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- The classic Hardy inequality and its dual inequality.

- Their application in error estimates for functions in weighted
Sobolev spaces.

- Advantages over compactness arguments.

- Example of application in 1D. Graded meshes for singularly
perturbed problems.

- Error estimates for narrow elements in 2D and 3D. Necessity
of Average Interpolants.

- The generalized Hardy inequality in 2D and 3D.

- Estimates for average interpolants in anisotropic rectangular
elements (in 2D and 3D).

- Applications.

- Numerical examples.
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We are interested in estimates with weighted norms on the right

hand side.

REASONS: to approximate singular functions or functions with

large derivatives.

THE USE OF HARDY INEQUALITY

THE 1D CASE:

CLASSIC HARDY INEQUALITY:
∥∥∥∥
v

d

∥∥∥∥
L2(a,b)

≤ 2‖v′‖L2(a,b)

v ∈ H1
0(a, b) d(x) distance to the boundary of (a, b)
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DUAL INEQUALITY:

u ∈ H1(a, b) ,
∫ b

a
u = 0

then,

‖u‖L2(a,b) ≤ 2‖du′‖L2(a,b)

Proof : Define v ∈ H1
0(a, b)

v(x) = −
∫ x

a
u(y)dy

Using the Hardy inequality for v, we have

‖u‖2
L2 =

∫ b

a
u′(x)v(x)dx

≤
∥∥∥∥
v

d

∥∥∥∥
L2
‖du′‖L2 ≤ 2‖u‖L2‖du′‖L2
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ERROR ESTIMATE FOR THE DERIVATIVE:

I = (a, b) uI ∈ P1 Lagrange interpolation

u ∈ H2(I) 0 ≤ α ≤ 1

‖(u− uI)
′‖L2(I) ≤ 2|I|1−α‖dαu′′‖L2(I)

Proof : Use that ∫

I
(u− uI)

′ = 0

and the DUAL HARDY INEQUALITY.
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REMARKS: Estimates of this kind can be proved by compactness

arguments. However, our method has the following advantages:

1- In the n-dimensional case we obtain explicit information on the

dependence of the constants on the geometry of the elements.

This is important in our analysis for anisotropic elements.

2- Our argument gives better results: One can not obtain the

case α = 1 by compactness. This case is of interest in some

applications.

H1,d = {v ∈ L2(I) : dv′ ∈ L2(I)}
with norm

‖u‖H1,d = ‖u‖2
L2 + ‖du′‖2

L2
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The inclusion H1,d ⊂ L2 IS NOT COMPACT!

EXAMPLE (Ariel Lombardi): I = (0,1)

Consider the sequence

un(x) =





nx 0 < x < 1
n

2− nx 1
n ≤ x < 2

n

0 2
n ≤ x < 1

and wn =
√

nun. Then, ‖wn‖2H1,d = 10/3. If H1,d ⊂ L2 is

compact, there exists a subsequence wn such that

wn → w in L2

but wn(x) → 0 ∀x ∈ I and so w = 0. But,

‖wn‖2L2 = 2/3

CONTRADICTION!
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APPLICATIONS

GRADED MESHES: AN EXAMPLE IN 1D

CONVECTION-DIFFUSION EQUATION:

−εu′′ − b(x)u′ + c(x)u = f in (0,1)
u(0) = u(1) = 0

b(x) ≥ b0 > 0 ∀ x ∈ (0,1)

There is a boundary layer at x = 0.

GRADED MESH:

x0 = 0 < x1 < · · · < xN

uI piecewise P1 Lagrange interpolation
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Error estimate for the first interval (0, x1):

ε‖(u− uI)
′‖2

L2(0,x1)
≤ 4ε‖xu′′‖2

L2(0,x1)

≤ 4ε−2βx
2(1−α)
1 ε1+2β‖xαu′′‖2

L2(0,x1)

REMARK: We will use this estimate for α < 1, but it is important

to have a constant independent of α.

