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Abstract

We show that the centraliser of the space of n-fold symmetric injec-
tive tensors, n ≥ 2, on a real Banach space is trivial. With a geometric
condition on the set of extreme points of its dual, the space of integral
polynomials we obtain the same result for complex Banach spaces. We
give some applications of this results to centralisers of spaces of homoge-
neous polynomials and complex Banach spaces. In addition, we derive a
Banach-Stone Theorem for spaces of vector-valued approximable polyno-
mials.

1 Introduction

The notion of an M-ideal arose out of attempts to generalise the concept of a two-
sided ideal from a C∗-algebra to a general Banach space setting. In the second
part of their classical paper of 1971 Alfsen and Effros [1] further investigated
the analogy by introducing the structure topology on the set of extreme points
of the unit ball of E′ as a generalisation of Jacobson’s hull-kernel topology. It
was in this context that they introduced the centraliser of a Banach space as
the generalisation, to a Banach space setting, of the concept of the centre of
a unital Banach algebra. However, Alfsen’s and Effros’s papers only consider
real Banach spaces. To work with complex Banach spaces it was necessary to
redefine the notation of centraliser, calling what is understood as the centraliser
in the real case the multiplier algebra. This was first done by Behrends in [3].

This appears an opportune moment to introduce these concepts.

Definition 1 Let E be a Banach space and T : E → E be a continuous linear
operator. Then T is a multiplier if every extreme point of the unit ball of E′ is
an eigenvalue of T ′. That is

T ′(e) = aT (e)e
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for every extreme point e of the unit ball of E′. We let Mult(E) denote the set
of all multipliers on E.

Definition 2 Let E be a Banach space. The centraliser of E, Z(E), is the set
of all T ∈ Mult(E) for which there is S in Mult(E) with S′(e) = aT (e)e for all
extreme points e of the unit ball of E′.

In the above definition aT (e) denotes the complex conjugate of aT (e).
The centraliser of any Banach space is a unital C∗-algebra. When E is a

real Banach space the centraliser of E coincides with the multiplier algebra of
E.

We say that Z(E) is trivial if Z(E) = K.Id, (K = R or C depending on
whether E is a real or complex Banach space).

Let E and F be Banach spaces and u be an element of the tensor product
E

⊗
F . We define the injective norm of u as

‖u‖ε = sup

{∣∣∣∣∣
k∑

i=1

φ(xi)ψ(yi)

∣∣∣∣∣ : u =
k∑

i=1

xi ⊗ yi : φ ∈ BE′ , ψ ∈ BF ′

}
.

We shall use E
⊗

εF to denote E
⊗

F endowed with the injective norm and
E

⊗̂
εF to denote the completion of E

⊗
εF with respect the norm.

Given a Banach space E we can form the space
⊗

n E of all n-fold tensors
in E. We consider the subspace,

⊗
n,sE, of

⊗
nE consisting of all tensors of

the form
∑k

i=1 λixi⊗ xi⊗ . . .⊗ xi, where λi = ±1. Such n-fold tensors are said
to be symmetric. Given an n-fold symmetric tensor

∑k
i=1 λixi ⊗ xi ⊗ . . . ⊗ xi

on E we define its injective norm as

sup
φ∈BE′

∣∣∣∣∣
k∑

i=1

λiφ(xi)n

∣∣∣∣∣ .

This may also be regarded as the norm inherited from P(nE′), the space of all
n-homogeneous polynomials on E′. We denote the completion of

⊗
n,sE with

respect to this norm by
⊗̂

n,s,εE.
In [24] Wickstead shows that the centraliser of the completed injective tensor

product of the Banach spaces E and F is the completion of Z(E)
⊗

Z(F ) with
respect to the strong operator topology. If E and F are dual spaces then we
have that Z(E

⊗̂
εF ) = Z(E)

⊗̂
εZ(F ).

