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Abstract

This paper deals with a finite element method to solve interior fluid-structure
vibration problems valid for compressible and incompressible fluids. It is based on
a displacement formulation for both the fluid and the solid. The pressure of the fluid
is also used as a variable for the theoretical analysis yielding a well posed mixed linear
eigenvalue problem. Lowest order triangular Raviart-Thomas elements are used for the
fluid and classical piecewise linear elements for the solid. Transmission conditions at the
fluid-solid interface are taken into account in a weak sense yielding a non conforming
discretization. The method does not present spurious or circulation modes for nonzero
frequencies. Convergence is proved and error estimates independent of the acoustic
speed are given. For incompressible fluids, a convenient equivalent stream function
formulation and a post-process to compute the pressure are introduced.

1 Introduction

Increasing attention has recently been paid to problems involving fluid-structure interac-
tions. For a survey of current results see [12] and references therein. In this paper, we
are concerned with the interaction between a fluid, either compressible or incompressible,
contained in an elastic structure (v.g., the internal elastoacoustics or hydroelasticity prob-
lems).

We consider as a model problem a 2D elastic vessel completely filled by a fluid.
Displacement variables are used for both the fluid and the solid; however, to provide a
theoretical analysis, also the pressure in the fluid is used as a variable.

Under the usual assumptions leading to linear problems, the evolution of both the fluid
and the structure is governed by second order in time linear equations. Their solution can
be written in terms of the vibration modes of the coupled system which are eigenfunctions
of a linear eigenvalue problem.

When a displacement formulation is discretized, spurious modes use to appear; this
is the case, for instance, if continuous piecewise linear finite elements are used for both
the fluid and the solid (see [11] and [3]). Such spurious modes are approximations of
pure rotational motions of the fluid which can be seen as zero frequency eigenmodes of
the continuous problem. These rotational eigenmodes are not relevant from a physical
viewpoint. However, when the discrete problem does not have zero as an eigenfrequency
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†Departamento de Matemática. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires.

1428 – Buenos Aires. Argentina
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with a corresponding eigenspace approximating this set of rotational motions, spurious
eigenmodes arise with non zero frequencies placed among those of the relevant ones.

In [1] a finite element method which does not present spurious modes is introduced for
the case of a compressible fluid. It consists in using piecewise linear elements for the solid
and Raviart-Thomas elements of lowest order for the fluid, the coupling of both being of
non conforming type. Such discretization yields a linear symmetric eigenvalue problem.

We show that this method can be adapted to deal with incompressible fluids too. In
spite of the fact that incompressible fluids are the limit case of compressible ones when the
acoustic speed goes to infinity, the proofs in [1] have to be modified since the constants in
the estimates therein blow up with the acoustic speed.

We present an alternative approach covering both the compressible and the incompress-
ible cases. We prove the convergence of our method and error estimates not depending on
the acoustic speed are given. We also prove that spurious modes do not arise when suffi-
ciently refined meshes are used. We analyze the asymptotic behavior of the eigenfrequencies
in the compressible case as the acoustic speed goes to infinity. Finally, we discuss implemen-
tation issues in the incompressible case. Numerical experiments showing the effectiveness
of the method are reported in [3] for compressible fluids and in [2] for incompressible ones.

2 The model problem

We consider the problem of determining the vibration modes of a linear elastic structure
containing an ideal (inviscid) barotropic fluid; the fluid can be compressible or incompress-
ible. Our model problem consists of a 2D polygonal vessel completely filled with the fluid
as that in Fig. 1.
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Fig. 1. Fluid and solid domains.

Let Ω
F

and Ω
S

be the domains occupied by the fluid and the solid respectively as in
Fig. 1. We assume Ω

F
to be simply connected but not necessarily convex. Γ

I
denotes the

interface between the solid and the fluid and ν its unit normal vector pointing outwards
Ω

F
. We denote by Γj , j = 1, . . . , J , the edges of the polygonal interface Γ

I
; therefore, we

have Γ
I
=
⋃J
j=1 Γj . The exterior boundary of the solid is the union of Γ

D
6= ∅ and Γ

N
: the

structure is fixed along Γ
D

and free of stress along Γ
N
; n denotes the unit outward normal

vector along Γ
N
.

Throughout this paper we use the standard notation for Sobolev spaces, norms

and seminorms. We also denote H(div,Ω
F
) :=

{

u ∈ [L2(Ω
F
)
]2

: div u ∈ L2(Ω
F
)
}

and

‖u‖2
H(div,Ω

F
) := ‖u‖2

[L2(Ω
F

)]
2 + ‖div u‖2

L2(Ω
F

). We denote by C a generic constant not

necessarily the same at each occurrence.
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We use the following notations for the physical magnitudes; in the fluid:
u: the displacement vector,
p: the pressure,
ρ

F
: the density,

c: the acoustic speed (c0 ≤ c ≤ ∞, with c = ∞ for an incompressible fluid)
and in the solid:

v: the displacement vector,
ρ

S
: the density,

λ
S

and µ
S
: the Lamé coefficients,

ε(v): the strain tensor defined by εij(v) := 1
2

(

∂vi
∂xj

+
∂vj

∂xi

)

,

σ(v): the stress tensor which is related to the strain tensor by Hooke’s law:

σij(v) := λ
S

2
∑

k=1

εkk(v)δij + 2µ
S
εij(v), i, j = 1, 2,

div [σ(v)] = (λ
S

+ µ
S
)∇( div v) + µ

S
∆v: the linear elasticity operator.

In the case of a compressible fluid, the classical elastoacoustics approximation for small
amplitude motions yields the following eigenvalue problem for the vibration modes of the
coupled system and their corresponding frequencies ω (see, for instance, [4]).

SP: Find ω ≥ 0, u ∈ H(div,Ω
F
), v ∈ [H1(Ω

S
)
]2

and p ∈ H1(Ω
F
), (u,v, p) 6= (0,0, 0), such

that:

∇p− ω2ρ
F
u = 0, in Ω

F
,(2.1)

1

ρ
F
c2
p+ div u = 0, in Ω

F
,(2.2)

div [σ(v)] + ω2ρ
S
v = 0, in Ω

S
,(2.3)

σ(v)ν + pν = 0, on Γ
I
,(2.4)

u · ν − v · ν = 0, on Γ
I
,(2.5)

σ(v)n = 0, on Γ
N
,(2.6)

v = 0, on Γ
D
.(2.7)

The coupling between the fluid and the structure is taken into account by equations
(2.4) and (2.5). The first one relates normal stresses of the solid on the interface with the
pressure into the fluid. The second one means that fluid and solid are in contact at the
interface. In spite of the fact that equations (2.3)-(2.6) of problem SP must be understood

in the sense of distributions, since p ∈ H1(Ω
F
) and v ∈ [H1(Ω

S
)
]2

, these interface conditions
are valid in the L2(Γ

I
) sense.

The problem with an incompressible fluid can be thought of as the limit case of the
previous one as c goes to infinity. In this case (2.2) should be replaced by the simple
condition divu = 0. In order to deal with both cases in a same framework we consider

1
ρ
F
c2

= 0 for an incompressible fluid (i.e., c = ∞); so (2.2) also makes sense in this case.

All that follows in this paper is valid for c = ∞ as well as for finite values of c.