Choose:

β = 1− α =
1

log(1
ε)

So, ε−β = e and then,

ε‖(u− uI)
′‖2

L2(0,x1)
≤ Cx

2(1−α)
1 ε1+2β‖xαu′′‖2

L2(0,x1)
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Take h > 0 and x1 ≤ h
1

1−α. Then,

ε‖(u− uI)
′‖2

L2(0,x1)
≤ Ch2ε1+2β‖xαu′′‖2

L2(0,x1)

Error estimate for the other intervals (xj, xj+1):

ε‖(u− uI)
′‖2

L2(xj,xj+1)

≤ 4ε−2β(xj+1 − xj)
2ε1+2β‖u′′‖2

L2(xj,xj+1)

Now choose xj such that:

xj+1 ≤ xj + hxα
j
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Then,

ε‖(u− uI)
′‖2

L2(xj,xj+1)
≤ Ch2x2α

j ε1+2β‖u′′‖2
L2(xj,xj+1)

≤ Ch2ε1+2β‖xαu′′‖2
L2(xj,xj+1)

WEIGHTED A PRIORI ESTIMATE:

ε1+2β‖xαu′′‖2
L2 ≤ C

if α ≥ 0, β ≥ 0, α + β = 1

Consequently,

ε‖(u− uI)
′‖2

L2(0,1) ≤ Ch2

with C independent of ε.
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N : Number of nodes in graded mesh =⇒ h ∼ logN
N

Therefore,

ε‖(u− uI)
′‖2

L2(0,1) ≤ C
logN

N

Similar weighted estimates, but with different powers of d(x),

can be proved for the L2 interpolation error.

L2- ERROR ESTIMATE:

||u− uI ||L2(I) ≤
C

1− 2α
|I|1−α||dαu′||L2(I)

for 0 ≤ α < 1
2.
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The following example shows that the estimate is not true for

α > 1
2:

un(x) =





nx if 0 ≤ x ≤ 1
n

1 if 1
n < x ≤ 1

Then,

‖un − un,I‖L2(0,1) →
(∫ 1

0
(1− x)2dx

)1
2
=

1√
3

while

‖xαu′n‖2L2(0,1) =
∫ 1

n

0
n2x2αdx =

1

2α + 1
n1−2α → 0

for α > 1
2
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Using these estimates and the weighted a priori estimate

ε2β‖xαu′‖2
L2 ≤ C

if α ≥ 0, β ≥ 0, α + β =
1

2

Choosing,

β =
1

2
− α =

1

log 1
ε

ERROR ESTIMATE IN ENERGY NORM

‖v‖2ε = ‖v‖2
L2 + ε2‖v′‖2

L2

‖u− uI‖ε ≤ C log
1

ε

logN

N
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THE 2D AND 3D CASES

Classic theory uses “regularity assumption”:

hT

ρT
≤ C

hT exterior diameter, ρT interior diameter. For both Lagrange

and Average Interpolants.

BUT: IT’S KNOWN THAT IT IS NOT NEEDED! First works:

Babuska-Aziz, Jamet (1976).

Other references: Krizek, Al Shenk, Dobrowolski, Apel, Nicaise,

Formaggia, Perotto, Acosta, D., etc..
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FOR EXAMPLE: RECTANGULAR ELEMENTS

K reference element

Given u ∈ H2(K), let p ∈ P1 be such that

∥∥∥∥
∂

∂x
(u− p)

∥∥∥∥
L2(K)

≤ C

∥∥∥∥∇
∂u

∂x

∥∥∥∥
L2(K)

For example: p1 the averaged Taylor polynomial of degree 1.

Let uI ∈ Q1 be the Lagrange interpolation.
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∥∥∥∥
∂

∂x
(u− uI)

∥∥∥∥
L2(K)

≤
∥∥∥∥

∂

∂x
(u− p)

∥∥∥∥
L2(K)

+
∥∥∥∥

∂

∂x
(p− uI)

∥∥∥∥
L2(K)

So, it is enough to estimate
∥∥∥ ∂
∂x(p− uI)

∥∥∥
L2(K)

We use: for v = p− uI ∈ Q1(K)

A
 

B 

C D
 

K 

s 

∥∥∥∥
∂v

∂x

∥∥∥∥
2

L2(K)
∼ |v(B)− v(A)|2 + |v(D)− v(C)|2
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|v(B)− v(A)| = |(p(B)− u(B))− (p(A)− u(A))|

=
∣∣∣∣
∫

s

∂

∂x
(p− u)

∣∣∣∣ ≤ C

{∥∥∥∥
∂

∂x
(p− u)

∥∥∥∥
L2(K)

+
∥∥∥∥∇

∂u

∂x

∥∥∥∥
L2(K)

}

where we have used a trace theorem.