In [23] Wend Werner gives an alternative description of Z(E
⊗̂

εF ) as a
space of continuous bounded functions using the set of extreme points of the
unit balls of E′ and F ′. To be more specific, given a Banach space E define

ZE by ZE = ExtR(BE′)
w∗ \ {0}. Endow ZE with the weak∗-topology. For

each multiplier T on E the function aT extends, by weak∗-continuity, to ZE ,
see [14, Lemma 3.2]. An equivalence relation ∼= is defined on ZE by p ∼= q if
aT (p) = aT (q) for all T in Z(E). The space ΘE is defined as ZE/ ∼=. Given
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Hausdorff topological spaces R and S let R× kS denote the product of R and S
endowed with the finest topology which coincides with the product topology on
compact sets. Werner [23] shows that the centraliser of E

⊗̂
εF can be identified

with Cb(ΘE ×k ΘF ), the space of continuous bounded functions on ΘE ×k ΘF .
In this paper we will show that the situation for symmetric injective tensor

products is very different. For further information on centralisers we refer the
reader to [1], [3] and [14].

2 Centraliser of symmetric tensor products of
real Banach spaces

An extreme point of the (closed) unit ball of E, BE , is a point x with the
property that whenever x = λy + (1− λ)z for y, z in BE and 0 < λ < 1, then,
x = y = z. We shall use ExtR(E) to denote the set of extreme points of BE .

We recall some notation and definitions for the theory of homogeneous poly-
nomials on Banach spaces.

Let E and F be Banach spaces. A function P : E → F is said to be a
(continuous) n-homogeneous polynomial if there is a (continuous) n-linear map
LP : E × . . .× E︸ ︷︷ ︸

n−times

→ F such that P (x) = LP (x, . . . , x) for all x ∈ E. Contin-

uous n-homogeneous polynomials are bounded on the unit ball. We denote by
P(nE; F ) the Banach space of all continuous n-homogeneous polynomials from
E into F endowed with the norm ‖P‖ := sup‖x‖≤1 ‖P (x)‖F .

An n-homogeneous polynomial P ∈ P(nE; F ) is said to be of finite type
if there are {φj}k

j=1 in E′ and {yj}k
j=1 in F such that P (x) =

∑k
j=1 φj(x)nyj

for all x in E. Polynomials in the closure of the finite type n-homogeneous
polynomials in P(nE;F ) are called the approximable polynomials. We use
Pf (nE; F ) to denote the space of finite type n-homogeneous polynomials and
PA(nE;F ) to denote the space of all n-homogeneous approximable polynomials.
When F is R or C we omit F and write P(nE) or PA(nE), for example. We
refer to [10] for further information on polynomials on Banach spaces.

A scalar-valued polynomial P on E is said to be integral if there is a regular
Borel measure µ on (BE′ , σ(E′, E)) such that

P (x) =
∫

BE′
φ(x)n dµ(φ) (1)

for every x in E. We write PI(nE) for the space of all n-homogeneous integral
polynomials on E. We define the integral norm of an integral polynomial P ,
‖P‖I , as the infimum of ‖µ‖ taken over all regular Borel measures which satisfy
(1). It is shown in [11] that the dual of

⊗̂
n,s,εE is isometrically isomorphic to

(PI(nE), ‖ . ‖I).
Let E be a real or complex Banach space and n be a positive integer. It is

shown in [6, Proposition 1] that the set of (real) extreme points of the unit ball
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of PI(nE) is contained in {±ϕn : ϕ ∈ X ′, ‖ϕ‖ = 1}. Hence, given a Banach
space E and a positive integer n we use En(E′) to denote the set

{ϕ ∈ E′ : ϕn is an extreme point of BPI(nE)}.

Theorem 3 Let E be a real Banach space and n be a positive integer which is
greater than or equal to 2. Then Z(

⊗̂
n,s,εE) is trivial.

Proof: First, we assume that the dimension of E is at least 3. Let us suppose
that T :

⊗̂
n,s,εE → ⊗̂

n,s,εE is a multiplier. We assume that T is not identically
zero. Then we can find a : En(E′) → R such that

T ′(ϕn) = a(ϕ)ϕn

for all ϕ ∈ En(E′).
The function a can be continuously extended to E′ \ {0} as follows:
If T ′(ϕn) = 0 set a(ϕ) = 0.
Now suppose that ‖ϕ‖ = 1 and T ′(ϕn) 6= 0. By the Bishop-Phelps Theorem

and [6, Proposition 5] we can find a sequence (ϕk)k in En(E′) with ‖ϕk‖ = 1 so
that ϕk → ϕ. By continuity of T ′ we can assume that a(ϕk) 6= 0.

