THE EFFECT OF REDUCED INTEGRATION IN EIGENVALUE PROBLEMS

María G. Armentano Ricardo G. Durán Universidad de Buenos Aires

- Mass-lumping vs. Exact integration.
- Singular case: advantage of mass-lumping.
- Regular case: possibility of lower bounds.
- Old results on Finite Differences.
- Non-conforming elements (lower bounds).
- Numerical Examples.
- Adaptive meshes.

$$-\Delta u = \lambda u \quad \text{in } \Omega$$
$$u = 0 \quad \text{on } \partial \Omega$$

 $\|u\|_0 = 1$ Solutions: $(\lambda_j, u_j), 0 < \lambda_1 \leq \ldots \leq \lambda_j \leq \ldots$

$$u_j \in H^{1+r}(\Omega)$$

r = 1 if Ω is convex and $r < \frac{\pi}{\omega}$ (with ω being the largest inner angle of Ω) otherwise.

FINITE ELEMENT APPROXIMATIONS

 $V_h = \{ v_h \in H_0^1(\Omega) : v_h |_T \in \mathcal{P}_1 \quad \forall T \in \mathcal{T}_h \}$

EXACT INTEGRATION

$$\int_{\Omega} \nabla u_h \cdot \nabla v_h = \lambda_h \int_{\Omega} u_h v_h \quad \forall v_h \in V_h$$

MASS-LUMPING

$$\int_{\Omega} \nabla u_h^{ml} \cdot \nabla v_h = \lambda_h^{ml} \int_{\Omega} I_h(u_h^{ml} v_h) \quad \forall v_h \in V_h$$
$$I_h : \text{Linear interpolation at the vertices}$$

Spectral convergence with optimal order known in both cases (Babuska-Osborn, Banerjee-Osborn).

$$\|u - u_h\|_1 = O(h^r)$$
$$\|u - u_h\|_0 = O(h^{2r})$$
$$|\lambda - \lambda_h| = O(h^{2r})$$

Lemma: For any $v_h \in V_h$, $\int_{\Omega} \left(I_h(v_h^2) - v_h^2 \right)$ $= \frac{1}{12} \sum_{\ell \in \mathcal{E}_{\mathrm{I}}} \left((v_h(p_1(\ell)) - v_h(p_2(\ell)))^2 |\Omega_\ell| \right)$

 Ω_{ℓ} : union of two triangles sharing ℓ In particular,

$$\int_\Omega I_h(v_h^2) \geq \int_\Omega v_h^2$$

Corollary: For any $v_h \in V_h$, $0 \le \int_{\Omega} I_h(v_h^2) - v_h^2 \le Ch^2 \|\nabla v_h\|_0^2$ **Theorem**: $\lambda_{h,j}^{ml} \leq \lambda_{h,j}$ $1 \leq j \leq N_h$ **Proof.**

$$\lambda_{h,j} = \min_{V_{h,j}} \max_{v_h \in V_{h,j}} \frac{\int_{\Omega} |\nabla v_h|^2}{\int_{\Omega} v_h^2}$$

and,

$$\lambda_{h,j}^{ml} = \min_{V_{h,j}} \max_{v_h \in V_{h,j}} \frac{\int_{\Omega} |\nabla v_h|^2}{\int_{\Omega} I_h(v_h^2)}$$

where $V_{h,j}$ denote any subspace of V_h of dimension j.

And from the Lemma,

$$\frac{\int_{\Omega} |\nabla v_h|^2}{\int_{\Omega} I_h(v_h^2)} \leq \frac{\int_{\Omega} |\nabla v_h|^2}{\int_{\Omega} v_h^2} \qquad \forall v_h \in V_{h,j} \quad \Box$$

I will drop the j from now on to simplify notation.

SINGULAR CASE

Theorem: $\|\nabla(u_h^{ml} - u)\|_0 = O(h^r), r < 1,$ $\Rightarrow \lambda \leq \lambda_h^{ml}$ for h small enough.

CONCLUSION: Mass-lumping is better in this case.

The proof uses:

$$\begin{split} \lambda_h^{ml} - \lambda &= \|\nabla (u_h^{ml} - u)\|_0^2 - \lambda \|u_h^{ml} - u\|_0^2 \\ &- \lambda_h^{ml} \left(\int_{\Omega} I_h((u_h^{ml})^2) - (u_h^{ml})^2 \right) \end{split}$$

The second and third terms are of higher order than the first one.

REGULAR CASE

Now the first and third terms are of the same order $O(h^2)$. So, we do not know whether

$$\lambda_h^{ml} - \lambda$$

is positive or negative.

From numerical experiments:

$\lambda_h^{ml} \leq \lambda$

for reasonable meshes! (but we don't have a proof).

