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- The classic Hardy inequality and its dual inequality.

- Their application in error estimates for functions in weighted
Sobolev spaces.

- Advantages over compactness arguments.

- Example of application in 1D. Graded meshes for singularly
perturbed problems.

- Error estimates for narrow elements in 2D and 3D. Necessity
of Average Interpolants.

- The generalized Hardy inequality in 2D and 3D.

- Estimates for average interpolants in anisotropic rectangular
elements (in 2D and 3D).

- Applications.

- Numerical examples.



We are interested in estimates with weighted norms on the right
hand side.

REASONS: to approximate singular functions or functions with
large derivatives.

THE USE OF HARDY INEQUALITY

THE 1D CASE:

CLASSIC HARDY INEQUALITY:

(Y

d

< 2|0’ 2
oo < 2172

v € Hj(a,b) d(z) distance to the boundary of (a,b)



DUAL INEQUALITY:

b
uwe HY(a,b) /uZO

a

then,

lull 200y < 2lldu’ll 20,0

Proof : Define v € H}(a,b)

v(@) = - [ u(y)dy

a
Using the Hardy inequality for v, we have

b
[ul?2 = [ v/(2)v(e)da

v

< ||—

L2l|du'IIL2 < 2lull p2lldw|l 2



ERROR ESTIMATE FOR THE DERIVATIVE:

I = (a,b) wuj € P1 Lagrange interpolation
w e H?(I) 0<a<l

1—
1w —ur)llp2¢ry < 2017 Nd*u"| L2 py

Proof : Use that
/
— =0
/I(u uy)

and the DUAL HARDY INEQUALITY.



REMARKS: Estimates of this kind can be proved by compactness
arguments. However, our method has the following advantages:

1- In the n-dimensional case we obtain explicit information on the
dependence of the constants on the geometry of the elements.
This is important in our analysis for anisotropic elements.

2- Our argument gives better results: One can not obtain the
case a« = 1 by compactness. This case is of interest in some

applications.
HY = {v e L?() : &' € L?(1)}
with norm

2 2
lull pra = llull72 + lldu’[|72



The inclusion H1% c L2 IS NOT COMPACT!

EXAMPLE (Ariel Lombardi): I=(0,1)

Consider the sequence

p

nx O<x< %
un(xr) = <¢2 — nx %§x<%
0 2<r<1
and  wp = up. Then, [wyll,, = 10/3. If HM C L2 is

compact, there exists a subsequence wy, such that
Wn — W in L2
but wp(z) - 0 Vo el and so w = 0. But,

|lwall72 = 2/3
CONTRADICTION!



APPLICATIONS

GRADED MESHES: AN EXAMPLE IN 1D

CONVECTION-DIFFUSION EQUATION:

—eu" —b(z)u + c(zx)u=f in (0,1)
w(0) =u(1) =0

b(x) >bg>0Vaxe(0,1)

There is a boundary layer at x = 0.

GRADED MESH:
ro=0<21 < - <xpN

uy piecewise ‘P; Lagrange interpolation



Error estimate for the first interval (0, xq):
2 2
ell(u — uI)/HLQ(O,xl) < 45”5’71’///”[/2(0,%1)

< 48_2’8$%(1_Q)51+26||$a 1

172¢0,01)

REMARK: We will use this estimate for a < 1, but it is important
to have a constant independent of «.

Choose:
1

~log(d)

So, e =¢ and then,

< Cx 2(1 o) 1—|—25||$Oz 1

ell(u — UI) ||LQ(Q3j ) ||L2(O 1)



1
Take h > 0 and x1 < hl-a, Then,

2 2 142 2
ellCw = un) I T2(0,0,) < CP2e 2020 720 oy

Error estimate for the other intervals (z;,z;41):

2
ell(u — UI)'||L2(xj,xj+1>
_9 2 142 2
< 4e ﬁ(:ﬁj+1 — ;)€ " B|‘“”HL2(%#’3‘.7+1)