Since T ′(ϕn
k ) converges to T ′(ϕn) we have that

‖T ′(ϕn
k )‖ = |a(ϕk)|‖ϕn

k‖ = |a(ϕk)|

converges to ‖T ′(ϕn)‖. Thus the limit of |a(ϕk)| exists and is equal to ‖T ′(ϕn)‖.
Since |a(ψ)| is bounded by ‖T‖, the sequence (a(ϕk))k is Cauchy. It follows that
limk→∞ a(ϕk) = ±‖T ′(ϕn)‖. Therefore, as limk→∞ a(ϕk) 6= 0, we may assume
that the sign of each term in the sequence (a(ϕk))k is constant. Suppose that
a(ϕk) > 0 for all k. If (ψk)k is any other sequence in En(E′) which converges
to ϕ then we can assume that the sign of each a(ψk) must also be positive. In
this case we define a(ϕ) to be ‖T ′(ϕn)‖. Otherwise, a(ϕ) will be −‖T ′(ϕn)‖.

Let us show that a is continuous at ϕ. To see this we consider the case when
a(ϕ) > 0. We claim there is δ > 0 so that a(ψ) > 0 for ‖ϕ− ψ‖ < δ. If not, we
can find a sequence (ψk)k in En(E′) such that limk→∞ ψk = ϕ and a(ψk) < 0.
By the above this is impossible and therefore a(ψ) = ‖T ′(ψn)‖ for ψ sufficiently
close to ϕ. Hence a is continuous at ϕ. An analogous proof shows that a is
continuous at ϕ when a(ϕ) < 0 or a(ϕ) = 0.

By homogeneity we have that

T ′(ϕn) = a(ϕ/‖ϕ‖)ϕn

for all ϕ ∈ E′\{0} and therefore by defining a(ϕ) to be a(ϕ/‖ϕ‖) for ϕ ∈ E′\{0}
we get a continuous function a : E′ \ {0} → R such that

T ′(ϕn) = a(ϕ)ϕn

for all ϕ ∈ E′ \ {0}. Thus T ′(ϕn) = a(ϕ)ϕn for all ϕ in E′ with ‖ϕ‖ = 1.

4



In order to show that a is constant on E′ \ {0} we consider (T ′)2. Then

(T ′)2(ϕn) = a(ϕ)2ϕn

for all ϕ ∈ E′ \ {0}.
Letting b(ϕ) = (a(ϕ)2)1/n (we take the positive nth real root) we get that

(T ′)2(ϕn) = (b(ϕ)ϕ)n

for all ϕ in E′ \ {0}. Fix ξ, ψ in the unit sphere of E′ for which ξn and ψn

are linearly independent and for which a(ξ) 6= 0 and a(ψ) 6= 0. This is always
possible since a is continuous and for ψ sufficiently close to ξ we have that ξn

and ψn are linearly independent. Consider η in E′ so that ξ, ψ and η are linearly
independent. Let V denote the subspace of E′ spanned by ξ, ψ and η. By [22,
Exercise 10.5.5] there is a continuous linear mapping r : V → V such that

(T ′)2(ϕn) = (r(ϕ))n

for all ϕ ∈ V . (We need ψ to avoid the degenerate rank 1 case.) By multipli-
cation by −1 if necessary we may assume that r(ξ) = b(ξ)ξ. Taking nth roots
we see that r(η) = ±b(η)η. Suppose that r(η) = −b(η)η. Now suppose that
r(ξ+η) = b(ξ+η)(ξ+η). (A similar argument works if r(ξ+η) = −b(ξ+η)(ξ+η)).
By linearity of r we have that

b(ξ + η)(ξ + η) = b(ξ)ξ − b(η)η.

This gives us that

(b(ξ + η)− b(ξ))ξ = −(b(η) + b(ξ + η))η.

As ξ and η are linearly independent we get that

b(ξ) = b(ξ + η) = −b(η)

which is impossible as b(ξ) is non-zero and b(η) is nonnegative. Therefore we
have that r(ϕ) = b(ϕ)ϕ for all ϕ ∈ V . As r is linear we get

b(ξ + η)(ξ + η) = b(ξ)ξ + b(η)η.

