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Abstract.
This paper is concerned with the study of the set P−1(0), when P varies over

all orthogonally additive polynomials on `p and Lp spaces. We apply our results to
obtain characterizations of the weak-polynomial topologies associated to this class
of polynomials.
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1. Introduction.

Before going into the problem, we discuss some preliminaries and fix
notation. Throughout, X will be a real Banach space and X ′ its dual.
We are going to consider only continuous polynomials and, as usual,
denote by P (nX) the space of all n-homogeneous continuous scalar-
valued polynomials with domain X. P (X) will be the space of all
continuous scalar-valued polynomials defined on X. P (nX) is a Banach
space endowed with the norm ‖P‖ = sup{|P (x)| : ‖x‖ ≤ 1}.
We may define various topologies on X, in terms of convergence of nets:
the strong topology in which a net xα → x if and only if ||xα− x|| → 0,
the weak (w) topology where xα

w→ x if and only if ϕ(xα − x) → 0, for
all ϕ ∈ X ′ and the weak polynomial (wp) topology, (see (Carne et al.,
1989)) with convergence given by xα

wp→ x if and only if P (xα−x) → 0,
for all P ∈ P (X) or equivalently for all P ∈ P (nX), for all n ∈ IN. The
weak polynomial topology was studied in (Aron et al., 2), (Biström
et al., 1989), (Davie and Gamelin, 1989), (González et al., 1997) and
(Gutiérrez and Llavona, 1997).
It is easy to see that xα → x ⇒ xα

wp→ x ⇒ xα
w→ x. For any infinite

dimensional complex Hilbert space H, the wp-topology is not linear
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even when restricted to the unit ball of H (see, (Aron et al., 2)). New
examples of both real and complex Banach spaces X such that the
wp-topology is not linear are given in (Biström et al.) and (Castillo et
al.).
The lack of linearity easily shows that in general these topologies are
different, although there are some examples that we will mention later
for which w = wp and wp = norm. In order to obtain a linear poly-
nomial topology close to wp the following topology T is considered in
(Garrido et al., ).

Definition 1.1. (Garrido et al., ) For each P ∈ P (nX) define d̃P :
X ×X → IR≥0,

d̃P (x, y) = inf
k − chains

k ∈ ZZ, k ≥ 0

{
|P (x−z1)|

1
n +|P (z1−z2)|

1
n +· · ·+|P (zk−y)|

1
n

}

where by a k− chain we mean the ordered set {z1, . . . , zk} if k ≥ 1 and
the empty set if k = 0.

We mention some elementary properties:

1. d̃P (x, y) ≤ |P (x− y)|
1
n .

2. d̃P (x, y) = d̃P (y, x), for all x, y ∈ X.

3. d̃P (x, y) ≤ d̃P (x, z) + d̃P (z, y), for all x, y, z ∈ X.

4. d̃P (x + h, y + h) = d̃P (x, y), for all x, y, h ∈ X. (invariance under
translations)

5. d̃P (λx, λy) = |λ|d̃P (x, y), for all x, y ∈ X, for all λ ∈ IR.

All these properties follow easily from the definition of d̃P . For
instance, (1) is obtained considering the empty chain and (3) is due
to the fact that the infimum is taken over all k− chains. The next step
is to define dP (x) = d̃P (x, 0), for all x ∈ X.

Lemma 1.2. Given P ∈ P (nX), dP : X → IR≥0 is a continuous
seminorm on X.

Definition 1.3. (Garrido et al.) Let T be the topology defined on X
generated by the family of seminorms (dP )P when P varies over all n-
homogeneous continuous scalar-valued polynomials on X, and n varies
in IN.
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This topology T is convex and linear. Moreover, for any ϕ ∈ X ′ we
have dϕ(x) = |ϕ(x)|, so w ≤ T ≤ wp ≤ ‖.‖.
For spaces X like c0, the Tsirelson space T ∗ and C(K) for scattered
compact K, where every polynomial is w-continuous on bounded sets,
the topologies w and wp agree on bounded sets (see Pelczyński). There-
fore w = T = wp on bounded sets for these spaces. On the other hand,
for spaces X like `2, which admit a separating polynomial the other
equality, T = wp = ‖.‖, holds. Recall that a polynomial Q : X → IR
is said to be separating if there exists a constant C > 0 such that
|Q(x)| ≥ C, for all x ∈ X with ‖x‖ = 1. Moreover, if a Banach
space has a separating polynomial then it has an n-homogeneous sep-
arating polynomial P (see Fabián et al.). In this case there exists a
constant C > 0 such that |P (x)| ≥ C‖x‖n, for all x ∈ X and therefore
dp(x) ≥ C

1
n inf{‖x − z1‖ + ‖z1 − z2‖ + · · · + ‖zk‖} ≥ C

1
n ‖x‖. So,

C
1
n ‖x‖ ≤ dP (x) ≤ K‖x‖, and dP is an equivalent norm to the given

norm on X. Then, the equality follows.
We consider `p and Lp[0, 1] spaces, 1 ≤ p < ∞, as Banach lattices;

each one with the usual order and notion of orthogonality (see Lin-
denstrauss and Tzafriri). In Banach lattices the space of orthogonally
additive functions has a special interest.