Now choose T such that:

riy1 <+ h:c;?‘




Then,

< Ch2 2a 1—|—25||u//

8“(“’ U’I) ||L2(aj T +1) ||L2($j’xj+1)

2_ 142
S Ch > + 5”ma ””LQ(:U - +1)

WEIGHTED A PRIORI ESTIMATE:
81—|—25||ma //||2 <C

if «a>0,62>20, at+p5=1

Consequently,

5||(u uI) ||L2(O 1) = < ChQ

with C independent of e.
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N: Number of nodes in graded mesh =— h ~ —'O?VN

Therefore,

log N
8”(“ uI) ||L2(O 1) = <C———

Similar weighted estimates, but with different powers of d(x),
can be proved for the L2 interpolation error.

L?- ERROR ESTIMATE:
C
<15

1—
lu = wrllagry < 7o P4 2

for0<a< 3
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The following example shows that the estimate is not true for
a> 3

if 0<ax< i

wn(z) = nx ! 1_:13_n

1 it =<z <1
Then,

1
1 5 2 1
while
- 1
2 n_ 2 2 1-2
||90a’UJ;q,||L2(071) :/0 ncx<%dr = e 1n -0

foroz>%
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Using these estimates and the weighted a priori estimate
e Pla |72 < C

. 1

it OéZO, 6207 C¥+ﬁ:§

Choosing,

ERROR ESTIMATE IN ENERGY NORM

2 2 211,112
lvllZ = [lvllZ2 + e*llv']IZ2

1 logN
lu —urlle < C'log —
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THE 2D AND 3D CASES

Classic theory uses ‘‘regularity assumption’ :

" <o

PT

hp exterior diameter, pp interior diameter. For both Lagrange
and Average Interpolants.

BUT: IT'S KNOWN THAT IT IS NOT NEEDED! First works:
Babuska-Aziz, Jamet (1976).

Other references: Krizek, Al Shenk, Dobrowolski, Apel, Nicaise,
Formaggia, Perotto, Acosta, D., etc..
14



FOR EXAMPLE: RECTANGULAR ELEMENTS

K reference element

Given u € H2(K), let p € Py be such that

(e ?)
(o —
ox P

For example: p; the averaged Taylor polynomial of degree 1.

<ofvl

L2(K) Oz llL2(K)

Let u;y € Q1 be the Lagrange interpolation.
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Hc’? (u—u])‘LQ(K) ‘ —(u — )‘LQ(K) H8 (p—uj)'
So, it is enough to estimate Ha%(p— uI)HLz(K)
We use: for v=p—u; € Q1(K)
C D
K
A s B
v |2 2 2
Ha_ ~ |v(B) —v(A)]? + [v(D) — v(O)
TIL2(K)

L2(K)
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[v(B) —v(A)| = [(p(B) —u(B)) — (p(A) —u(A))|

+ V5
L2(K) ox

- < {H—(p‘ )

LQ(K)}
where we have used a trace theorem.

Analogously we bound |v(D) —v(C')| and so we obtain:

<ch

(u—up)

H@ ox

L2(K) L2(K)

02

— DOES NOT APPEAR!
Oy
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T herefore, changing variables we obtain for a rectangle R:

R
h2
hl
2 2
Hg(u—ul)‘ <Cqhy 8—2‘ + ho 0”u
Ox L2(R) 02| 12(g) 0r0Y || 12(R)

THE CONSTANT C IS INDEPENDENT OF THE RELATION
BETWEEN hq and hy |

A SIMILAR ESTIMATE IN 3D IS NOT TRUE !l

WHAT FAILS IN 3D IN THE ARGUMENT GIVEN ABOVE?
18



THE TRACE THEOREM:

lullr2¢sy < Cllull gy,
WHERE s IS AN EDGE OF R, IS NOT TRUE!

Counterexamples for the interpolation error estimate were given
by:

Apel-Dobrowolski (Computing 1992), Al Shenk (Math. Comp.
1994).

They showed that the constant in the estimate

lu —wurllg1cgy < Cehllull g2ep,)
goes to co when ¢ — 0

19



THIS IS ONE REASON TO WORK WITH AVERAGE INTER-
POLANTS.