This gives us that

(b(ξ + η)− b(ξ))ξ = (b(η)− b(ξ + η))η.

As ξ and η are linearly independent we get that

b(ξ) = b(ξ + η) = b(η)

and b is constant on V . As the only constraint on η is that ξ, ψ and η are linearly
independent b must be constant on E. Let U = {ϕ ∈ E′ \ {0} : a(ϕ) =

√
b} and

V = {ϕ ∈ E′ \{0} : a(ϕ) = −
√

b}. As U ∪V = E′ \{0}, U ∩V = ∅ and U and V
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are both closed it follows that either U or V is empty and therefore a is constant.
Thus T ′(ϕn) = aϕn for ϕ ∈ E′. We now claim that T = aIcN

n,s,εE
. Suppose

that this is not true. As elements of the form xn, x ∈ E, span a dense subspace
of

⊗̂
n,s,εE we can assume that there is x in E so that T (xn) = θ 6= axn. Choose

ϕ ∈ E′ so that 〈θ, ϕn〉 6= aϕ(x)n. Then we have

〈T (xn), ϕn〉 6= 〈axn, ϕn〉
or

〈xn, T ′(ϕn)〉 6= 〈xn, aϕn〉.
This contradicts the fact that T ′(ϕn) = aϕn for all ϕ ∈ E′ and therefore T =
aIdcN

n,s,εE
as claimed. Hence, it follows that

⊗̂
n,s,εE has trivial centraliser.

When the dim E = 2 the above argument can be easily adapted to get the
desired result. ¥

Since
⊗̂

n,s,εE
′ is isometrically isomorphic to PA(nE) (see [10]) we obtain:

Corollary 4 Let E be a real Banach space and n be a positive integer which is
at least 2. Then Z(PA(nE)) is trivial.

In [5] we studied the (surjective) isometries of spaces of scalar-valued homo-
geneous polynomials. We showed that if E and F are real Banach spaces, n is a
positive integer and T is an isometric isomorphism from PA(nE) onto PA(nF )
then there is an isometric isomorphism s : E′ → F ′ such that T (P ) = ±P ◦s′◦JF

for all P ∈ PA(nE). Here JF is the canonical embedding of F into F ′′ and P
is the Aron-Berner extension of P from E to E′′ (see [2]). Using [19], it follows
that PA(nE) is isometrically isomorphic to PA(nF ) if and only if E′ is isomet-
rically isomorphic to F ′. This characterisation of the isometries of spaces of
approximable polynomials extends to complex Banach space with an additional
geometric assumption. Our work to date on the centraliser of the space of sym-
metric injective tensor products allows us to extend the results in Section 3 of [5]
to the vector-valued case. We will use the fact that given Banach spaces E and
F every P in P(nE;F ) has a norm-preserving extension to P in P(nE′′; F ′′),
see [2].

Theorem 5 Let E be a real Banach space such that E′ has the approximation
property, n be a positive integer which is greater than or equal to 2 and F be
a smooth reflexive real Banach space. Let T : PA(nE;F ) → PA(nE;F ) be an
isometry. Then there are isometries s : E′ → E′ and S : F → F such that

T (P ) = S(P ◦ s′ ◦ JE)

for all P ∈ PA(nE; F ).

Proof: We assume that the dimension of F is at least 2. First we note that from
the remark following [4, Theorem 4] we get that PA(nE) has the approximation
property and therefore

PA(nE; F ) = PA(nE)
⊗̂

εF
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holds isometrically.
It follows from Corollary 4 and the observation following [16, Theorem 3]

that T has one of the two following forms

(a) There is a Banach space Z so that PA(nE) is isometrically isomorphic to
Z

⊗̂
εF and

T (z ⊗ h⊗ k) = z ⊗ k ⊗ h

for all z ∈ Z and h, k ∈ F .

(b) There are isometries T1 of PA(nE) and S of F such that

T (P ⊗ y) = T1(P )⊗ S(y)

for all P ∈ PA(nE) and y ∈ F .

Suppose (a) occurs. We know from [21, Theorem 1.1] that

ExtR(PI(nE′)) = ExtR(Z ′)
⊗

SF ′ .