Analogously we bound |v(D)− v(C)| and so we obtain:

∥∥∥∥
∂

∂x
(u− uI)

∥∥∥∥
L2(K)

≤ C

∥∥∥∥∇
∂u

∂x

∥∥∥∥
L2(K)

∂2u

∂y2
DOES NOT APPEAR!
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Therefore, changing variables we obtain for a rectangle R:

R 

h
1
 

h
2
 

∥∥∥∥
∂

∂x
(u− uI)

∥∥∥∥
L2(R)

≤ C



h1

∥∥∥∥∥
∂2u

∂x2

∥∥∥∥∥
L2(R)

+ h2

∥∥∥∥∥
∂2u

∂x∂y

∥∥∥∥∥
L2(R)





THE CONSTANT C IS INDEPENDENT OF THE RELATION

BETWEEN h1 and h2 !

A SIMILAR ESTIMATE IN 3D IS NOT TRUE !!

WHAT FAILS IN 3D IN THE ARGUMENT GIVEN ABOVE?
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THE TRACE THEOREM:

‖u‖L2(s) ≤ C‖u‖H1(R),

WHERE s IS AN EDGE OF R, IS NOT TRUE!

Counterexamples for the interpolation error estimate were given

by:

Apel-Dobrowolski (Computing 1992), Al Shenk (Math. Comp.

1994).

They showed that the constant in the estimate

‖u− uI‖H1(Rε)
≤ Cεh‖u‖H2(Rε)

goes to ∞ when ε → 0
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ε 

Rε

 

THIS IS ONE REASON TO WORK WITH AVERAGE INTER-

POLANTS.

The other reason is the classic one: to approximate non-smooth

functions.
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GENERALIZED HARDY INEQUALITY:

D ⊂ Rn convex domain, u ∈ H1
0(D)

d(x) distance to the boundary

∥∥∥∥
u

d

∥∥∥∥
L2(D)

≤ 2‖∇u‖L2(D)

ANISOTROPIC VERSION

R =
∏n

i=1(ai, bi) hi = bi − ai

u ∈ H1
0(R), δR is a “normalized distance”:

δR(x) = min

{
xi − ai

hR,i
,
bi − xi

hR,i
: 1 ≤ i ≤ n

}
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∥∥∥∥∥
u

δR

∥∥∥∥∥
L2(R)

≤ 2
n∑

i=1

hi

∥∥∥∥∥
∂u

∂xi

∥∥∥∥∥
L2(R)

.

DUAL INEQUALITY

1
δ ≤ hi ≤ δ, ψ ∈ C0(R) ,

∫
R ψ = 1.

u ∈ H1(R) such that
∫
R uψ = 0

‖u‖L2(R) ≤ C‖d∇u‖L2(R)

with C depending only on δ and ψ.

Proof : REPEAT THE ARGUMENT GIVEN IN 1D:

v := u− (
∫
R u)ψ has vanishing mean value.
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So, there exists F ∈ H1
0(R)2 such that

−divF = v

and

‖F‖H1
0(R)2 ≤ C‖v‖L2(R)

C DEPENDS ONLY ON δ : It follows from the explicit bound

given in DM.

Since
∫
R uψ = 0, then

‖u‖2
L2(R) =

∫

R
uv = −

∫

R
udivF

and the proof finish as in the 1D case.
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AN AVERAGE INTERPOLANT

Our construction is a modification of that in D. (Math. Comp.
1999).

DIFFERENCE: We do not use reference elements for the defi-
nition!