Definition 1.4. Let X be a Banach lattice. A function f : X → IR
is said to be orthogonally additive if f(x + y) = f(x) + f(y) whenever
x ⊥ y, x, y ∈ X.

For a Banach lattice X, we consider the closed subspace of P (nX) of all
orthogonally additive polynomials on X, which we denote by Po(nX).

Example 1.5. (Sundaresan, 1991) Let X = `p, 1 ≤ p < ∞. For n ≥ p,
Po(nX) is isometrically isomorphic to `∞ under the map

P ↔ ξ = (aj = P (ej))j≥1.

Note that in this case the set
⋃

n≥p Po(nX) contains nonseparable sub-
spaces, and coincides with the set of all n-homogeneous diagonal poly-
nomials on `p, with n ≥ p.

Example 1.6. (Sundaresan) Let X = Lp[0, 1], 1 ≤ p < ∞, and let µ
be Lebesgue measure.

For 1 ≤ n < p, P ∈ Po(nX) ⇔ ∃! ξ ∈ L p
p−n

such that P (x) =∫ 1
0 ξxndµ.

For n = p, P ∈ Po(nX) ⇔ ∃! ξ ∈ L∞ such that P (x) =
∫ 1
0 ξxndµ.

For n > p, P ∈ Po(nX) ⇔ P ≡ 0.
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4 Silvia Lassalle and José G. Llavona

The map P ↔ ξ is an isomorphism between the spaces. In particular,
the set

⋃
n≤p Po(nX) contains a nonseparable subspace whenever p is a

natural number. Otherwise, it is a finite union of separable spaces.

We define a topology τ and the weak polynomial topology associated
to this set.

Definition 1.7. Let τ be the topology defined on X by the family of
seminorms (dP )P when P varies over Po(nX) and n varies in IN.

Definition 1.8. Let X be a Banach lattice. We say that a net (xα) ⊂
X converges to x ∈ X in the wpo-topology if and only if for all n ∈ IN,
for all P ∈ Po(nX), P (xα − x) → 0.

In this paper, our main problem concerns the characterization of the
τ -topology on bounded sets, and its relation with the wpo-topology,
for `p and Lp spaces. The set P−1(0) plays a fundamental role in the
estimates of seminorms d′P s as we will see in the following section.
Other people studied the set P−1(0), P homogeneous polynomial on
X, using a different approach. For instance, in (Aron et al., 1), (Aron
et al., 3) and Aron and Rueda the size of P−1(0) is considered.

2. τ on the spaces `p.

We give a characterization of those bounded nets (xα)α ⊂ `p verifying
that xα

τ→ x. For this purpose we want to describe dP when P is an
orthogonally additive polynomial on `p. It is clear that xα

τ→ x implies
xα

w→ x because of the equality |ϕ(a)| = dϕ(a). Taking into account
that dP (x) ≤ |P (x)|

1
n , those polynomials which are w-continuous on

bounded sets do not give different information about τ -convergence
from the elements of X ′. Indeed, suppose we know, for a bounded net,
that dϕ(xα − x) → 0 for all ϕ in X ′. Then,dP (xα − x) → 0 for all P
n-homogeneous polynomial w-continuous on bounded sets. This fact
allows us to pay attention only to orthogonally additive polynomials
which are not w-continuous on bounded sets. Since every polynomial
of degree less than p on `p is w-continuous on bounded sets (see Bonic
and Frampton or Llavona, Thm. 4.4.7 and Thm. 4.5.9), when it is op-
portune, we restrict our description of dP to the set of n-homogeneous
orthogonally additive polynomials with n ≥ p, in other words, the set
of n-homogeneous diagonal polynomials with n ≥ p.

Proposition 2.1. Let 1 ≤ p < ∞, n an odd integer, n ≥ p and P (x) =∑∞
j=1 ajx

n
j with (aj)j≥1 ∈ `∞. If P is not w-continuous on bounded sets

on `p, then dP (x) = 0 for all x ∈ `p.
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Table I.