Fix z′ ∈ ExtR(Z ′) and consider the set {z′ ⊗ y′ : y′ ∈ F ′, ‖y′‖ = 1}. Then, by
[6, Proposition 1] there is a subset U of the unit sphere of E′′ such that {z′⊗y′ :
y′ ∈ F ′, ‖y′‖ = 1} can be identified with the set {±xn : x ∈ U}. Thus the set of
all scalar multiples of {±xn : x ∈ U} is isomorphic to z′ ⊗ F ′. This means that
the set z′ ⊗ F ′ cannot be a vector space unless U is a singleton in which case
the dimensions of both sides differ. Therefore we have a contradiction. The first
possibility is ruled out and hence T must have the form given in (b). From [5,
Theorem 7] it follows that each isometry T1 of PA(nE) has the form

T1(P ) = ±P ◦ s′ ◦ JE

for some isometric isomorphism s of E′ and the result follows. ¥

We conclude this section by showing how some of the properties of
⊗̂

n,s,εE
are determined by its centraliser.

Definition 6 A Banach space E has the strong Banach-Stone property if given
locally compact Hausdorff spaces K and L and an isometric isomorphism T of
Co(K; E) onto Co(L; E) there is a homeomorphism φ : L → K and a continuous
function h from L into the isometries of E endowed with the strong operator
topology such that

(T (f))(x) = h(x)f(φ(x))

for all f ∈ Co(K, E) and all x ∈ L.

We have:

Proposition 7 Let E be a real Banach space and n be a positive integer which
is at least 2. Then PA(nE) and

⊗̂
n,s,εE have the strong Banach-Stone property.
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Proof: Since both
⊗̂

n,s,εE and PA(nE) has trivial centraliser it follows from
[3, Theorem 8.11] that both satisfy the strong Banach-Stone property. ¥

Definition 8 A Banach space E is a Cσ-space if there is a compact Hausdorff
set K and an involutory homeomorphism σ : K → K (σ2 = Id) such that E is
isometrically isomorphic to

{f ∈ C(K) : f(x) = −f(σ(x)) for all x ∈ K}.

From Theorem 3 and [14, Theorem II.5.9] we get:

Proposition 9 Let E be a real Banach space and n be a positive integer which
is at least 2. Then

⊗̂
n,s,εE is not a Cσ-space.

3 The centraliser of PA(nE) when E is complex

Let us turn our attention to the complex case. We shall see that things are not
as straightforward here.

Let E be a complex Banach space. We shall use Pf∗(nE′) to denote all
n-homogeneous polynomials P on E′ of the form

k∑

j=1

xn
j

where xj ∈ E. The closure of Pf∗(nE′) in P(nE′) is denoted by PA∗(nE′) and
is called the spaces of weak∗ approximable n-homogeneous polynomials. The
space PA∗(nE′) is isometrically isomorphic to

⊗̂
n,s,εE.

The following terminology was introduced in [5].

Definition 10 An operator T : PA(nE) → PA(nF ) is said to be power-preserving
or a power-preserver if for all ϕ ∈ E′ we have T (ϕn) = ψn for some ψ in F ′.

Theorem 11 Let E be a complex Banach space and n be a positive integer

which is greater than or equal to 2. Suppose that En(E′)
w∗

= E2n(E′)
w∗

. Then
the centraliser of

⊗̂
n,s,εE is trivial.

Proof: First we assume that dim E ≥ 3. Take T 6≡ 0 in Z
(⊗̂

n,s,εE
)
. Then T ′

can be considered as a linear operator from PI(nE) into PI(nE). Let i : E′ →
PI(nE) denote the n-homogeneous polynomial i(ϕ) = ϕn. Given x and y in E
and 0 ≤ k ≤ n, the Borel Transform tells us that xkyn−k may be regarded as
a continuous linear functional on PI(nE) with xkyn−k(ϕn) = ϕk(x)ϕn−k(y) for
all ϕ ∈ E′. Hence for any x, y in E the function xkyn−k ◦ T ′ ◦ i ∈ PA∗(nE′) =⊗̂

n,s,εE. Fix x in E and consider y ∈ E which is non-zero and not a linear
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multiple of x. Let us use Qk to denote the n-homogeneous polynomial xn−kyk ◦
T ′ ◦ i. For ϕ ∈ En(E′) we have that

Q0(ϕ)/Q1(ϕ) = Q1(ϕ)/Q2(ϕ) = . . . = Qn−1(ϕ)/Qn(ϕ) = ϕ(x)/ϕ(y).