For example: for uniform meshes in a square one can compute explicitly λ_h^{ml} and λ and observe that $\lambda_h^{ml} \leq \lambda$.

REMARK: A trivial example shows that in some cases $\lambda_h^{ml} \geq \lambda$. But, we could not find an example with a "reasonable" mesh such that $\lambda_h^{ml} \geq \lambda$.

OLD RESULTS ON FINITE DIFFERENCES

For uniform meshes mass-lumping corresponds to finite differences.

Forsythe (Pacific J. of Math. (1954, 1955)) proved the following:

Theorem: $\lambda_h^{ml} \leq \lambda - ah^2 + o(h^2)$, with a > 0 if Ω is convex.

For sythe also conjectured that in the singular case $\lambda_h^{ml} \geq \lambda$ for h small enough (which is a particular case of our results).

Other references on lower bounds: Weinberger (Bull. AMS (1955), Comm. Pure Appl. Math (1956), SIAM, 1974).

Asymptotic lower bounds for the singular case Non-conforming elements of Crouzeix-Raviart

$$V_h^{NC} = \{ v_h \in L^2(\Omega) : v_h |_T \in \mathcal{P}_1, \ \forall T \in \mathcal{T}_h, \\ v_h \text{ is continuous at interior} \\ \text{midside points and vanishes} \\ \text{at boundary midside points} \}$$

$$\int_{\Omega} \nabla_h u_h \cdot \nabla_h v_h = \lambda_h^{nc} \int_{\Omega} u_h v_h \quad \forall v_h \in V_h^{NC}$$

Remark: In this case the mass matrix obtained with exact integration is diagonal.

We introduce the "Edge average" interpolant $u_h^{ea} \in V_h^{NC}$ of u:

$$\int_{\ell} u_h^{ea} = \int_{\ell} u \quad \forall \text{edge } \ell$$

Then,

$$\int_{\Omega} \nabla_h (u - u_h^{ea}) \cdot \nabla_h v_h = 0 \quad \forall v_h \in V_h^{NC}$$

Since
$$||u||_0 = ||u_h||_0 = 1$$
 we have
 $\lambda_h^{nc} + \lambda = ||\nabla_h u_h||_0^2 + ||\nabla u||_0^2$
 $= ||\nabla_h (u - u_h)||_0^2 + 2 \int_\Omega \nabla_h u_h \cdot \nabla u_h^{ea}$
 $= ||\nabla_h (u - u_h)||_0^2 + 2 \int_\Omega \nabla_h u_h \cdot \nabla u_h^{ea}$
 $= ||\nabla_h (u - u_h)||_0^2 + 2\lambda_h^{nc} \int_\Omega u_h u_h^{ea}$
 $= ||\nabla_h (u - u_h)||_0^2 + 2\lambda_h^{nc} - \lambda_h^{nc}||u_h - u_h^{ea}||_0^2$
 $+ \lambda_h^{nc} (||u_h^{ea}||_0^2 - ||u||_0^2)$
Then,

$$\begin{split} \lambda - \lambda_h^{nc} &= \|\nabla_h (u - u_h)\|_0^2 - \lambda_h^{nc} \|u_h - u_h^{ea}\|_0^2 \\ &+ \lambda_h^{nc} \left(\|u_h^{ea}\|_0^2 - \|u\|_0^2 \right) \end{split}$$

Theorem: $\|\nabla(u_h^{ml} - u)\|_0 = O(h^r), r < 1,$ $\Rightarrow \lambda_h^{nc} \leq \lambda$ for h small enough.

Proof. In the above relation the second and third term are of higher order than the first one.

Second term: follows from L^2 estimates

Third term: we use the a-priori estimate

 $\|u\|_{2,p} \le C\lambda \|u\|_{0,p}$

for some p > 1 (which holds for any polygonal domain).

Then,

$$\begin{aligned} \left| \int_{\Omega} (u_h^{ea})^2 - \int_{\Omega} u^2 \right| \\ &= \left| \int_{\Omega} (u_h^{ea} - u) (u_h^{ea} + u) \right| \\ &\leq C \|u\|_{0,\infty} \|u_h^{ea} - u\|_{0,p} \leq C(u,\lambda) h^2 \end{aligned}$$

Non-conforming method with reduced integration

$$\int_{\Omega} \nabla_h u_h \cdot \nabla_h v_h = \lambda_h^{nc,ms} \int_{\Omega} I_h(u_h v_h) \ \forall v_h \in V_h^{NC}$$

ms: "MASS-SPREADING"

$$\lambda_h^{nc,ms} \le \lambda_h^{nc}$$

Same proof as in the conforming case. THEN,

$$\lambda_h^{nc,ms} \le \lambda$$

For h small enough and u singular.