3 Variational formulation

In order to state a variational formulation of problem SP we introduce the functional spaces

Q := L2(Ω
F
), H :=

[

L2(Ω
F
)
]2×[L2(Ω

S
)
]2

, X := H(div,Ω
F
)×
[

H1
Γ

D
(Ω

S
)
]2

(where H1
Γ

D
(Ω

S
)
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is the subspace of functions in H1(Ω
S
) vanishing on Γ

D
) and

V := {(u,v) ∈ X : u · ν = v · ν, on Γ
I
} .

V is a closed subspace of X. We denote by ‖ · ‖ the natural norm on X, by | · | the L2 norm
on H or on Q and by (·, ·) the corresponding inner products.

By using test functions φ in (2.1) and ψ in (2.3) such that (φ,ψ) ∈ V, and q ∈ Q
in (2.2), the following mixed variational eigenvalue problem is obtained as a variational
formulation of SP:

VP: Find λ ∈ R, (u,v, p) ∈ V ×Q, (u,v, p) 6= (0,0, 0), such that:

∫

Ω
S

σ(v) : ε(ψ) −
∫

Ω
F

p divφ = λ

(

∫

Ω
F

ρ
F
u · φ+

∫

Ω
S

ρ
S
v ·ψ

)

, ∀(φ,ψ) ∈ V,(3.1)

−
∫

Ω
F

q div u − 1

ρ
F
c2

∫

Ω
F

pq = 0, ∀q ∈ Q,(3.2)

where σ(v) : ε(ψ) :=
∑

i,j=1,2 σij(v)εij(ψ) denotes the usual inner product. Let us remark
once more that 1/(ρ

F
c2) = 0 for an incompressible fluid; then, in this case, (3.2) reduces to

− ∫Ω
F

q div u = 0 for all q ∈ Q.

As we show below, VP is a mixed eigenvalue problem which does not satisfy one of
Brezzi’s classical conditions ensuring well-posedness. We introduce some further notation
to analyze VP in this framework. We consider the following continuous bilinear forms:

a ((u,v), (φ,ψ)) :=

∫

Ω
S

σ(v) : ε(ψ), (u,v), (φ,ψ) ∈ X,

b ((u,v), q) := −
∫

Ω
F

q div u, (u,v) ∈ X, q ∈ Q,

d ((u,v), (φ,ψ)) :=

∫

Ω
F

ρ
F
u · φ+

∫

Ω
S

ρ
S
v ·ψ, (u,v), (φ,ψ) ∈ H.

Form a is symmetric and positive in the sense that a ((u,v), (u,v)) ≥ 0 for all (u,v) ∈ X.
Form d is symmetric and coercive in H. Let

W := {(u,v) ∈ V : b((u,v), q) = 0, ∀q ∈ Q} = {(u,v) ∈ V : div u = 0} ;

Brezzi’s conditions for the source problem associated to VP should be:

H1: a is coercive on W,

H2: b satisfies the inf-sup condition

inf
q∈Q









sup
(u,v)∈V

(u,v) 6=(0,0)

b ((u,v), q)

‖(u,v)‖ |q|









≥ β.

The first condition is clearly not satisfied since λ = 0 is an eigenvalue of VP. In fact,
for any ξ ∈ H1

0 (Ω
F
), ( curl ξ,0) ∈ W and a (( curl ξ,0), ( curl ξ,0)) = 0.

Let us denote K :=
{

( curl ξ,0), ξ ∈ H1
0 (Ω

F
)
}

the space of pure rotational motions into
the fluid not inducing vibrations in the solid. We show below that λ = 0 is an eigenvalue of
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problem VP with eigenspace K×{0}. To prove it we use that the bilinear form b satisfies
the inf-sup condition H2. Namely:

Lemma 3.1. There exists a strictly positive constant β such that for all q ∈ L2(Ω
F
)

sup
(u,v)∈V

(u,v) 6=(0,0)

b ((u,v), q)

‖(u,v)‖ ≥ β|q|.

Proof. Clearly, it is enough to show that, for all q ∈ L2(Ω
F
), there exists (u,v) ∈ V

satisfying
div u = q inΩ

F
and ‖(u,v)‖ ≤ C|q|.(3.3)

Let Ω := Ω
S
∪ Ω̄

F
; let q̃ ∈ L2(Ω) be the extension of q obtained by defining

q̃ := − 1

|Ω
S
|

∫

Ω
F

q in Ω
S
.(3.4)

Therefore, q̃ ∈ L2
0(Ω) := {q ∈ L2(Ω) :

∫

Ω q = 0}. Since div is an isomorphism of a

subspace of
[

H1
0 (Ω)

]2
onto L2

0(Ω) (see [9]), then there exists w ∈ [H1
0 (Ω)

]2
such that

div w = q̃ in Ω and ‖w‖[H1(Ω)]2 ≤ C‖q̃‖L2(Ω),

with C independent of q. Let u := w|Ω
F

and v := w|Ω
S
; hence, (u,v) ∈ V and it satisfies

(3.3).

Now it is simple to characterize the eigenspace of λ = 0.

Theorem 3.1. λ = 0 is an eigenvalue of VP with eigenspace K × {0}.
Proof. ∀ξ ∈ H1

0 (Ω
F
), ( curl ξ,0, 0) is clearly an eigenfunction of VP with eigenvalue

λ = 0. Conversely, let (u,v, p) ∈ V ×Q be such that
∫

Ω
S

σ(v) : ε(ψ) −
∫

Ω
F

p divφ = 0, ∀(φ,ψ) ∈ V,

−
∫

Ω
F

q div u − 1

ρ
F
c2

∫

Ω
F

pq = 0, ∀q ∈ Q.

Hence, div u = − 1
ρ
F
c2
p in Ω

F
and then, by using (φ,ψ) = (u,v) in the first equation,

∫

Ω
S

σ(v) : ε(v) + 1
ρ
F
c2

∫

Ω
F

p2 = 0. Therefore, because of Korn’s inequality, v = 0 in Ω
S

and, in the compressible case, p = 0.
In both cases, u satisfies div u = 0 in Ω

F
and u · ν = v · ν = 0 on Γ

I
. Therefore, there

exists ξ ∈ H1
0 (Ω

F
) such that u = curl ξ in Ω

F
. To conclude the proof in the incompressible

case we use Lemma 3.1 to show that p = 0 since
∫

Ω
F

p divφ =
∫

Ω
S

σ(v) : ε(ψ) = 0 for all

(φ,ψ) ∈ V.

The bilinear form a is not coercive on W. However, a∗ := a+ d can be used instead of
a. Let us consider this modified eigenvalue problem:

VP∗: Find λ ∈ R, (u,v, p) ∈ V ×Q, (u,v, p) 6= (0,0, 0), such that:

a∗((u,v), (φ,ψ)) + b((φ,ψ), p) = λd((u,v), (φ,ψ)), ∀(φ,ψ) ∈ V,

b((u,v), q) − 1

ρ
F
c2

(p, q) = 0, ∀q ∈ Q.
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λ is an eigenvalue of VP if and only if 1 + λ is an eigenvalue of VP∗ and the
eigenfunctions for both problems coincide. Problem VP∗ is easier to deal with than VP

because of the following lemma.