Since each of the Qk’s is weak∗-continuous this implies that

Qk(ϕ)Qk+2(ϕ) = Qk+1(ϕ)2

for all ϕ ∈ En(E′)
w∗

= E2n(E′)
w∗

. As the extreme points of PI(2nE) separate⊗̂
2n,s,εE, [15, Corollary II.13.3], we have that

Qk(ϕ)Qk+2(ϕ) = Qk+1(ϕ)2

for all ϕ ∈ E′. Hence we get that

Q0(ϕ)/Q1(ϕ) = Q1(ϕ)/Q2(ϕ) = . . . = Qn−1(ϕ)/Qn(ϕ)

for all ϕ ∈ E′. We write this common ratio in lowest possible form as R(ϕ)/S(ϕ).
We have that deg R = deg S = p. As y is not a linear multiple of x we have
that p > 0. However, as

Q0(ϕ)/Qn(ϕ) = (Q0/Q1) (ϕ) (Q1/Q2) (ϕ) . . . (Qn−1/Qn) (ϕ) = (R(ϕ)/S(ϕ))n
,

we have that p ≤ 1 and so both R and S belong to E′′. Hence there is λ ∈ C
so that Qk(ϕ) = λR(ϕ)n−kS(ϕ)k.

In particular,

〈ϕn, λRn〉 = Q0(ϕ) = 〈T ′(ϕn), xn〉 = 〈ϕn, T (xn)〉
for all ϕ in E′ for some constant λ. Further, if (ϕα)α is a weak∗-null net in E′

then R(ϕα) is null and therefore R may be regarded as an element of E.
By [5, Proposition 14] it follows that T is a power-preserver.
We claim that T (xn) is a scalar multiple of xn for each x ∈ E. Suppose,

that this is not true. Then we can find x and y linearly independent in E so
that T (xn) = yn. Since the centraliser of

⊗̂
n,s,εE is a vector space I +T is also

in the centraliser and hence also is a power-preserver. As xn and yn are linearly
independent (I + T )(xn) = zn with x, y and z linearly independent. Choose ϕ
and ψ in E′ so that ϕ(x) = ψ(y) = 0 and ϕ(z) = ψ(z) = 1. Then we

〈(I + T )(xn), ϕn−1ψ〉 = 〈xn + yn, ϕn−1ψ〉 = 0

while
〈zn, ϕn−1ψ〉 = 1

a contradiction and therefore T (xn) is a linear multiple of xn for each x ∈ E.
Let use λx to denote the eigenvalue of xn.

Given ϕ ∈ En(E′) we shall use a(ϕ) to denote the eigenvalue of ϕn under the
operator T ′. Since T is in the centraliser of

⊗̂
n,s,εE there is a multiplier S so

9



that S′(ϕn) = a(ϕ)ϕn for all ϕ ∈ En(E′). In order to show that T is a multiple of
the identity we will prove that both S+T and S−T are multiples of the identity.
Fix x in E with ‖x‖ = 1. We can choose ϕ ∈ En(E′) so that 〈xn, ϕn〉 = 1. Then
λx = 〈T (xn), ϕn〉. Denote the eigenvalue of S with eigenvector corresponding
to xn by µx. Then

µx =〈S(xn), ϕn〉
= 〈xn, S′(ϕn)〉
= a(ϕ)

= 〈xn, T ′(ϕn)〉
= λx.