In this way we can relax the regularity assumptions on the mesh.

ASSUMPTION: local regularity in each direction

R, S neighboring elements

hR,i

hS,i
≤ σ 1 ≤ i ≤ n.
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OUR ERROR ESTIMATES DEPEND ONLY ON σ.

Nin set of interior nodes. For z ∈ Nin:

hz,i = min{hR,i : z is a vertex of R}, 1 ≤ i ≤ n

R̃ =
⋃
{S ∈ T : S is a neighboring element of R}.

and

Rv =
⋃
{S ∈ T : v is a vertex of S}.

R 
~ 

R 

v 

R
v
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Tu(x, y) Taylor polynomial of u of degree 1 at the point x:

Tu(x, y) = u(x) +∇u(x) · (y − x)

AVERAGED TAYLOR POLYNOMIAL

ψ ∈ C∞(Rn)
∫

ψ = 1

supp ψ ⊂ B(0, r) r ≤ 1/σ

For z ∈ Nin define:

ψz(x) =
1

hz,1hz,2hz,3
ψ

(
z1 − x1

hz,1
,
z2 − x2

hz,2
,
z3 − x3

hz,3

)

We introduce the averaged Taylor polynomial of order 1 of u at
z ∈ Nin:

T1,z(u)(y) =
∫

Tu(x, y)ψz(x)dx
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Analogously, we introduce the average of u at z ∈ Nin:

T0,z(u) =
∫

u(x)ψz(x)dx

INTERPOLANT:

For u ∈ H1
0(Ω) define Πu as the unique piecewise Q1 function

such that, for z ∈ Nin,

Πu(z) = T1,z(u)(z)

Πu(z) = 0 for boundary nodes z.
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Πu(x) =
∑

z∈Nin

T1,z(u)(z)λz(x)

λz: standard basis functions

ERROR ESTIMATES IN WEIGHTED NORMS

L2- ERROR ESTIMATES:

THEOREM: If R is an interior element,

‖u−Πu‖L2(R) ≤ C
n∑

i=1

hR,i

∥∥∥∥∥δR̃

∂u

∂xi

∥∥∥∥∥
L2(R̃)

C = C(σ, ψ)
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Proof : First we prove stability:

‖Πu‖L2(R) ≤ C ‖u‖L2(R̃)

then, for z1 a vertex of R,

‖u−Πu‖L2(R) ≤ ‖u− T0,z1(u)‖L2(R)

+ ‖Π(T0,z1(u)− u)‖L2(R)

≤ C‖u− T0,z1(u)‖L2(R)

and use the dual Hardy inequality. ¤

H1- ERROR ESTIMATES:

THEOREM: If R is an interior element,

∥∥∥∥∥
∂

∂xj
(u−Πu)

∥∥∥∥∥
L2(R)

≤ C
n∑

i=1

hR,i

∥∥∥∥∥δR̃

∂2u

∂xi∂xj

∥∥∥∥∥
L2(R̃)
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Proof : VERY TECHNICAL!

IDEA: Decompose the error in two parts (as in the proof of the

estimate for Lagrange interpolation)

u−Πu =
(
u− T1,z1(u)

)
+

(
T1,z1(u)−Πu

)

First term:

∥∥∥∥∥
∂(u− T1,z1(u))

∂x1

∥∥∥∥∥
L2(R)

and use the dual Hardy inequality.

Second term: w := T1,z1(u)−Πu ∈ Q1 then

∂w

∂x1
=

4∑

i=1

(
w(zi)− w(zi+4)

) ∂λzi

∂x1
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v
1
 

v
4
 

v
3
 

v
2
 

v
7
 

v
6
 

v
5
 

v
8
 

x
1
 

x
2
 

x
3
 

So,
∥∥∥∥∥

∂w

∂x1

∥∥∥∥∥
L2(R)

≤
4∑

i=1

|w(zi)− w(zi+4)|
∥∥∥∥∥
∂λzi

∂x1

∥∥∥∥∥
L2(R)

But,
∥∥∥∥∥
∂λzi

∂x1

∥∥∥∥∥
L2(R)