Coord: 1 2 · · · k k + 1 · · · 2k − 1 2k 2k + 1 · · ·

zk
1 : 2k−1

2k
2k−3
2k

· · · 1
2k

− 1
2k

· · · − 2k−3
2k

− 2k−1
2k

0 . . .

zk
2 : 0 − 2k−2

2k
· · · − 2

2k
0 · · · 2k−4

2k
2k−2
2k

0 · · ·

Proof. Assume that every aj 6= 0. We first show that dP (e1) = 0 by
constructing a suitable 2− chain sequence, that allows us to estimate
that value.
For every fixed k ∈ IN , consider the vectors defined as in Table I.

With bj = a
− 1

n
j define the sequences z̃k

1 = (bj(zk
1 )j), z̃k

2 = (bj(zk
2 )j). In

order to estimate dP (b1e1) consider the 2 − chain sequence given by
wk = z̃k

1 + z̃k
2 and z̃k

2 .
Since dP (b1e1) ≤ |P (b1e1−wk)|

1
n + |P (wk− z̃k

2 )|
1
n + |P (z̃k

2 )|
1
n , wk− z̃k

2 =
z̃k
1 and the weights (bj)j were chosen in order to produce zeros of P ,

we only have to compute |P (b1e1−wk)|. A straightforward calculation
shows that its value is 2k

(2k)n . Therefore, dP (b1e1) ≤
n√

2k
2k , for any k ∈ IN

whence, dP (b1e1) = 0 and consequently dP (e1) = 0.
Now, the sequences can be placed to the j-th coordinate to show that
dP (ej) = 0 for all j ∈ IN. Since dP is a seminorm it follows that dP is 0
on every element of finite support. By continuity and density dP (x) = 0
for all x ∈ `p.
For any polynomial P not w-continuous on bounded sets we have that
n > 1 and there are infinitely many values of j such that aj 6= 0. If
P (x) =

∑∞
j=1 amjx

n
mj

, with amj 6= 0, a slight modification of the above
sequences gives the result; it is enough to place the non zero coordinates
at the mj

′s indices to obtain that dP (emj ) = 0 for all mj . For the other
j′s, P (ej) = 0 and so is dP (ej). Therefore, dP (ej) = 0 for all j ∈ IN
and the result follows. �

Remark 2.2. The hypothesis “P is not w-continuous on bounded sets
of `p” cannot be avoided in the previous proposition. Indeed, if P is
an n-homogeneous orthogonally additive polynomial on `p which is w-
continuous on bounded sets, n an odd integer n ≥ p, then dP 6≡ 0 for
many cases. For instance, any linear function ϕ produces the seminorm
|ϕ|. Also, consider any projection to one coordinate ϕ ∈ `′p, ϕ 6= 0.
The seminorm dP associated to the orthogonally additive polynomial
P = ϕn satisfies dP = dϕn = |ϕ| for any n.
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Proposition 2.6 will provide us with examples of n-homogeneous w-
continuous orthogonally additive polynomials P with infinitely many
coefficients different from zero associated to non zero seminorms, if n is
an even integer. However, the proof of Proposition 2.1 shows that this
situation is not possible when n is an odd integer, n > 1.

The following lemma shows the main role that zeros of polynomials
play in this topology and will allow us to determine dP for P ∈ P (nX)
a diagonal polynomial when n is an even integer.

Lemma 2.3. Let X be a real Banach space and P any n-homogeneous
polynomial on X. Then,

dP (x) = dP (x + z) for all z such that P (z) = 0, for all x ∈ X.

Proof. Whenever P (z) = 0, dP (z) = 0. Since dP is a seminorm, for any
x ∈ X we have that dP (x+z) ≤ dP (x) and dP (x) = dP ((x+z)+(−z)) ≤
dP (x + z) so, the equality holds. �

Lemma 2.4. Let X be a real Banach space and P an n-homogeneous
polynomial on X. If x ∈ span[P−1(0)], then dP (x) = 0. Therefore, if
span[P−1(0)] is dense in X, then dP ≡ 0 in X.

Proof. Fix x ∈ span[P−1(0)]. Given ε > 0 there exists w =
∑M

j=1 zj

such that P (zj) = 0, for all j = 1, . . . ,M, and ‖x − w‖ < ε. By
Lemma 2.3 it is enough to note that

dP (x) = dP (x− w) ≤ ‖P‖
1
n ‖x− w‖ < ‖P‖

1
n ε. �

Using this lemma we can obtain, in a simpler way, as we state in the
next remark, the result in Proposition 2.1. However, we believe that the
proof given above is more constructive and illustrates the ideas followed
in the proof of Theorem 3.2, (a). For a proof based on Lema 2.4 it is
enough to consider linear combinations of three consecutive elements

of the form a
− 1

n
j ej when aj 6= 0 to show that the canonical basis of `p,

(ej)j≥1, belongs to span[P−1(0)].