Consider A = T +S in the centraliser of
⊗̂

n,s,εE. Then A(xn) = 2Re(λx)xn

for all x in E. Hence A2(xn) = νxxn with νx non-negative for all x in E. Letting
b(x) = (νx)1/n we get that

A2(xn) = (b(x)x)n

for all x in E.
Fix x in E for which A(xn) 6= 0. Consider y in E so that x and y are linearly

independent for which b(x) 6= 0 and b(y) 6= 0. This is always possible since b
is easily shown to be continuous and for y sufficiently close to x we will have
xn and yn linearly independent. Choose w ∈ E so that x, y and w are linearly
independent. Let Eo denote the subspace of E spanned by x, y and w. By [22,
Exercise 10.5.5]) there is a continuous linear mapping r : Eo → Eo such that

A2(zn) = (r(z))n

for all z ∈ Eo. (We need y to avoid the degenerate rank 1 case.) By multipli-
cation by −1 if necessary we may assume that r(x) = b(x)x. As in Theorem 3
we get that b is constant on Eo. As w, subject to the constraint that x, y and
w being linearly independent, was arbitrary b must be constant on E. Thus
A2(wn) = bwn for w ∈ E. Since {wn : w ∈ E} spans a dense subset of

⊗̂
n,s,εE

we see that A2 and hence, as in Theorem 3, A is a constant multiple of the iden-
tity on

⊗̂
n,s,εE. Similarly taking B = i−1(T − S) we get that B is a constant

multiple of the identity on
⊗̂

n,s,εE. From this we conclude that T itself is a

constant multiple of the identity and therefore
⊗̂

n,s,εE has trivial centraliser.
The above proof can be easily adapted to cover the case when dim E = 2.

¥
As in the real case we get:

Corollary 12 Let E be a complex Banach space and n be a positive integer

which is greater than or equal to 2. Suppose that En(E′′)
w∗

= E2n(E′′)
w∗

. Then,
Z(PA(nE)) is trivial.

10



Theorem 11 allows a partial extension of Theorem 5 to the complex case.

Theorem 13 Let E be a complex Banach space with the approximation property

such that En(E′′)
w∗

= E2n(E′′)
w∗

. Let n be a positive integer and F be a smooth
reflexive complex Banach space. Suppose T : PA(nE;F ) → PA(nE;F ) is an
isometry. Then there are isometries s : E′ → E′ and S : F → F such that

T (P ) = S(P ◦ s′ ◦ JE)

for all P ∈ PA(nE; F ).

Proof: Consider an isometry T : PA(nE; F ) → PA(nE; F ). Then T is an isom-
etry of the underlying real spaces. Applying the argument of Theorem 5 using
Theorem 11 instead of Theorem 3 we see that there are real isometries T1 of
PA(nE) and S of F such that

T (P ⊗ y) = T1(P )⊗ S(y)

for all P ∈ PA(nE) and y ∈ F . Given λ ∈ C we have

T1(λP )⊗ S(y) = T (λP ⊗ y) = λT (P ⊗ y) = λT1(P )⊗ S(y)

for all P ∈ PA(nE) and y ∈ F . This shows that T1 is complex linear. A similar
argument shows that S is complex linear. Applying [5, Theorem 10] we see that
T1(P ) = P ◦ s′ ◦ JE and the result follows. ¥

Theorem 11 allows some insight into centralisers of complex Banach spaces.
A point x is said to be a complex extreme point of the (closed) unit ball

of E if ‖x + λy‖ ≤ 1 for all λ ∈ C with |λ| = 1 implies y = 0. Every real
extreme point of BE is a complex extreme point. To distinguish between real
and complex extreme points we use ExtC(E). With these concepts we obtain
some important corollaries concerning centralisers of complex Banach spaces.

Theorem 14 Let E be a complex separable Banach space with `1 6↪→ E and
ExtR(E′) = ExtC(E′) then E has trivial centraliser.

Proof: It follows from the proof of [5, Corollary 11] that En(E′) = ExtR(E′) for
all n and therefore, by Theorem 11,

⊗̂
n,s,εE has trivial centralizer. Suppose that

Z(E) is non-trivial and take T 6= kId belonging to Z(E). Then T ⊗ T ⊗ . . .⊗ T

gives an element of the centraliser of
⊗̂

n,s,εE which is not a constant multiple
of the identity contradicting the previous theorem. ¥

We also have

Theorem 15 Let E be a complex reflexive Banach space with ExtR(E′) =
ExtC(E′) then E has trivial centraliser.