<u>RELATIONS</u>

 $V_h \subset V_h^{NC} \Rightarrow \lambda_h^{nc} \le \lambda_h$ and, $\lambda_h^{nc,ms} \le \lambda_h^{ml}$

$$\lambda_h^{ml} \le \lambda_h$$

$$\lambda_h^{nc,ms} \le \lambda_h^{nc}$$

SINGULAR CASE:

 $\lambda_h^{nc,ms} \leq \lambda_h^{nc} \leq \lambda \leq \lambda_h^{ml}$ Proved for *h* small. REGULAR CASE:

$$\lambda_h^{nc,ms} \le \lambda_h^{ml} \le \lambda$$

No proof of the last inequality! (but is true in all our experiments with reasonable meshes).

CONCLUSIONS

IF u IS SINGULAR: USE MASS LUMPING AND NC TO BOUND BY ABOVE AND BELOW

IF u IS REGULAR: USE EXACT INTEGRATION AND MASS LUMPING TO BOUND BY ABOVE AND BELOW

IF WE DON'T KNOW WE CAN USE EX-ACT INTEGRATION AND NC WITH RE-DUCED INTEGRATION

REMARK: When Ω is not convex u may be singular or regular. For example, for the Lshape domain, u_1 is singular and u_2 and u_3 are regular.

NUMERICAL EXAMPLES

First eigenvalue for L domain

Uniform refinement

number of nodes	$\lambda_{h,1}$	$\lambda_{h,1}^{ml}$
21	13.199179221542	9.071796769724
65	10.573955451157	9.641425460959
225	9.916549032001	9.693162213551
833	9.728372729312	9.673506476037
3201	9.66981732232	9.65620182015

First eigenvalue for Koch 2 domain

Uniform refinement

number of nodes	$\lambda_{h,1}$	$\lambda_{h,1}^{ml}$
37	46.993282224519	40.401005031470
121	42.121650466929	40.635844194708
433	40.796435658176	40.438418441151
1633	40.39662738666	40.30828543856

First eigenvalue for Koch 3 domain

Uniform refinement

number of nodes	$\lambda_{h,1}$	$\lambda^{ml}_{h,1}$
329	40.94016461357	40.34117804088
1217	40.17948566684	40.03394074483

REGULAR SOLUTIONS

First eigenvalue for a square domain

number of nodes	$\lambda_{h,1}^{ml}$
5	15.789473684211
8	3.123922607067
14	3.091168190991
26	3.903152296554
55	4.646900604880
116	4.742942128240
259	4.888070813057

 $\lambda_1 = \pi^2/2 = 4.93480220054468$

number of nodes	$\lambda_{h,1}^{ml}$
37	4.442736170666
121	4.810061215139
433	4.903574330061

First eigenvalue for an equilateral triangle

$$\lambda_1 = \frac{16\pi^2}{3} = 52.63789014....$$

number of nodes	$\lambda_{h,1}^{ml}$
15	42.6666666666667
45	49.987109344163
153	51.964905805628
561	52.468994312245

number of nodes	$\lambda_{h,1}^{ml}$
28	46.839659383781
91	51.318366941074
325	52.331156996197

First eigenvalue for a circle

number of nodes	$\lambda_{h,1}^{ml}$
25	4.86961861262
81	5.52128687409
289	5.71540330139
1089	5.76609636891

 $\lambda_1 = 5.78318596294679...$

number of nodes	$\lambda_{h,1}^{ml}$
41	5.469108031446
145	5.698898965742
545	5.761760229781

ADAPTIVE REFINEMENT

First eigenvalue for L domain

Exact integration

number of nodes	$\lambda_{h,1}$
21	13.19917922154
35	11.17861899716
52	10.61960009902
87	10.23370713553
146	9.96803288895
190	9.88390214919
325	9.77175458628
461	9.73564019209
666	9.70629111767
1007	9.68265866024
1420	9.67110120080
2324	9.65833094103

ADAPTIVE REFINEMENT

First eigenvalue for L domain

Mass lumping

number of nodes	$\lambda_{h,1}^{ml}$
21	9.07179676972
35	9.58193479076
60	9.47118381681
97	9.53020788804
152	9.64055123484
218	9.55402279885
345	9.61364966132
478	9.60112464514
687	9.60626373321
993	9.62715585078
1682	9.62863961061
2411	9.63200652455
3268	9.63197587247

NON-CONFORMING ELEMENTS

First eigenvalue for L domain

Uniform refinement

number of nodes	$\lambda_{h,1}^{nc}$
44	9.029162344073
160	9.205405718064
608	9.466269451586

First eigenvalue for Koch 2 domain

Uniform refinement

number of nodes	$\lambda_{h,1}^{nc}$
84	37.00124133068
312	38.84043356529
1200	39.74253482521