Remark 2.5. Let 1 ≤ p < ∞, n an odd integer, n ≥ p and P (x) =∑∞
j=1 ajx

n
j with (aj)j≥1 ∈ `∞. If P is not w-continuous on bounded

sets of `p, then span[P−1(0)] is dense in `p and therefore dP ≡ 0.

Now, we consider orthogonally additive polynomials of even degree.
Note that we not need to impose conditions on the continuity of the
polynomials.
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Proposition 2.6. Let 1 ≤ p < ∞, n an even integer, n ≥ p and
P (x) =

∑∞
j=1 ajx

n
j with (aj)j≥1 ∈ `∞.

(a) If the function sign(aj), aj 6= 0, is constant, then dp(x) = |P (x)|
1
n

for all x ∈ `p.

(b) If there exists a pair i 6= j such that ai, aj 6= 0 and sign (ai) 6=
sign(aj), then dp(x) = 0 for all x ∈ `p.

Proof. For the first case suppose that, for each j ∈ IN, sign(aj) =
1 or aj = 0. Define ‖x‖a = (

∑∞
j=1 ajx

n
j )

1
n = (

∑∞
j=1( n

√
ajxj)n)

1
n . By

Minkowski’s inequality we have, for all sum considered in the definition
of dP , that

|P (x− z1)|
1
n + |P (z1 − z2)|

1
n + · · ·+ |P (zk)|

1
n

= ‖x− z1‖a + ‖z1 − z2‖a + . . . + ‖zk‖a ≥ ‖x‖a,

So, dp(x) = |P (x)|
1
n .

For the second case, let ai and aj be any two elements of the sequence
with different signs. Without lost of generality suppose ai > 0, aj < 0.
Let x = 1

n
√

ai
ei, z = 1

n
√

ai
ei + 1

n
√
−aj

ej and w = 1
n
√

ai
ei − 1

n
√
−aj

ej . It is

clear that both, z and w, are zeros of P . By Lemma 2.3, 1
n
√

ai
dP (ei) =

dP (x) = dP (x + z + w) = 3 1
n
√

ai
dP (ei), so that dP (ei) = 0. On the

other hand, 1
n
√

ai
dP (ei) = dP (x) = dP (x − z) = 1

n
√
−aj

dP (ej) and so

dP (ej) = 0. Finally, for all those j′s such that aj = 0 we have that
P (ej) = 0 and so is dP (ej). Thus, dP (ej) = 0, for all j ∈ IN , which
concludes the proof. �

We have described dP for all diagonal n-homogeneous polynomials
P that are not w-continuous on bounded sets of `p. Now we are able
to characterize the τ -convergence of bounded nets in those spaces.

Theorem 2.7. Let X = `p, 1 ≤ p < ∞. Let k be the smallest integer
verifying p ≤ 2k. Then, for any bounded net (xα) and x ∈ X

xα
τ→ x if and only if

{
(i) xα

w→ x and
(ii) ‖xα − x‖2k → 0

Proof. Let (xα) be a bounded net such that xα
τ→ x, for some x in

X. Since every ϕ ∈ X ′ is an orthogonally additive polynomial and
|ϕ(a)| = dϕ(a) then, (i) holds. To verify the second condition note
that since p ≤ 2k, P (x) =

∑∞
j=1 x2k

j is a well defined 2k-homogeneous
orthogonally additive polynomial on `p, not w-continuous on bounded
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sets. By Proposition 2.6, ‖xα−x‖2k = |P (xα−x)|
1
2k = dP (xα−x) that

converges to zero by hypothesis.
Conversely, let P be an n-homogeneous orthogonally additive polyno-
mial on `p. Assume that (xα) is weakly convergent to x.
If n < p then P is w-continuous on bounded sets and dP (xα − x) → 0.
If n ≥ p then P (x) =

∑∞
j=1 ajx

n
j , with (aj) ∈ `∞. If n is odd, by

Proposition 2.1, P is w-continuous on bounded sets or dP ≡ 0 so,
dP (xα − x) → 0. On the other hand, if n is even, by Proposition 2.6,
dP ≡ 0 or dP (x) = |P (x)|

1
n for all x ∈ `p. For the last situation, take

A > 0 a constant such that |aj |
1
n ≤ A, for all j ∈ IN. Thus for any

y ∈ `p since p ≤ 2k ≤ n we have that

dP (y) ≤ |P (y)|
1
n = |

∞∑
j=1

ajy
n
j |

1
n ≤ A‖y‖n ≤ A‖y‖2k. (1)

This inequality allows us to conclude the proof. �

Corollary 2.8. Let X = `p, p = 1 or p ∈ (2k−1, 2k] for some k ∈ IN.
Then, for any bounded net (xα) and x ∈ X

xα
τ→ x if and only if xα

wpo→ x.