Lemma 3.2. a∗ is coercive on {(u,v) ∈ X : divu = 0} ⊃ W.
Proof. For all (u,v) ∈ X such that divu = 0,

a∗((u,v), (u,v)) =

∫

Ω
S

σ(v) : ε(v) +

∫

Ω
F

ρ
F
|u|2 +

∫

Ω
S

ρ
S
|v|2 ≥ α‖(u,v)‖2,

with α being the minimum between ρ
F

and the constant in Korn’s inequality.

The bilinear forms a∗ and b satisfy both Brezzi’s conditions. Then, the mixed source
problem associated to VP∗ is well-posed. Moreover, we have the following result:

Lemma 3.3. Given (f ,g) ∈ H, w ∈ Q and δ ≥ 0, there exists a unique solution
(u,v, p) ∈ V ×Q of the source problem

a∗((u,v), (φ,ψ)) + b((φ,ψ), p) = d((f ,g), (φ,ψ)), ∀(φ,ψ) ∈ V,

b((u,v), q) − δ(p, q) = (w, q), ∀q ∈ Q.

Moreover,
‖(u,v)‖ + |p| ≤ C (|(f ,g)| + |w|) ,(3.5)

with a constant C independent of δ.
Proof. See, for instance, [5].

4 Characterization of the spectrum

If we consider w = 0 and δ = 1
ρ
F
c2

in Lemma 3.3, we obtain the source problem associated

to VP∗. Namely, to find (u,v, p) ∈ V ×Q such that

a∗((u,v), (φ,ψ)) + b((φ,ψ), p) = d((f ,g), (φ,ψ)), ∀(φ,ψ) ∈ V,(4.1)

b((u,v), q) − 1

ρ
F
c2

(p, q) = 0, ∀q ∈ Q.(4.2)

Let
T : H −→ V

(f ,g) 7−→ (u,v)

with (u,v, p) being the solution of (4.1)-(4.2). Because of (3.5), T is a bounded operator
and its bound does not depend on the acoustic speed c (the bound being valid even for
c = ∞).

(λ, (u,v)) is an eigenpair of T|V if and only if there exists p ∈ L2(Ω
F
) such that

(

1
λ , (u,v, p)

)

is a solution of VP∗ and, consequently,
(

1
λ − 1, (u,v, p)

)

a solution of VP.

Therefore, the knowledge of the spectrum of T|V gives complete information about the
solutions of our original problem.

T|V is not compact; in fact, T|K is the identity on the infinite dimensional subspace
K ⊂ V. However, as we show below, the restriction of T to the orthogonal complement of
K is compact and this can be used to characterize the spectrum of T.

For any function f ∈ [

L2(Ω
F
)
]2

, we may write a Helmholtz decomposition f =
curl ξ + ∇ϕ with ξ ∈ H1

0 (Ω
F
) and ϕ ∈ H1(Ω

F
). Therefore, the orthogonal complement of

K in H is

G := K⊥
H =

{

(∇ϕ,v), ϕ ∈ H1(Ω
F
), v ∈

[

L2(Ω
S
)
]2
}
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and, hence, K⊥
V = G ∩ V. The following lemma shows that G ∩ V is invariant for T.

Lemma 4.1. T(G) ⊂ G ∩ V.
Proof. Let (f ,g) ∈ G and let (u,v, p) ∈ V × Q be the solution of problem (4.1)-

(4.2); for any ( curl ξ,0) ∈ K, b(( curl ξ,0), p) = 0 and, hence, ((u,v), ( curl ξ,0)) =
1
ρ
F

a∗((u,v), ( curl ξ,0)) = 1
ρ
F

d((f ,g), ( curl ξ,0)) = ((f ,g), ( curl ξ,0)) = 0; therefore,

(u,v) ∈ K⊥
V = G ∩ V.

On the other hand, T|G is a regularizing operator. In fact we have the following a
priori estimate.

Theorem 4.1. There exist constants s ∈
(

1
2 , 1
]

, t ∈ (0, 1] and C > 0 (not depending

on the acoustic speed c) such that if (u,v, p) ∈ V×Q is the solution of problem (4.1)-(4.2)

with (f ,g) ∈ G, then u ∈ [Hs(Ω
F
)]2, v ∈ [H1+t(Ω

S
)
]2

, p ∈ H1(Ω
F
) and

‖u‖
[Hs(Ω

F
)]

2 + ‖v‖
[H1+t(Ω

S
)]

2 + ‖p‖H1(Ω
F

) ≤ C|(f ,g)|.

Proof. Let (f ,g) ∈ G and let (u,v, p) ∈ V ×Q be the solution of problem (4.1)-(4.2).
Because of Lemma 4.1, (u,v) ∈ G ∩ V. Therefore, there exists ϕ ∈ H1(Ω

F
) such that

u = ∇ϕ. Since (u,v) ∈ V and divu = − 1
ρ
F
c2
p, then ϕ is a solution of the compatible

Neumann problem
∆ϕ = − 1

ρ
F
c2
p, in Ω

F
,

∂ϕ
∂ν = v · ν, on Γ

I
.

By using the standard a priori estimate for this Neumann problem (see, for instance, [10])
we know that ϕ ∈ H1+s(Ω

F
), where s = 1, if Ω

F
is convex, and s = π

θ , with θ the biggest
reentrant corner of Ω

F
, otherwise, and

‖u‖
[Hs(Ω

F
)]

2 = ‖∇ϕ‖
[Hs(Ω

F
)]

2 ≤ C




J
∑

j=1

‖v · ν‖H1/2(Γj)
+

1

ρ
F
c2
‖p‖L2(Ω

F
)



 ≤ C|(f ,g)|,

(4.3)
where we have used (3.5) for the last inequality.

On the other hand, by using φ ∈ [C∞
0 (Ω

F
)]2 and ψ = 0 in (4.1), it turns out that

∇p+ ρ
F
u = ρ

F
f .(4.4)

Hence p ∈ H1(Ω
F
) and, because of (3.5),

‖p‖H1(Ω
F

) ≤ C|(f ,g)|.(4.5)

Finally, for all ψ ∈
[

H1
Γ

D
(Ω

S
)
]2

there exists φ ∈ H(div,Ω
F
) such that (φ,ψ) ∈ V.

Then, by using (4.1) and (4.4), we obtain
∫

Ω
S

σ(v) : ε(ψ) +

∫

Ω
S

ρ
S
v ·ψ =

∫

Ω
S

ρ
S
g ·ψ +

∫

Γ
I

pψ · ν, ∀ψ ∈
[

H1
Γ

D
(Ω

S
)
]2
.

Hence, v is the solution (in the sense of distributions) of the following elasticity problem:

−div [σ(v)] + ρ
S
v = ρ

S
g, in Ω

S
,

σ(v)ν = −pν, on Γ
I
,

σ(v)n = 0, on Γ
N
,

v = 0, on Γ
D
.
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Therefore, by using the standard a priori estimate for this problem, v ∈ [H1+t(Ω
S
)
]2

and

‖v‖
[H1+t(Ω

S
)]

2 ≤ C
{

‖g‖
[L2(Ω

S
)]

2 + ‖p‖H1/2(Γ
I
)

}

≤ C|(f ,g)|(4.6)

with t ∈ (0, 1] depending on the reentrant corners of ∂Ω
S
, on the angles between Γ

N
and

Γ
D

and on the Lamé coefficients λ
S

and µ
S

(see [10]).
Finally, notice that the constants C in (4.3), (4.5) and (4.6) only depends on standard

a priori estimates and (3.5), hence they are independent of the acoustic speed c.