≤ C

(
hzi,2hzi,3

hzi,1

)1
2

31



So, we have to estimate |w(zi)− w(zi+4)|

For example,

w(z1)− w(z5) = T1,z5(u)(z5)− T1,z1(u)(z5)

=
∫

Tu(x, z5)ψz5(x)dx−
∫

Tu(x, z5)ψz1(x)dx

Which, after long technical details! can be bounded by

C
1

hz1,2hz1,3

3∑

i=1

hz1,i

∫ ∣∣∣∣∣
∂2u

∂x1∂xi
(x)

∣∣∣∣∣ ψ(x)dx

where the function ψ(x) has support in R̃. Then, use the Cauchy-

Schwarz inequality and the Hardy inequality for ψ(x). ¤
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APPLICATIONS

REACTION-DIFFUSION EQUATION:

−ε2∆u + u = f in Ω = (0,1)2

u = 0 on ∂Ω

‖v‖2ε = ‖v‖2
L2 + ε2‖∇v‖2

L2

‖u− uh‖ε ≤ ‖u−Πu‖ε

THEOREM: With graded mesh:

‖u− uh‖ε ≤ C
logN√

N
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CONVECTION-DIFFUSION EQUATION:

−ε∆u− ux − uy = 1 in Ω = (0,1)2

u = 0 on ∂Ω

For graded meshes it follows from our weigthed error estimates:

‖u−Πu‖ε ≤ C log
1

ε

logN√
N

However, in this case we don’t have:

‖u− uh‖ε ≤ C‖u−Πu‖ε
So

‖u− uh‖ε ? WE DON’T KNOW!

PRELIMINARY NUMERICAL EXPERIMENTS SHOW GOOD
RESULTS!
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Numerical Solution with graded mesh

0

0.5

1

00.10.20.30.40.50.60.70.80.91

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

eje x

eje y

ε = 0.01
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Order of convergence with graded mesh and Q1 elements:

10
2

10
3

10
4

10
−2

10
−1

10
0

x−1/2 

ε = 0.01

Order of convergence with Shishkin mesh and Q1 elements:

10
2

10
3

10
4

10
−2

10
−1

10
0

x−1/2 

ε = 0.01

36



Numerical Solution with graded mesh
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ε = 0.0001
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Order of convergence with graded mesh and Q1 elements:

10
3

10
4

10
5

10
−2

10
−1

10
0

x−1/2 

ε = 0.0001

Order of convergence with Shishkin mesh and Q1 elements:

10
2

10
3

10
4

10
−2

10
−1

10
0

x−1/2 

ε = 0.0001
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ORDER OF CONVERGENCE

Graded Meshes, ε = 0.01

# Nodes Est. Error Est. Order
324 0.056315

1369 0.032338 0.38
5625 0.016383 0.48

Shishkin Meshes, ε = 0.01

# Nodes Est. Error Est. Order
225 0.102680
361 0.090082 0.27

1521 0.053507 0.36
5929 0.032026 0.37
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ORDER OF CONVERGENCE

Graded Meshes, ε = 0.0001

# Nodes Est. Error Est. Order
1156 0.066923
5476 0.032484 0.46

22801 0.016070 0.49

Shishkin Meshes, ε = 0.0001

# Nodes Est. Error Est. Order
225 0.105182

1225 0.059729 0.33
5625 0.033547 0.37
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FOURTH ORDER MODEL EQUATION

−ε2∆2u + ∆u = 1 in Ω

u = 0 on ∂Ω
∂u

∂n
= 0 on ∂Ω

Numerical solution with Adini’s element:

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

ε = 0.001
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Order of convergence with uniform and graded meshes:

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

x−1/4 

x−1/2 

quasi−uniform mesh 

graded mesh 

ε = 0.001
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For uniform meshes:

‖u− uh‖ε ≤
C
4√N

this can be proved (but not yet written!).

Expected order for graded meshes:

‖u− uh‖ε ≤
C√
N

BUT: NO THEORY FOR ANISOTROPIC ELEMENTS!

WE ARE WORKING ON THAT!
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