Proof. Let x be in X and let (xα) be a bounded net. Assume that
xα

τ→ x. To prove that xα
wpo→ x we have to show that P (xα − x) →

0 for any n-homogeneous orthogonally additive polynomial P . As in
Theorem 2.7, the case n < p is due to w-continuity. Let n ≥ p and
P (x) =

∑∞
j=1 ajx

n
j , with (aj) ∈ `∞. Choose, as before, A > 0 such that

|aj |
1
n ≤ A for all j ∈ IN. If p 6= 1, then n ≥ p, n ≥ 2k ≥ p. This k is the

smallest integer such that p ≤ 2k. The inequality |P (y)|
1
n ≤ A‖y‖2k

and Theorem 2.7 give |P (xα − x)| → 0.
If p = 1 and n = 1, then P is a linear form and so P (xα−x) → 0 since
xα

w→ x. If n ≥ 2, the result follows from the inequality |P (y)|
1
n ≤

A‖y‖2 and Theorem 2.7.
The converse is due to the property dp(x) ≤ |P (x)|

1
n . �

Remark 2.9. Let X = `p, with p = 2k +1 for some k ∈ IN. Then, the
wpo-topology is strictly stronger than the τ -topology.

Proof. Consider P (x) =
∑∞

j=1 xp
j , which is a well defined p-homogeneous

orthogonally additive polynomial on `p. Let (xm)m∈IN be the sequence
xm = 1

me1 + 1
me2 + . . . + 1

memp . Thus, ‖xm‖2k+2 = ( 1
m)

1
2k+2 → 0, if
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Weak-polynomial convergence on spaces `p and Lp 9

m → ∞, with 2k + 2 the smallest even integer greater than p. Since
(xm) ⊆ `p is a sequence with finite support and ‖xm‖p = |P (xm)| =
1, then it is weakly convergent to zero. So, by Theorem 2.7 (xm) is
convergent to zero in the τ -topology but not in the wpo-topology. �

3. τ on the spaces Lp.

In this section we investigate the topology τ on Lp spaces. We will use
the representation of the space of orthogonally additive polynomials on
Lp described in Example 1.6 to show the main result, Theorem 3.2. As
a corollary a characterization of the τ convergence on Lp is given.

Before going on, note that next result is obtained as an immediate
consequence of Example 1.6.

Remark 3.1. The τ -topology and the w-topology are the same on
X = Lp[0, 1], 1 ≤ p < 2.

Theorem 3.2. Let X = Lp[0, 1], 1 ≤ p < ∞. For any n-homogeneous
orthogonally additive polynomial on X (i.e. P (x) =

∫ 1
0 ξxndµ, n ≤ p)

we have:

(a) If n is an odd integer and 1 < n then, dP ≡ 0 on Lp[0, 1].

(b) If n is an even integer then, when ξ ≥ 0 a.e. or ξ ≤ 0 a.e., dP (x) =
|P (x)|

1
n for all x ∈ Lp[0, 1]. Otherwise dP ≡ 0 on Lp[0, 1].

Proof. By Sundaresan, Example 1.6, ξ ∈ L p
p−n

if n < p, ξ ∈ L∞ if
n = p. In order to prove (a) the proof is split in two parts.

Step 1: ξ > 0. We will prove that dP (1) = 0 and then show how the
same argument can be applied to any function χ[a,b] with 0 ≤ a < b ≤ 1.
Since the span of the set of characteristic functions is dense in Lp[0, 1],
the result follows by density.
First note that ξ ∈ Lr[0, 1] and ξ > 0 with r = p

p−n or r = ∞, if p = n.

Then, ξ ∈ L1[0, 1] and
∫ β
α ξdµ > 0 for any 0 ≤ α < β ≤ 1.