Now we can give a complete characterization of the eigenpairs of T|V and hence of the
solutions of VP.

Theorem 4.2. The spectrum of T|V consists of the eigenvalue λ = 1 and a sequence of
finite multiplicity eigenvalues {λn : n ∈ N} ⊂ (0, 1) converging to 0. K is the eigenspace of
λ = 1 and each eigenvector (un,vn) associated to an eigenvalue λn < 1 satisfies curlun = 0.

Proof. Since T|K is the identity, K⊥
V = G ∩ V and, T(G ∩ V) ⊂ G ∩ V (Lemma

4.1), it is enough to prove that T|G∩V : G ∩ V −→ G ∩ V is compact. Now, because of

Theorem 4.1, T(G ∩V) ⊂ [Hs(Ω
F
)]2 × [H1+t(Ω

S
)
]2

and the latter is compactly imbedded
in H. Therefore, T|G∩V is compact.

As a consequence of the last two theorems we have the following result.

Theorem 4.3. Let (u,v, p) be an eigenfunction of problem VP∗ with corresponding

eigenvalue λ > 1. Then u ∈ [Hs(Ω
F
)]2, v ∈ [H1+t(Ω

S
)
]2

, p ∈ H1+s(Ω
F
) and

‖u‖
[Hs(Ω

F
)]

2 + ‖v‖
[H1+t(Ω

S
)]

2 + ‖p‖H1+s(Ω
F

) ≤ C|(u,v)|,

with s and t as in the previous theorem and C a strictly positive constant independent of c.
Proof. Since λ 6= 1, because of Theorem 4.2, (u,v) ∈ G. Now, (u,v, p) is the solution

of problem (4.1)-(4.2) with (f ,g) = 1
λ(u,v) ∈ G. Therefore, Theorem 4.1 applies to

this case. Moreover, ∇p + ρ
F
u = λρ

F
u and so, because of (4.3), p ∈ H1+s(Ω

F
) with

‖p‖H1+s(Ω
F

) ≤ C|(u,v)|.

5 Finite element discretization

In the previous section it was shown that T|G∩V is compact. However, a standard
discretization of this operator would require to use finite element spaces of irrotational
functions. To avoid it, we will deal with the non compact operator T instead.

T has an infinite dimensional eigenspace K consisting of pure rotational motions which
are not physically relevant since they do not induce vibrations into the structure. However,
a suitable numerical approximation should take care of them. Otherwise, spurious modes
may appear.

In [1] a discretization which does not present spurious modes is introduced for the
case of a compressible fluid. We will show that this method can be successfully used for
incompressible fluids too. However, the proofs in [1] are not directly valid in this case since
the constants in the estimates therein depend on the acoustic speed; in fact, these constants
blow up when c goes to infinity. Alternative proofs with constants not depending on c will
be given below.

Let {Th} be a family of regular triangulations of Ω
F
∪ Ω

S
such that every triangle is

completely contained either in Ω
F

or in Ω
S

and such that the end points of Γ
D

coincide
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with nodes of the triangulation. For each component of the displacements in the solid we
use the standard piecewise linear finite element space

Lh(ΩS
) :=

{

v ∈ H1(Ω
S
) : v|T ∈ P1(T ), ∀T ∈ Th, T ⊂ Ω

S

}

and, for the fluid, the Raviart-Thomas space [15]

Rh(ΩF
) := {u ∈ H(div,Ω

F
) : u|T ∈ R0(T ), ∀T ∈ Th, T ⊂ Ω

F
} ,

where
R0(T ) :=

{

u ∈ P1(T )2 : u(x, y) = (a+ bx, c+ by), a, b, c ∈ R
}

.

The degrees of freedom in Rh(ΩF
) are the (constant) values of the normal component of u

along each edge of the triangulation. The discrete analogue of X is

Xh :=
{

(u,v) ∈ Rh(ΩF
) × [Lh(ΩS

)]2 : v|Γ
D

= 0
}

.

Finally, for the pressures we use the space of piecewise constant functions

Qh :=
{

p ∈ L2(Ω
F
) : p|T ∈ P0(T ), ∀T ∈ Th, T ⊂ Ω

F

}

.

The conforming finite element spaces V ∩ Xh are not adequate for our problem. In
fact, any function of these spaces has constant normal components along each edge Γj of
the polygonal interface Γ

I
and, hence, only functions with this same property could be well

approximated. The vibration modes of the physical problem does not have constant normal
components along these edges, so we are led to impose a weaker condition than (2.5) to
define our discrete spaces. In fact, we use the following ones:

Vh :=

{

(u,v) ∈ Xh :

∫

ℓ
(u · ν − v · ν) = 0, ∀ℓ ⊂ Γ

I
, ℓ edge of T, T ∈ Th

}

.

Let us remark that for (u,v) ∈ Vh, u · ν and v · ν coincide at the midpoint of each
edge ℓ ⊂ Γ

I
but, in general, they do not coincide on the whole edge. Hence, Vh 6⊂ V; that

is, our method turns out to be non conforming.
The theorem below shows that the bilinear forms a∗ and b satisfy both Brezzi’s

conditions on the finite element spaces Vh and Qh.

Theorem 5.1. The bilinear forms a∗ and b satisfy:
H1h: a

∗ is coercive on Wh := {(u,v) ∈ Vh : b((u,v), q) = 0, ∀q ∈ Qh},

H2h: There exists β > 0 not depending on h such that

inf
q∈Qh









sup
(u,v)∈Vh

(u,v) 6=(0,0)

b ((u,v), q)

‖(u,v)‖ |q|









≥ β.

Proof. For all u ∈ Rh(ΩF
), div u ∈ Qh; then Wh = {(u,v) ∈ Vh : div u = 0}. Since

a∗ was proved to be coercive on {(u,v) ∈ X : div u = 0} ⊃ Wh (Lemma 3.2), then H1h
is true.

To prove H2h, we are going to proceed as in Lemma 3.1 and show that for all q ∈ Qh
there exists (uh,vh) ∈ Vh satisfying

div uh = q inΩ
F

and ‖(uh,vh)‖ ≤ C|q|.(5.1)
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Since Qh ⊂ L2(Ω
F
), let (u,v) ∈ V be defined as in the proof of Lemma 3.1. Then

(u,v) satisfies (3.3).
Let vh ∈ [Lh(ΩS

)]2 be a Clement’s type interpolant of v, vanishing on Γ
D
∪ Γ

N
and

defined at the nodes B ∈ Γ
I

in the following way:

vh(B) :=
1

|ℓ−B| + |ℓ+B|

∫

ℓ−B∪ℓ+B

v,

where ℓ−B and ℓ+B are the two edges on Γ
I
sharingB. Proceeding as in [17] it is simple to prove

that ‖vh‖[H1(Ω
S
)]

2 ≤ C‖v‖
[H1(Ω

S
)]

2 , and hence, because of (3.3), ‖vh‖[H1(Ω
S
)]

2 ≤ C|q|.
On the other hand, by construction,

∫

Γ
I

vh =
∫

Γ
I

v and, hence,
∫

Γ
I

vh · ν =
∫

Γ
I

v · ν =
∫

Γ
I

u · ν =
∫

Ω
F

div u =
∫

Ω
F

q. Therefore, the following Neumann problem is compatible,

∆ϕ = q, in Ω
F
,

∂ϕ
∂ν = vh · ν, on Γ

I

and, so, it has a unique solution ϕ ∈ H1(Ω
F
)/P0. Because of the usual a priori estimate,

ϕ ∈ H1+s(Ω
F
) with s as in Theorem 4.1 and

‖∇ϕ‖
[Hs(Ω

F
)]

2 ≤ C


|q| +
J
∑

j=1

‖vh · ν‖H1/2(Γj)



 ≤ C|q|.

