ) is integral, and ‖s(P )‖I ≤ ‖s‖n‖P‖I .

Proof. For y ∈ F ,

s(P )(y) = P (s′(JF (y))) =
∫

BE′

U ′(s′(JF (y)))ndµ =
∫

BE′

[(s ◦ U)′ ◦ JF ]n (y)dµ.

Thus, s(P ) is integral, and

‖s(P )‖I ≤ ‖(s ◦ U)′ ◦ JF ‖n | µ |≤ ‖s‖n | µ | .

Since this holds for any measure representing P , ‖s(P )‖I ≤ ‖s‖n‖P‖I . �

Proposition 3.2. If s : E′ → F ′ is an isomorphism (resp. isometry), then

s : PI(nE) → PI(nF )

is an isomorphism (resp. isometry).

Proof. By Lemma 3, s and s−1 are both morphisms between the spaces of integral
polynomials. We show now that s(P ) = P ◦ s′. Clearly P ◦ s′ coincides with
s(P ) when restricted to F . Thus it will be enough [Z1] to see that the first-order
differentials of P ◦ s′ have the properties

a) For all y ∈ F , D(P ◦ s′)(y) is w∗ -continuous.
b) For all w ∈ F ′′ and (yα) ⊂ F , w∗ -converging to w,

D(P ◦ s′)(w)(yα) → D(P ◦ s′)(w)(w).

But since (P ◦ s′)(w) =
∫

U ′(s′(w))ndµ, upon differentiating we have

D(P ◦ s′)(w)(v) = n

∫
BE′

U ′(s′(w))n−1U ′(s′(v))dµ,

which is w∗-continuous of the variable v.
Now

s−1(s(P )) = s(P ) ◦ (s−1)′ ◦ JE

= P ◦ s′ ◦ (s−1)′ ◦ JE

= P ◦ JE = P |E
= P.

Analogously, for Q ∈ PI(nF ), one has (s ◦ s−1)(Q) = Q. The norms of s and s−1

are controlled by the inequality in Lemma 3.3. �

Remark 3.1. Note that the same type of result as in the propositions can be ob-
tained forb any subspace of polynomials as long as their associated linear operators
E → P (n−1E) are weakly compact, and the Aron-Berner extension preserves the
class.
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4. Examples.

In this section we give three examples. The first shows that s(P ) may differ from
P ◦ s′. The second that v ◦ s may differ from v ◦ s, and the third that even when
s : X ′ → Y ′ is an isomorphism, s may not preserve the class of weakly sequentially
continuous polynomials.

We mention a few facts and fix some notation before going into the examples. If
X is a Banach space, consider the 2-homogeneous polynomial P defined over X×X ′

by P (x, x′) = x′(x). It is easily seen that P is weakly sequentially continuous if
and only if X has the Dunford-Pettis property. Also, one may check that the
Aron-Berner extension of P to X ′′ ×X ′′′ is

P (x′′, x′′′) =
1
2
[x′′′(x′′) + x′′(ρ(x′′′))],

where ρ : X ′′′ → X ′ is the restriction (i.e., the transpose of the natural inclusion
JX : X → X ′′). In the first two examples we will use the notation

E = X ×X ′ F = X ′′ ×X ′ G = X ′′ ×X ′′′

and over these spaces we consider the polynomials

P (x, x′) = x′(x) Q(x′′, x′) = x′′(x′) R(x′′, x′′′) = x′′′(x′′)

and morphisms

s : E′ → F ′ t : F ′ → E′ v : F ′ → G′

given by s = JX′⊕ idX′′ , t = ρ⊕ idX′′ , v = idX′′′⊕JX′′ . Also, we denote r = J ′X′ .

Example 4.1. s(P ) 6= P ◦ s′.

We first calculate s(P ). For (x′′, x′) ∈ F , we have

s(P )(x′′, x′) = (P ◦ s′)(JX′′(x′′), JX′(x′))

= P (rJX′′(x′′), JX′(x′))

= P (x′′, JX′(x′))

=
1
2
[JX′(x′)(x′′) + x′′(ρ(JX′(x′)))]

=
1
2
[x′′(x′) + x′′(x′)]

= Q(x′′, x′).

Thus s(P ) = Q. Now calculate s(P ) and P ◦ s′:

s(P )(xiv, x′′′) = Q(xiv, x′′′) =
1
2
[xiv(x′′′) + x′′′(r(xiv))]

(P ◦ s′)(xiv, x′′′) = P (r(xiv), x′′′)

=
1
2
[x′′′(r(xiv)) + r(xiv)(ρ(x′′′))].

Thus s(P ) = P ◦ s′ if and only if xiv(x′′′) = r(xiv)(ρ(x′′′)), but this only holds for
reflexive X.

Note that we have seen that s(P ) = Q. If X has the Dunford-Pettis property
but X ′ does not, then P is weakly sequentially continuous, but Q is not. We also
have the following.
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Corollary 4.1. If X is an infinite-dimensional Banach space with the Dunford-
Pettis property, then X ×X ′ contains l1.

Proof. If E = X × X ′ did not contain l1 then every weakly sequentially continu-
ous polynomial would be weakly continuous [FGLl] . Thus the operator E → E′

associated to the polynomial P above would be compact, its corresponding A
would be symmetric, and s(P ) = P ◦ s′ forcing X to be reflexive, and therefore
finite-dimensional. �

Example 4.2. v ◦ s 6= v ◦ s.

First, calculate v′ ◦ JG:

(v′ ◦ JG)(x′′, x′′′) = v′(JX′′(x′′), JX′′′(x′′′))
= (JX′′(x′′), J ′X′′(JX′′′(x′′′)))
= (JX′′(x′′), x′′′).

We have already calculated s(P ), so using this we have

(v ◦ s)(P )(x′′, x′′′) = (s(P ) ◦ v′ ◦ JG)(x′′, x′′′)

= s(P )(JX′′(x′′), x′′′)

=
1
2
[JX′′(x′′)(x′′′) + x′′′(r(JX′′(x′′)))]

= x′′′(x′′).

Then

(v ◦ s)(P )(x′′, x′′′) = (P ◦ (v ◦ s)′ ◦ JG)(x′′, x′′′)

= (P ◦ s′)((v′ ◦ JG)(x′′, x′′′))

= (P ◦ s′)(JX′′(x′′), x′′′)

= P (r(JX′′(x′′)), x′′′)

= P (x′′, x′′′)

=
1
2
[x′′′(x′′) + x′′(ρ(x′′′))],

thus v ◦ s = v ◦ s if and only if x′′(ρ(x′′′)) = x′′′(x′′), but again, this only happens
for reflexive X.

Example 4.3. An isomorphism s : X ′ → Y ′ such that s does not preserve the
class of weakly sequentially continuous polynomials.

We begin with the well-known example of [S] of Banach spaces X and Y with
isomorphic duals, such that X has the Dunford-Pettis property and Y does not:

X = (
∑
n≥1

ln2 )1 and Y = X ⊕ l2.

Call s : X ′ → Y ′ the isomorphism, and consider the 2-homogeneous polynomial
Q over Y defined by Q(x, a) =

∑
n≥1 a2

n. The operator Y → Y ′ associated to
Q sends (x, a) to (0, a) and is therefore weakly compact. Then (s ◦ s−1)(Q) =
s ◦ s−1(Q) = Q. Since X has the Dunford-Pettis property, all polynomials over X

are weakly sequentially continuous [Ry], in particular (s−1)(Q) is. Thus s sends this
weakly sequentially continuous polynomial onto Q, which is not weakly sequentially
continuous (Q(0, en) = 1 for all n).
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