Let (tn)n∈IN be a strictly decreasing sequence of numbers in (0, 1) such
that tn → 0. Let us call Tm(1) =

∫ 1
tm

ξdµ, Tm(2) =
∫ tm
0 ξdµ. Thus,

Tm(1) → P (1) and Tm(2) → 0. For each m ∈ IN define

hm =


1
2 on (tm, 1]

−1
2

n

√
Tm(1)
Tm(2) on [0, tm]
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Table II.

[0,1]: I2k I2k−1 · · · Ik+1 Ik · · · I2 I1

hm
1 : − 2k−1

2k
w2k − 2k−3

2k
w2k−1 · · · − 1

2k
wk+1

1
2k

wk · · · 2k−3
2k

w2
2k−1
2k

hm
2 : 2k−2

2k
w2k

2k−4
2k

w2k−1 · · · 0 − 2
2k

wk · · · − 2k−2
2k

w2 0

so that P (hm) = 0. Since P (1 − hm) = (1
2)nTm(1) + ( n

√
Tm(2) +

1
2

n
√

Tm(1) )n and dP (1) ≤ |P (1 − hm)|
1
n for all m ∈ IN we obtain,

taking the limit on m, that dP (1) ≤
n√2
2 |P (1)|

1
n .

Now, for each fixed k ∈ IN, consider the partition of [0, 1] given by
Π2k = {0, tm+2k−2, . . . , tm+1, tm, 1}. We proceed as we did before.
Call Tm(1) =

∫ 1
tm

ξdµ, Tm(2) =
∫ tm
tm+1

ξdµ, . . . , Tm(2k) =
∫ tm+2k−2

0 ξdµ,

so Tm(1) → P (1) and Tm(j) → 0, for all 2 ≤ j ≤ 2k, for every fixed k,
when m goes to infinity.
Now, let (Ij)j be the ordered sequence of intervals defined by the par-

tition Π2k related to Tm(j), with I1 = [tm, 1] and let wj = n

√
Tm(1)
Tm(j)

for every j ≥ 2. Define the step functions (hm
1 )m∈IN and (hm

2 )m∈IN

following Table II. As in Proposition 2.1, the weights (wj)j were cho-
sen so that P (hm

1 ) = P (hm
2 ) = 0. If hm = hm

1 + hm
1 we have that

hm = 2k−1
2k χI1 +

∑2k
j=2(− 1

2k )wjχIj and

P (1− hm) = ( 1
2k )nTm(1) +

∑2k
j=2 (1 + 1

2kwj)n Tm(j)

= ( 1
2k )nTm(1) +

∑2k
j=2 ( n

√
Tm(j) + 1

2k
n
√

Tm(1))n

for all m ∈ IN and k fixed. Since dP (1) ≤ |P (1− hm)|
1
n for all m ∈ IN ,

letting m go to infinity, we have that dP (1) ≤
n
√

2k

2k
|P (1)|

1
n for all

k ∈ IN whence, dP (1) = 0.

To show that dP (χ[a,b]) = 0 it is enough to consider a suitable sequence
(tm) ⊂ (a, b) and repeat the construction for the new partition. In this

situation the estimate obtained is dP (χ[a,b]) ≤
n
√

2k

2k
|P (χ[a,b])|

1
n , for all

k ∈ IN.

Step 2: ξ 6≡ 0 arbitrary. We want to show that dP (χ[a,b]) = 0 for all
subintervals [a, b] of [0, 1].
In Step 1 we only use that ξ > 0 a.e. to assure that Tm(j) 6= 0 for
all 2 ≤ j ≤ 2k, which makes possible the construction of the functions
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hm
1 , hm

2 . To proceed in the same way we have to prove that there exists
a sequence (tm) satisfying that condition. Observe that we also need
(tm) converging to the left endpoint of the interval. In order to do this
recall the following lemma.

Lemma 3.3. (Royden) (Lemma 8, page 105.) For any ξ ∈ L1[a, b]
consider γ(t) =

∫ t
a ξ(s)dµ(s), t ∈ [a, b]. If γ(t) = 0 for all t, then ξ ≡ 0

almost everywhere on [a, b].

Let h = χ[a,b] and α = sup{δ ≥ a / ξ|[a,δ] ≡ 0 a.e.}. If α > a, dP (h) =
dP (χ[α,b]) so, we would have to estimate this last value where there
exists a t0 > α such that ξ|[α,t0] 6= 0. To simplify notation assume that
α = a = 0. Then, ξ|[0,t0] 6= 0.