Let uh ∈ Rh(ΩF
) be the standard Raviart-Thomas interpolant of ∇ϕ (see [15]). For each

edge ℓ ⊂ Γ
I
,
∫

ℓ uh · ν =
∫

ℓ
∂ϕ
∂ν =

∫

ℓ vh · ν; hence, (uh,vh) ∈ Vh. On the other hand, divuh
is the L2(Ω

F
) projection of div (∇ϕ) = q onto Qh; since q ∈ Qh, then divuh = q. Finally,

by the stability property of this interpolation, ‖uh‖H(div,Ω
F

) ≤ C‖∇ϕ‖H1+s(Ω
F

) ≤ C|q|.
Therefore, (uh,vh) ∈ Vh satisfies (5.1).

By applying the standard theory of mixed methods, we have an analogous result to
Lemma 3.3 for the discrete problem.

Lemma 5.1. Given (f ,g) ∈ H, w ∈ Q and δ ≥ 0, there exists a unique solution
(uh,vh, ph) ∈ Vh ×Qh of the source problem

a∗((uh,vh), (φ,ψ)) + b((φ,ψ), ph) = d((f ,g), (φ,ψ)), ∀(φ,ψ) ∈ Vh,

b((uh,vh), q) − δ(ph, q) = (w, q), ∀q ∈ Qh.

Moreover,

‖(uh,vh)‖ + |ph| ≤ C (|(f ,g)| + |w|) ,(5.2)

with a constant C independent of δ and h.
Proof. See, for instance, [5].

Now, by considering w = 0 and δ = 1
ρ
F
c2

we can define a discrete analogue of T. Namely

Th : H −→ Vh where (uh,vh) = Th(f ,g) is such that there exists ph ∈ Qh satisfying

a∗((uh,vh), (φ,ψ)) + b((φ,ψ), ph) = d((f ,g), (φ,ψ)), ∀(φ,ψ) ∈ Vh,(5.3)

b((uh,vh), q) −
1

ρ
F
c2

(ph, q) = 0, ∀q ∈ Qh.(5.4)
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Because of (5.2), the operators Th are bounded uniformly on h and c. The spectra of these
operators provide good approximations of the spectrum of T as it is shown in the next
section.

In other words, we approximate the solutions of problem VP∗ by means of its discrete
analogue:

VP∗
h: Find λh ∈ R, (uh,vh, ph) ∈ Vh ×Qh, (uh,vh, ph) 6= (0,0, 0), such that:

a∗((uh,vh), (φ,ψ)) + b((φ,ψ), ph) = λhd((uh,vh), (φ,ψ)), ∀(φ,ψ) ∈ Vh,(5.5)

b((uh,vh), q) −
1

ρ
F
c2

(ph, q) = 0, ∀q ∈ Qh.(5.6)

6 Spectral approximation

In order to show that the eigenvalues and eigenfuctions of T|V can be well approximated by
those of Th|Vh

we are going to use the theory developed in [7] for non compact operators
as it is used (in the case of a compressible fluid) in [1].

Throughout this section we write σ(·) to denote the spectrum of an operator.
Since Vh ⊂ X, Th can be seen as a conforming discretization of the operator

T|X : X −→ X. On the other hand, the knowledge of the spectrum of T|X gives complete
information about the spectrum of T|V. In fact, σ(T|X) = σ(T|V) ∪ {0} (see [1]).

Two properties have to be proved to apply the theory in [7]. The first one (P1) means
that the finite element spaces used are adequate to approximate the physically relevant
eigenfunctions of T. The second one (P2) means that Th provides good approximations
of T when applied to sources (f ,g) in the discrete space. Both properties will be shown to
be valid uniformly on c.

On the other hand, the discrete operators Th have eigenspaces providing good
approximations of the infinite dimensional eigenspace K of T with exactly the same
eigenvalue.

Theorem 6.1. λ = 1 is an eigenvalue of Th with corresponding eigenspace Kh =

K ∩ Vh =
{

( curl ξ,0), ξ ∈ Lh(ΩF
) : ξ|Γ

I
= 0

}

.

Proof. The proof is omitted since it is essentially the same as that of Theorem 4.2 in
[1].

A Vh-interpolant is introduced in [1] and the following approximation property is
proved:

Lemma 6.1. There exist a linear operator Ih : V∩
{

[Hs(Ω
F
)]2 × [H1+t(Ω

S
)
]2
}

−→ Vh

and a strictly positive constant C such that, if div u ∈ H1(Ω
F
), then

‖(u,v) − Ih(u,v)‖ ≤ Chr
{

‖u‖
[Hs(Ω

F
)]

2 + ‖div u‖H1(Ω
F

) + ‖v‖
[H1+t(Ω

S
)]

2

}

,

where r := min{s, t} with s ∈
(

1
2 , 1
]

and t ∈ (0, 1] as in Theorem 4.1.

Proof. See Theorem 5.2 in [1].

Property P1 is a simple consequence of the previous lemma.

Theorem 6.2. (P1) For each eigenfunction (u,v) of T associated to an eigenvalue
λ ∈ (0, 1), with ‖(u,v)‖ = 1, there exists a strictly positive constant C, depending neither
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on h nor on c, such that
dist ((u,v),Vh) ≤ Chr,

where dist is the distance measured in the norm ‖ · ‖ and r := min{s, t} as in the previous
lemma.

Proof. Being T(u,v) = λ(u,v), there exists p ∈ L2(Ω
F
) such that (u,v, p) is an

eigenfunction of problem VP∗ with eigenvalue 1
λ > 1. Hence, since ‖(u,v)‖ = 1, by

using Theorem 4.3, we have

‖u‖
[Hs(Ω

F
)]

2 + ‖v‖
[H1+t(Ω

S
)]

2 + ‖p‖H1(Ω
F

) ≤ C|(u,v)| ≤ C,

with C depending on λ but not on c. Moreover, since div u = 1
ρ
F
c2
p, then, for any c ≥ c0

(finite or infinite), ‖div u‖H1(Ω
F

) ≤ C. So, by applying Lemma 6.1, we have

dist ((u,v),Vh) ≤ ‖(u,v) − Ih(u,v)‖ ≤ Chr.

To prove P2 we need to modify the proofs in [1] in order to obtain a result independent
of the acoustic speed, valid even for c = ∞.

Theorem 6.3. (P2) There exists a strictly positive constant C, depending neither on
h nor on c, such that, for all (f ,g) ∈ Vh,

‖(T − Th)(f ,g)‖ ≤ Chr‖(f ,g)‖.

with r = min{s, t} as above.
Proof. Since T and Th coincide on Kh, it is enough to prove the theorem for

(f ,g) ∈ K
⊥

Vh
h . So, let (f ,g) ∈ K

⊥
Vh

h ; since (f ,g) ∈ Vh, then the following Neumann
problem is compatible:

∆ϕ = div f , in Ω
F
,

∂ϕ
∂ν = g · ν, on Γ

I
.