The other reason is the classic one: to approximate non-smooth
functions.
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GENERALIZED HARDY INEQUALITY:
D C R™ convex domain, u € H}(D)

d(x) distance to the boundary

u
4]y <21

L2(D)

ANISOTROPIC VERSION
R=1I"_1(a;,b;) h; =5b; —a;

u € H&(R), dp is a “normalized distance”:

x; —a; b —x;

Y

dp(x) = min {

hri: =~ hRry

1 <1 <n

|
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Uu

<23 n

5R 8$’L LQ(R)

DUAL INEQUALITY
§<hi<é, veCo(R), [p=1
uw € HI(R) such that [puy =0

lullp2(ry < ClldVullr2(g)

with C depending only on 4§ and 1.

Proof : REPEAT THE ARGUMENT GIVEN IN 1D:

v :=u — (f/pu)y has vanishing mean value.
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So, there exists F' € Hi(R)? such that
—divF =wv
and

IFllg3cry> < Clloll2cry

C DEPENDS ONLY ON ¢ : It follows from the explicit bound
given in DM.

Since [puy = 0, then

2 .
— = — div F
||u||L2(R) /RU/U /Ru

and the proof finish as in the 1D case.
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AN AVERAGE INTERPOLANT

Our construction is a modification of that in D. (Math. Comp.
1999).

DIFFERENCE: We do not use reference elements for the defi-
nition!

In this way we can relax the regularity assumptions on the mesh.

ASSUMPTION: local regularity in each direction

R,S neighboring elements

24



OUR ERROR ESTIMATES DEPEND ONLY ON o.

N;, set of interior nodes. For z € N;,:

h,; = min{hg; : 2 is a vertex of R}, 1<i<n

R=|J{S€7T:S is a neighboring element of R}.
and
Ry=|J{S €T :v is a vertex of S}.

R

/
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Tu(x,y) Taylor polynomial of u of degree 1 at the point x:
Tu(z,y) = u(z) + Vu(z) - (y — z)

AVERAGED TAYLOR POLYNOMIAL

P € C(R") /¢=1

suppy C B(O,r) r<l/oc
For z € N;,, define:

0o () = 1 w(zl—xl Zo — ID 23—x3>

Y Y
hz,lhz,2h2,3 hz,l hz,2 hz,3

We introduce the averaged Taylor polynomial of order 1 of u at
z € Ny,

Ti.(w)(y) = [ Tule,y)e:(z)do

26



Analogously, we introduce the average of v at z € Nj,:
To-(w) = [ u(@)i(2)da

INTERPOLANT:

For u € H&(Q) define ITu as the unique piecewise Q4 function
such that, for z € N,

Tu(z) = T1 »(u)(2)

ITu(z) = 0 for boundary nodes z.

27



Mu(z) = Y, T1.(u)(2)A:(z)
2EN,

.. standard basis functions

ERROR ESTIMATES IN WEIGHTED NORMS

[?- ERROR ESTIMATES:

THEOREM: If R is an interior element,

ou

O m——
Ra$i

mn
|u — HU||L2(R) <C Z hR,z‘

1 =1

L2(R)

C = C(o,7)
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Proof : First we prove stability:

| Tull 2y < C llull 2

then, for z1 a vertex of R,
|u — HU”LZ(R) < |lu — TO,zl(U)||L2(R)
+ \|H(T0’Z1(u) — U)HLQ(R)
< Cllu - TO,zl (U)HLQ(R)
and use the dual Hardy inequality. [

Hl- ERROR ESTIMATES:

THEOREM: If R is an interior element,

n

C 2 hr

L2(R) i=1

02y
Ra:cz(‘?a: ]

i(u — ITu)
oz

L2(R)
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Proof : VERY TECHNICAL!
IDEA: Decompose the error in two parts (as in the proof of the

estimate for Lagrange interpolation)

u— ITu = (u — Tl,zl(u)) + (Tl’zl(u) — Hu)

First term:

O(u —T1 2, (uw))
o0xrq

L?(R)
and use the dual Hardy inequality.