Put γ(t) =
∫ t
0 ξ(s)dµ(s), t ∈ [0, t0]. By Lemma 3.3 there exists t1 ≤ t0

such that γ(t1) 6= 0 and ξ|[0,t] 6= 0 for all t ∈ (0, t1).
To choose the next element of the sequence put I1 = [0, t1

2 ]. There exists
w ∈ I1 with γ(w) 6= 0. Note that γ is a continuous function defined on
I1, connected set, γ(0) = 0 and γ(w) 6= 0. Since γ is not a step function
there exists t2 ∈ I1 such that γ(t2) 6= 0 and γ(t2) 6=

∫ t1
0 ξ(s)dµ(s).

Then, γ(t2) 6= 0 and
∫ t1
t2

ξ(s)dµ(s) 6= 0.

Put I2 = [0, t2
2 ]. Then, t2 and I2 satisfy the same conditions as t1

and I1. Now, it is possible to find t3 ∈ I2 satisfying γ(t3) 6= 0 and∫ t2
t3

ξ(s)dµ(s) 6= 0.

An inductive procedure provides a sequence (tm) such that 0 < tm+1 ≤
tm
2 , with γ(tm+1) 6= 0 and

∫ tm
tm+1

ξ(s)dµ(s) 6= 0. Clearly tm → 0, and
has the desired properties.

To prove the statement (b) we consider, for a function ξ 6≡ 0, the
natural decomposition ξ = ξ+ − ξ− and call A+ = supp ξ+, A− =
supp ξ−, A0 = [0, 1]− (A+ ∪A−).

1st Case: µ(A+) = 0 or µ(A−) = 0. In this case we show that dP (x) =
|P (x)|

1
n . Assume, without lost of generality, that µ(A−) = 0. Then,

µ(A+) 6= 0 provided that ξ 6≡ 0.
Since P (x) =

∫
A+ ξ+xndµ, considering the function n

√
ξ+ we define, as

in Proposition 2.6, ‖x‖ξ = (
∫
A+( n

√
ξ+x)ndµ)

1
n = |P (x)|

1
n . By Minkowski’s

inequality we have that

|P (x− z1)|
1
n + |P (z1 − z2)|

1
n + · · ·+ |P (zk)|

1
n

= ‖x− z1‖ξ + ‖z1 − z2‖ξ + . . . + ‖zk‖ξ ≥ ‖x‖ξ.

Thus, |P (x)|
1
n = ‖x‖ξ ≤ dP (x) ≤ |P (x)|

1
n .

2nd Case: µ(A+) > 0 and µ(A−) > 0. We will show that dP ≡ 0. Again,
it is enough to show that dP (h) = 0 for any h = χ[a,b].
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12 Silvia Lassalle and José G. Llavona

Put p1 = µ(A+ ∩ [a, b]) and p2 = µ(A− ∩ [a, b]).
If p1 = p2 = 0, then supp h ⊆ A0, P (h) = 0 and so is dP (h).
If p1 > 0 and p2 = 0, then

∫ b
a ξ+dµ > 0. Since

∫
A− ξ−dµ > 0 there

exists a constant δ > 0 such that
∫ b
a ξ+dµ = δ

∫
A− ξ−dµ > 0.

Let us consider g1 = h + n
√

δχA− . P is orthogonally additive and g1 is
a sum of two support disjoint functions. Then,

P (g1) = P (h) + δP (χA−) =
∫

A+
ξ+h dµ− δ

∫
A−

ξ−dµ = 0.

Analogously, g2 = h − n
√

δχA− is a zero of P. By Lemma 2.3 dP (h) =
dP (h + g1 + g2) = 3dP (h) so dP (h) = 0.

If p2 > 0 and p1 = 0 we proceed as above. Now it is left to prove the re-
sult for p1 > 0 and p2 > 0. There exists a constant δ > 0 such

∫ b
a ξ+dµ =

δ
∫ b
a ξ−dµ. Proceeding as before but considering g1 = hχA+ + n

√
δhχA−

and g2 = hχA+− n
√

δhχA− we obtain that dP (h χA+) = dP (h χA−) = 0.
Write h = h χA++h χA−+h χA0 . Since dP (h χA0) = 0 and dP is a semi-
norm we have that dP (h) ≤ dP (h χA+) + dP (h χA−) + dP (h χA0) = 0.
This ends the proof of the theorem. �

The next corollary, whose proof follows easily from the above, is a
first attempt to give a characterization for the topology τ on bounded
sets of spaces Lp[0, 1].

Corollary 3.4. Let X = Lp[0, 1], 1 ≤ p < ∞. Then, for any bounded
net (xα) and x ∈ X

xα
τ→ x if and only if


(i) xα

w→ x and

(ii)
∫ 1

0
ξ(xα − x)ndµ → 0, for all ξ ≥ 0, ξ ∈ L p

p−n

(ξ ∈ L∞ if n = p.) and
for all even integers n ≤ p.