Let ϕ be a solution of this problem; because of the standard a priori estimate, ϕ ∈ H1+s(Ω
F
)

and ‖∇ϕ‖
[Hs(Ω

F
)]

2 ≤ C‖(f ,g)‖. Now, div (f −∇ϕ) = 0 and
∫

Γ
I

(f −∇ϕ) ·ν = 0; therefore,

there exists ζ ∈ H1(Ω
F
) such that

(f ,g) = ( curl ζ,0) + (∇ϕ,g).(6.1)

Since T and Th are bounded uniformly on c (and Th on h too),

‖(T − Th)( curl ζ,0)‖ ≤ (‖T‖ + ‖Th‖) ‖( curl ζ,0)‖ ≤ C| curl ζ|
[L2(Ω

F
)]

2 .

Now, | curl ζ|
[L2(Ω

F
)]

2 ≤ Chs‖∇ϕ‖
[Hs(Ω

F
)]

2 (see Lemma 5.5 of [1]); hence,

‖(T − Th)( curl ζ,0)‖ ≤ Chs‖(f ,g)‖.(6.2)

On the other hand, let (u,v) := T(∇ϕ,g); let p ∈ Q be such that (u,v, p) is the
solution of the mixed problem (4.1)-(4.2) with f substituted by ∇ϕ. Analogously, let
(uh,vh) := Th(∇ϕ,g) and ph ∈ Qh such that (uh,vh, ph) is the solution of the discrete
problem (5.3)-(5.4) with f again substituted by ∇ϕ. That is, (uh,vh, ph) is the finite
element approximate solution of (4.1)-(4.2) on Vh ×Qh. Since Vh is not a subspace of V,
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it is a nonconforming approximation; however, the standard theory can be easily adapted
to cover this case.

Following the lines of [5] (Sections II.2.4 and II.2.6), by using that Vh and Qh satisfy
both Brezzi’s conditions (Theorem 5.1), it is easy to show that

‖(u,v) − (uh,vh)‖ ≤ C
[

dist ((u,v),Vh) + dist (p,Qh) +(6.3)

sup
(φ,ψ)∈Vh

(φ,ψ) 6=(0,0)

a∗((u,v), (φ,ψ)) + b(p, (φ,ψ)) − d((∇ϕ,g), (φ,ψ))

‖(φ,ψ)‖

]

,

with a constant C depending neither on c nor on h.
Since (∇ϕ,g) ∈ G, by virtue of Theorem 4.1,

‖u‖
[Hs(Ω

F
)]

2
‘
+ ‖v‖

[H1+t(Ω
S
)]

2 + ‖p‖H1(Ω
F

) ≤ C|(∇ϕ,g)|

(C independent of c); hence,

dist (p,Qh) ≤ Ch‖p‖H1(Ω
F

) ≤ Ch|(∇ϕ,g)|(6.4)

and, by using Lemma 6.1 as in Theorem 6.2,

dist ((u,v),Vh) ≤ Chr|(∇ϕ,g)|.(6.5)

The remaining consistency term in the right hand side of (6.3) can be bounded proceeding
as in Lemma 5.7 of [1]; by so doing, we obtain for all (φ,ψ) ∈ Vh

|a∗((u,v), (φ,ψ)) + b(p, (φ,ψ)) − d((∇ϕ,g), (φ,ψ))| =

∣

∣

∣

∣

∣

∫

Γ
I

p(φ · ν −ψ · ν)

∣

∣

∣

∣

∣

(6.6)

≤ Ch|p|H1(Ω
F

)‖(φ,ψ)‖
≤ Ch|(∇ϕ,g)| ‖(φ,ψ)‖.

Therefore, by using (6.4), (6.5) and (6.6) in (6.3), we obtain

‖(T − Th)(∇ϕ,g)‖ = ‖(u,v) − (uh,vh)‖ ≤ Chr|(∇ϕ,g)| ≤ Chr|(f ,g)|,

which, together with (6.2) and (6.1), allow us to conclude the theorem.

Once properties P1 and P2 have been proved, we may apply the spectral approximation
theory of [7] as it was used in [1] for a compressible fluid. Next theorem shows that there
are no spurious eigenvalues for h small enough.

Theorem 6.4. Let J be a closed interval such that J ∩σ(T) = ∅. There exists a strictly
positive constant hJ such that if h ≤ hJ then J ∩ σ(Th) = ∅.

For an open interval I ⊂ (0, 1), let EI be the direct sum of the eigenspaces of T

associated with its eigenvalues in I. Let us denote by Eh
I the analogue for Th. We have

the following error estimates for approximate eigenmodes.

Theorem 6.5. There exist strictly positive constants C and hI such that, if h ≤ hI ,
then
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1. for each (uh,vh) ∈ Eh
I with ‖(uh,vh)‖ = 1, dist ((uh,vh),EI) ≤ Chr;

2. for each (u,v) ∈ EI with ‖(u,v)‖ = 1, dist ((u,v),Eh
I ) ≤ Chr;

in both cases r := min{s, t} as above.

As a consequence of this theorem, if I ∩ σ(T) = {λ}, with λ ∈ (0, 1), then, for h small
enough, the dimension of the linear space Eh

I must coincide with that of EI (let us say
n). This implies the convergence to λ of exactly n eigenvalues of the discrete problem

λ
(1)
h . . . λ

(n)
h . Moreover, the following error estimate with a double order of convergence has

been proved in [14]:

Theorem 6.6. There exist strictly positive constants C and hI such that if h ≤ hI then

∣

∣

∣λ− λ
(i)
h

∣

∣

∣ ≤ Ch2r, i = 1, . . . , n,

with r as above and C depending on λ.

This theorem implies that the eigenvalues λ > 1 of VP∗ are approximated with order
h2r by as many eigenvalues of VP∗

h (repeated according to their multiplicities) as the
multiplicity of λ. On the other hand, Theorem 6.4 shows that all the eigenvalues of VP∗

h

are approximations of eigenvalues of VP∗. Theorems 3.1 and 6.1 show that λ = 1 is
an eigenvalue of both problems with corresponding eigenspaces K × {0} and Kh × {0}
respectively. Moreover, VP∗

h does not have any other eigenvalue λh 6= 1 converging to

λ = 1. In fact, if (λh, (uh,vh, ph)) is an eigenpair of VP∗
h with (uh,vh) ∈ K

⊥
Vh

h , then
λh ≥ 1 + δ with δ > 0 independent of h and c. To prove this, it is enough to show that

∫

Ω
S

σ(vh) : ε(vh) +
1

ρ
F
c2

∫

Ω
F

p2
h ≥ δ

(

∫

Ω
F

ρ
F
|uh|2 +

∫

Ω
S

ρ
S
|vh|2

)

(6.7)

(in fact, if (6.7) is true, then by using (φ,ψ, q) = (uh,vh, ph) in VP∗
h it turns out that

λh ≥ 1 + δ). To prove (6.7) we split (uh,vh) as in (6.1): (uh,vh) = ( curl ζ,0) + (∇ϕ,vh),
again with (∇ϕ,vh) ∈ V. Proceeding as in Theorem 6.3 we have

‖(uh,vh)‖ ≤ | curl ζ|
[L2(Ω

F
)]

2 + ‖(∇ϕ,vh)‖

≤ Chs‖(uh,vh)‖ +C

{

|div uh| + ‖vh‖[H1(Ω
F

)]
2

}

.