Second term: w =Ty ., (u) — Hu € Q1 then

ow 4 Oz
Doy = 2 (W) —wziia) 5o

1=1
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So,

But,

] e
Xg 1
xl

‘ owll
0r1|L2(R)
O,
0x1

1=1

o
L2(R)

4
> |w(z) — w(zita)] H

hzi,thi,I%

hzi,l

)1

Oz,
oxrq

2

L2(R)
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So, we have to estimate |w(z;) — w(z;44)]

For example,

w(z1) —w(zs) = T z5(w)(25) — 11z (u)(25)

— /Tu(x,z5)¢z:5(:v)dx — /TU(%%)Tle(x)d:c

Which, after long technical details! can be bounded by

Y(T)dz

1
c Py [ ‘ (@)
hy ohy, 3 =1 Ox10x;

where the function ¢ (Z) has support in R. Then, use the Cauchy-
Schwarz inequality and the Hardy inequality for ¥ ().
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APPLICATIONS

REACTION-DIFFUSION EQUATION:

—PAutu=f in Q=1(0,1)2
u=20 on 902

2 1112 2 2
lvlls = [lvll72 + e[ Voull72

lu = uplle < llu = ulle

THEOREM: With graded mesh:

log N
v N

lu —uplle < C




CONVECTION-DIFFUSION EQUATION:

—eAu —uz —uy =1 in Q= (0,1)?
u =0 on 0f2

For graded meshes it follows from our weigthed error estimates:

1 logN
u— Hull: < Clog—
Ju — ITulle < Clog — =

However, in this case we don’t have:
v —uplle < Cllu — Hulle
So
lu —uplle 7 WE DON'T KNOW!

PRELIMINARY NUMERICAL EXPERIMENTS SHOW GOOD
RESULTS!
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Numerical Solution with graded mesh

e = 0.01
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Order of convergence with graded mesh and Q1 elements:

& 1
10° 10'

e = 0.01

Order of convergence with Shishkin mesh and Q7 elements:

[ iz

\ ’

e = 0.01
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eje x

0.2

Numerical Solution with graded mesh

ejey

e = 0.0001
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Order of convergence with graded mesh and Q1 elements:

iz

107
\)
1075 -
10 10

e = 0.0001

Order of convergence with Shishkin mesh and Q7 elements:

[ 2

\ ’

e = 0.0001
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ORDER OF CONVERGENCE

Graded Meshes, e = 0.01

# Nodes | Est. Error | Est. Order
324 | 0.056315
1369 | 0.032338 0.38
5625 | 0.016383 0.48

Shishkin Meshes, £ = 0.01

# Nodes | Est. Error | Est. Order
225 | 0.102680
361 | 0.090082 0.27
1521 | 0.053507 0.36
5929 | 0.032026 0.37
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ORDER OF CONVERGENCE

Graded Meshes, ¢ = 0.0001

# Nodes | Est. Error | Est. Order
1156 | 0.066923
5476 | 0.032484 0.46
22801 | 0.016070 0.49

Shishkin Meshes, ¢ = 0.0001

# Nodes | Est. Error | Est. Order
225 | 0.105182
1225 | 0.059729 0.33
5625 | 0.033547 0.37
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FOURTH ORDER MODEL EQUATION

in €2
on 0S2
on 02

_e? A2y + Au =1

=0
O

0

on

Numerical solution with Adini's element:

A g e

e WG\

X

SO Y
NRRXY Y
/wm%ﬂ%'w::s;
///,;w,....“
N

0

0.8

o © o ©o ©o o o o
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Order of convergence with uniform and graded meshes:

107

10

10

-1/2

——— quasi—uniform mesh

——— graded mesh

10
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For uniform meshes:

C

lu = uplle < =

2

this can be proved (but not yet written!).

Expected order for graded meshes:

C
lu —uplle < —=

vV N

BUT: NO THEORY FOR ANISOTROPIC ELEMENTS!

WE ARE WORKING ON THAT!