11



Proof: Proceeding as in [5, Corollary 11] but using [13, Proposition 4.18] in-
stead of the result on [13, Page 640] we can show that En(E′) = ExtC(E′). The
remainder of the proof is as in Theorem 14. ¥

In [12, Corollary 2.11] Dineen and Timoney show that a JBW∗-triple (a
JB∗-triple which is also a dual space) has trivial centraliser if and only if it is
irreducible. A JB∗-triple is irreducible if and only if it cannot be written as a
non-trivial `∞-sum of its subspaces. If E is a JB∗-triple then it follows from
[7, 17] that ExtR(E) = ExtC(E). Thus applying Theorem 15 we get

Theorem 16 Let E be a reflexive JB∗-triple then the centraliser of E′ is trivial.

We refer the reader to [9] where the reflexive JB∗-triples can be found.

4 The centraliser of P(nE)

We conclude this paper by examining the centraliser of P(nE) when E has a
Fréchet differentiable norm. We require the notation of strongly and weak∗-
strongly exposed points.

A unit vector x in a Banach space E is strongly exposed if there is a unit
vector ϕ ∈ E′ so that ϕ(x) = 1 and given any sequence (xk) ⊆ BE with
ϕ(xk) → 1 we can conclude that xk converges to x in norm. We will say that ϕ
strongly exposes BE at x. When E = F ′ is a dual space and the vector ϕ which
strongly exposes BE is in F we shall say that x is weak∗-strongly exposed and
that ϕ weak∗-strongly exposes the unit ball of E at x.

Theorem 17 Let E be a real or complex reflexive Banach space with a Fréchet
differentiable norm and the approximation property and let n ≥ 2 be a positive
integer. Then P(nE′) has trivial centraliser.

Proof: Since E has a Fréchet differentiable norm E′ has Radon-Nikodým-
Property. It therefore follows from [6, Proposition 3] (see also [8, Theorem 1.5])
that PI(nE) is isometrically isomorphic to PN (nE). As E′ has the approx-
imation property it follows that P(nE′) is the bidual of

⊗̂
n,s,εE. Further,

as the norm on E is Fréchet differentiable, it follows from [6, Corollary 15]
that the set of strongly exposed points of the unit ball of PI(nE) is equal to
the set {±ϕn : ϕ ∈ E′, ‖ϕ‖ = 1}. In particular, the sets of extreme and
strongly exposed points of the unit ball of PI(nE) are equal. It follows that
the set of weak∗-strongly exposed points of the unit ball of P(nE′)′ is equal to
{±ϕn : ϕ ∈ E′, ‖ϕ‖ = 1} (see the comment at the end of [20, Theorem 5.2.1]).
Let T be in the centraliser of P(nE′). Then, given ϕ in E′, ϕn is a weak∗-
strongly exposed point of the unit ball of P(nE′)′. In particular, it is an extreme
point of the unit ball of P(nE′)′. Hence, we have that

T ′(ϕn) = a(ϕ)ϕn

for some scalar a(ϕ) and each ϕ in E′. Thus T ′|PI(nE) maps PI(nE) onto PI(nE)
and hence T is the transpose of an operator S from PI(nE′) into PI(nE′) (see the

12



proof of [18, Observación 3.8]). Thus T ′ = (T ′|PI(nE))′′. The argument given in
Theorem 3 or Theorem 11 implies that T ′|PI(nE) and hence T ′ = (T ′|PI(nE))′′

is a constant multiple of the identity proving that P(nE′) has trivial centraliser.
¥

In particular, we see that P(nLp(µ)) and P(n`p) have trivial centralisers for
1 < p < ∞. Since B(H), the space continuous linear operators from a Hilbert
space H into H, is isometrically isomorphic to P(2H) we recover the result
that B(H) has trivial centraliser. There are many ways to see this. Perhaps the
easiest is to observe that B(H) is a unital C∗-algebra and therefore its centraliser
is {MT : T is in the centre of B(H)}. Since B(H) has trivial centre the result
follows. In addition, spaces which satisfy the conditions of Theorem 17 have the
strong Banach-Stone property.

A projection P on a Banach space E is said to be an L-projection if

‖x‖ = ‖P (x)‖+ ‖(I − P )(x)‖

for all x in E. Using [14, Theorem I.3.14 (b)] we obtain the following corollary
to Theorem 17.

Corollary 18 Let E be a real or complex reflexive Banach space with a Fréchet
differentiable norm and the approximation property and let n ≥ 2 be a positive
integer. Then PI(nE) contains no non-trivial L-projections.
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