Hence, for h small enough, ‖(uh,vh)‖ ≤ C

{

|div uh| + ‖vh‖[H1(Ω
F

)]
2

}

and so (6.7) is a

consequence of this inequality, Korn’s inequality and the fact that div uh = 1
ρ
F
c2
ph.

Now, let λ1 ≤ λ2 ≤ . . . ≤ λn ≤ . . . be all the eigenvalues of VP∗ (counted by their
multiplicities) with irrotational corresponding eigenmodes (i.e., those λn > 1; see Theorem
4.2). Let λh1 ≤ λh2 ≤ . . . ≤ λhNh

be all the eigenvalues of VP∗
h strictly greater than 1

(counted by their multiplicities too). Then, for all j ∈ N,

|λhj − λj | ≤ Ch2r(6.8)

with h small enough as to have Nh ≥ j and C depending on λj but neither on h nor on
c ∈ [c0,∞].
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7 Asymptotic behavior for c → ∞
The vibration problem for an incompressible fluid is a limit case of that for a compressible
one. In this section we show that the eigenfrequencies in the first case are actually limits of
those in the second case as c goes to infinity. This result is true for the continuous problem
as well as for the discretization analyzed above.

The results in this section show that it is possible to deal with a nearly incompressible
fluid by considering it as perfectly incompressible. An advantage of such a treatment is
that less degrees of freedom are necessary to discretize the fluid in the last case. In fact, in
the next section, we show that, in the incompressible case, a stream function can be used
instead of the displacements into the fluid in order to save computational effort.

To analyze the asympotic behavior of our problem, we are going to use the arguments
in [8]. In that paper a different problem is considered: the Stokes one and a regularized
(or penalized) version of it. However, the arguments therein are general as it can be easily
verified; indeed their proofs are based on the min-max principle and estimates like (7.1)
and (7.2) below for the source problem.

Throughout this section we use an index c in order to remark explicitely the dependence
of certain magnitudes on the acoustic speed c ∈ [c0,∞]. For instance, for a given (f ,g) ∈ H,
let (uc,vc, pc) be the solution of the source problem (4.1)-(4.2) and (uch,v

c
h, p

c
h) that of the

corresponding dicrete problem (5.3)-(5.4). Because of (5.2), we know that these solutions
are uniformly bounded with respect to h and c, that is,

‖(uch,vch)‖ ≤ C|(f ,g)|.(7.1)

On the other hand, since the discrete source problem is well posed (Lemma 5.1), then
it is immediate to show that the solutions of (5.3)-(5.4) for finite c converge to that for
c = ∞ with an error of order 1

c2
. More precisely, we have

‖(uch,vch) − (u∞
h ,v

∞
h )‖ ≤ C

c2
|(f ,g)|.(7.2)

The number of solutions of the discrete problem for the incompressible case is smaller
than that for the compressible one. To show this, we rewrite the mixed problem VP∗

h

as a true eigenvalue problem. We need to distinguish between the compressible and the
incompressible cases. In the first one, by using (5.6), the pressure can be eliminated in
(5.5) obtaining the following variational problem:

CPh: Find λch ∈ R, (uch,v
c
h) ∈ Vh, (uch,v

c
h) 6= (0,0), such that:

a∗((uch,v
c
h), (φ,ψ)) + ρ

F
c2
∫

Ω
F

div uch divφ = λchd((u
c
h,v

c
h), (φ,ψ)), ∀(φ,ψ) ∈ Vh.

CPh is equivalent to VP∗
h for c <∞. In fact, clearly, any solution of VP∗

h gives a solution
of CPh. Conversely, if (λch, (u

c
h,v

c
h)) is an eigenpair of CPh, then

(

λch, (u
c
h,v

c
h, ρF

c2 div uch)
)

is an eigenpair of VP∗
h.

In the incompressible case, instead, (5.6) implies that div u∞
h = 0 in Ω

F
and hence the

solutions can be found in the subspace Wh := {(u,v) ∈ Vh : div u = 0}. Therefore, in
this case, we have the following problem:

IPh: Find λ∞h ∈ R, (u∞
h ,v

∞
h ) ∈ Wh, (u∞

h ,v
∞
h ) 6= (0,0), such that:

a∗((u∞
h ,v

∞
h ), (φ,ψ)) = λ∞h d((u

∞
h ,v

∞
h ), (φ,ψ)), ∀(φ,ψ) ∈ Wh.
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IPh is equivalent to VP∗
h for c = ∞. In fact, clearly, any solution of VP∗

h gives a solution
of IPh. Conversely, given an eigenpair (λ∞h , (u

∞
h ,v

∞
h )) of IPh, since b satisfies the inf-sup

condition H2h, then there exists p∞h ∈ Qh such that (λ∞h , (u
∞
h ,v

∞
h , p

∞
h )) is an eigenpair of

VP∗
h (see [9]).
Now, let Mh and Nh be the number of eigenvalues of VP∗

h (counted by their
multiplicities) for a compressible and for an incompressible fluid respectively. Because of the
previous analysis, these numbers are equal to the dimensions of Vh and Wh respectively.
Since Wh ⊂ Vh, then Nh ≤Mh.

In both cases, the smallest eigenvalue is λh = 1 with the same multiplicity; in fact,
its eigenspace is Kh × {0} independently of c (Theorem 6.1). The other eigenvalues of
the incompressible problem are approximated by those of the compressible one. In fact,
let M ′

h := Mh − dim (Kh) and N ′
h := Nh − dim (Kh); let λch1 ≤ λch2 ≤ . . . ≤ λchM ′

h
and

λ∞h1 ≤ λ∞h2 ≤ . . . ≤ λ∞hN ′
h

be all the eigenvalues strictly greater than one in each case. We

have the following result:

Theorem 7.1. For any j ∈ N, there exist strictly positive constants h∗, c∗ and C such
that if h ≤ h∗ and c ≥ c∗ then

|λchj − λ∞hj | ≤
C

c2

with C independent of h and c.
Proof. The arguments in [8] can be followed exactly in our case. Indeed, the proofs

therein are based on estimates like (7.1) and (7.2) and on the fact that |λ∞hj − λ∞j | → 0 as
h→ 0, with λ∞j being the corresponding eigenvalue of the continuous problem VP∗ which,
in our case, is a consequence of (6.8).

A similar result is valid for the continuous problem. Also in this case, for finite or
infinite values of c, the smallest eigenvalue is λ = 1 with the infinite dimensional eigenspace
K × {0} (Theorem 3.1). Let λc1 ≤ λc2 ≤ . . . ≤ λcn ≤ . . . be all the eigenvalues of VP∗

(counted by their multiplicities), such that λcn > 1. We have the following result:

Theorem 7.2. For any j ∈ N, there exist strictly positive constants c∗ and C such
that if c ≥ c∗ then

|λcj − λ∞j | ≤ C

c2

with C independent of h and c.
Proof. By adding and subtracting λchj and λ∞hj and by using Theorem 7.1 and (6.8) we

conclude the theorem by passing to the limit as h→ 0.