Theorem 3.5. Let X = Lp[0, 1], 1 ≤ p < ∞. Let k be the largest
integer verifying 2k ≤ p. Then, for any bounded net (xα) and x ∈ X

xα
τ→ x if and only if

{
(i) xα

w→ x and
(ii) ‖xα − x‖2k → 0

Proof. Since every ϕ ∈ X ′ is an orthogonally additive polynomial, then
(i) holds. For the second condition, since 2k ≤ p then, P (x) =

∫ 1
0 x2kdµ

is a well defined 2k-homogeneous orthogonally additive polynomial on
Lp. By Theorem 3.2, ‖xα − x‖2k = |P (xα − x)|

1
2k = dP (xα − x) which

converges to zero by hypothesis.
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To prove the converse we apply Corollary 3.4. So, it is enough to verify
condition (ii) for every ξ continuous function, ξ ≥ 0. Since n ≤ p, n
even integer, then n ≤ 2k and there exists A > 0 such that ‖ξ‖∞ ≤ A.
Now, an inequality similar to (1) is obtained and the result follows. �

Corollary 3.6. Let Lp[0, 1], 1 ≤ p < 2 or p ∈ [2k, 2k + 1) for some
k ∈ IN. Then, for any bounded net (xα) and x ∈ X

xα
τ→ x if and only if xα

wpo→ x.

Proof. Note that, by Theorem 3.2, for any orthogonally additive poly-
nomial of odd degree dp ≡ 0 and the same happens to any one of even
degree when the polynomial is given by a function ξ with non constant
sign. Now, the argument follows as in the above corollary. �

Remark 3.7. Let X = Lp[0, 1], with p = 2k + 1 for some k ∈ IN.
Then, the wpo-topology is strictly stronger than the τ -topology.

Proof. Let (xm)m∈IN be the sequence xm = 2k+1
√

m χ[0, 1
m

], that verifies

‖xm‖2k+1 = 1 and ‖xm‖2k = ( 1
m2k+1 )

1
2k → 0, if m → ∞, with 2k the

largest even integer smaller than p. Also, for any continuous function ξ
on [0, 1],

∫ 1
0 ξ xmdµ → 0, with m, so, xm

w→ 0. Then, by Theorem 3.5,
xm

τ→ 0.
Now, consider the orthogonally additive polynomial on Lp, P (x) =∫ 1
0 x2k+1dµ. Then, xm

wpo

6→= 0 since |P (xm)| = 1.�

Corollary 3.8. Let X = Lp[0, 1], 1 ≤ p < ∞. Then, for any net (xα)
and x ∈ X

(a) If 1 ≤ p < 3, then xα
τ→ x if and only if xα

wpo→ x.

(b) If p ≥ 3 and (xα), x are uniformly bounded, then

xα
τ→ x if and only if xα

wpo→ x.

Proof. It is clear that we only have to show the only if implication since
dP (x) ≤ |P (x)|

1
n gives the other one.

To prove statement (a) note that if 1 ≤ p < 3, an orthogonally additive
polynomial P is a linear form or P (x) =

∫ 1
0 ξx2dµ, with ξ ∈ L p

p−2
. For

the latest, consider the application given by Q(x) =
∫ 1
0 |ξ|x2dµ. Then,

Q is a well defined orthogonally additive polynomial of second degree
satisfying, by (b) of Theorem 3.2, that |P (xα−x)| ≤

∫ 1
0 |ξ|(xα−x)2dµ =

d2
Q(xα − x).
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14 Silvia Lassalle and José G. Llavona

For statement (b), let P (x) =
∫ 1
0 ξxndµ, with ξ ∈ L p

p−n
, or ξ ∈ L∞ if

p = n. Consider 2 ≤ n ≤ p since n = 1 gives linear forms. Whence, the
result follows.
When n is an even integer, the result follows by Corollary 3.4 since
|ξ| ≥ 0 and |P (xα − x)| ≤

∫ 1
0 |ξ|(xα − x)ndµ. When n is odd (n− 1) is

even and n− 1 ≥ 2. Suppose ‖xα‖∞, ‖x‖∞ ≤ A for some A > 0. Then,
|P (xα−x)| ≤

∫ 1
0 |ξ|(xα−x)n−1|xα−x|dµ ≤ 2A

∫ 1
0 |ξ|(xα−x)n−1dµ and

Corollary 3.4 implies |P (xα − x)| → 0, which completes the proof. �
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