In the discrete as well as in the continuous case, the problem with a compressible fluid
has eigenfrequencies ωc =

√
λc which do not converge to those of the incompressible one

as the acoustic speed goes to infinity. These additional eigenfrequencies correspond to
vibration modes which, in the case of a compressible fluid into a perfectly rigid cavity, are
exactly proportional to c. In the case of an elastic solid it has been experimentally observed
(see [2]) that there are eigenfrequencies in the discrete compressible problem which blow
up like c as c→ ∞.

We can characterize these high eigenfrequencies by using formal asymptotic expansions.
Let λc ∈ R and (uc,vc, pc) ∈ V be a solution of VP. By eliminating pc into (3.1) by means
of (3.2) we have that

1

c2

∫

Ω
S

σ(vc) : ε(ψ) +

∫

Ω
F

ρ
F

div uc divφ(7.3)
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= δc
(

∫

Ω
F

ρ
F
uc · φ+

∫

Ω
S

ρ
S
vc ·ψ

)

, ∀(φ,ψ) ∈ V,

with δc := λc

c2
. Let us assume that there are asymptotic expansions in powers of 1

c2
of the

form

(uc,vc) = (u0,v0) +
1

c2
(u1,v1) +

1

c4
(u2,v2) + · · · ,(7.4)

δc = δ0 +
1

c2
δ1 +

1

c4
δ2 + · · · .(7.5)

(An attempt to do this rigorously could be made by following the techniques in [16]; for
instance, such analysis has been made in [13] for the case of a solid surrounded by a fluid.)

By replacing (7.4) and (7.5) into (7.3) and equating the 0th order terms we obtain:

∫

Ω
F

ρ
F

div u0 divφ = δ0

(

∫

Ω
F

ρ
F
u0 · φ+

∫

Ω
S

ρ
S
v0 ·ψ

)

, ∀(φ,ψ) ∈ V.

Now λc = c2δ0 + δ1 + 1
c2
δ2 + · · · is one of the eigenvalues blowing up with c if and only if

δ0 6= 0. In this case, by taking ψ ∈ C∞
0 (Ω

S
) and φ = 0, we deduce that v0 = 0. Therefore,

∫

Ω
F

div u0 divφ = δ0

∫

Ω
F

u0 · φ,(7.6)

for all φ ∈ H(div,Ω
F
) such that there exists ψ ∈ [H1(Ω

S
)
]2

with (φ,ψ) ∈ V; in particular,

for all φ ∈ [H1(Ω
F
)
]2

. Hence (7.6) is equivalent to

−∇( div u0) = δ0u0, inΩ
F
,

div u0 = 0, onΓ
I
,

and the latter is equivalent to the eigenvalue problem for the Laplace operator with
homogeneous Dirichlet boundary conditions,

−∆q = δ0q, inΩ
F
,(7.7)

q = 0, onΓ
I
,(7.8)

with q = divu0.
Therefore, assuming the asymptotic expansions (7.4) and (7.5) to be valid, we have the

following characterization for the eigenvalues blowing up with c for the compressible fluid:

λc = c2δ0 + δ1 +
1

c2
δ2 + · · ·

with δ0 any eigenvalue of the Dirichlet problem (7.7)-(7.8). These eigenvalues do not appear
in the case of an incompressible fluid.

Notice that (7.3) is a singular perturbation spectral problem since, as c goes to infinity,
the integral over the solid domain in the right hand side disappears. From a physical point
of view this means that the solid become softer and softer and, in the limit, the whole
interface Γ

I
would be free for the fluid; that is, the kinematic condition u · ν = v · ν would

be lost and p = 0 on Γ
I

would be the boundary condition instead. Thus, for very large c,
the problem has a boundary layer at the interface allowing for this kinematic condition to
hold. The numerical experiments confirm such a behavior for the high eigenfrequencies of
the discrete compressible problem.
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8 The incompressible case

In the previous section, it was shown how the pressure can be eliminated in VP∗
h. Two

alternative discrete problems have been obtained: CPh for a compressible fluid and IPh for
an incompressible one. Problem CPh has been analyzed in [1] and numerical experiments
with this problem have been reported in [3]. In this section we describe how to solve
problem IPh. We also show how to impose efficiently the interface conditions and how to
compute the pressure into the fluid for each eigenmode.

Let us remark that for any (u,v) ∈ Wh, the fluid displacement u is the curl of a
piecewise linear continuous stream function in Ω

F
. In fact, it is immediate to verify that

{u ∈ Rh(ΩF
) : div u = 0} = { curl ξ : ξ ∈ Lh(ΩF

)}. Therefore, problem IPh can be
thought of as a piecewise linear continuous discretization of a stream function formulation
of our problem for an incompressible fluid.

Much less degrees of freedom are necessary to represent the fluid displacements in this
way. In fact, the dimension of { curl ξ : ξ ∈ Lh(ΩF

)} is equal to the number of vertices of
Th in ΩF minus 1 whereas the dimension of Rh(ΩF

) is equal to the respective number of
edges.

However, by using this discrete stream function formulation, it is more complicated to
impose the interface conditions. When using Raviart-Thomas elements for the fluid this
was quite simple since the constant values of u · ν|ℓ for ℓ ⊂ Γ

I
could be substituted by the

average of v · ν|ℓ at both vertices of ℓ. Instead, now, there is no local way of imposing this
interface conditions.

To avoid dealing with global constraints we have used the following hybridization
process. Let Yh := {( curl ξ,v) : ξ ∈ Lh(ΩF

), v ∈ [Lh(ΩS
)]2 , v|Γ

D
= 0} be the subspace

of Xh with divergence free displacements into the fluid. Let Ph := {µ ∈ L2(Γ
I
) : µ|ℓ ∈

P0(ℓ), ∀ℓ ⊂ Γ
I
}. Let us consider the hybrid problem:

HPh: Find λh ∈ R, (uh,vh, µh) ∈ Yh × Ph, (uh,vh, µh) 6= (0,0, 0), such that:

a∗((uh,vh), (φ,ψ)) +

∫

Γ
I

µh(φ · ν −ψ · ν) = λhd((uh,vh), (φ,ψ)), ∀(φ,ψ) ∈ Yh,(8.1)

∫

Γ
I

ζ(uh · ν − vh · ν) = 0, ∀ζ ∈ Ph.(8.2)

Problems IPh and HPh are equivalent. In fact, Wh = {(φ,ψ) ∈ Yh :
∫

Γ
I

ζ(φ · ν −ψ ·
ν) = 0, ∀ζ ∈ Ph} and hence any solution of HPh gives a solution of IPh. Conversely, let
(λh, (uh,vh, µh)) be an eigenpair of IPh. As it is shown below (Lemma 8.2) the bilinear
forms in problem HPh satisfy both Brezzi’s conditions; hence there exists a unique solution
(ũh, ṽh, µh) of the mixed source problem

a∗((ũh, ṽh), (φ,ψ)) +

∫

Γ
I

µh(φ · ν −ψ · ν) = λhd((uh,vh), (φ,ψ)), ∀(φ,ψ) ∈ Yh,

∫

Γ
I

ζ(ũh · ν − ṽh · ν) = 0, ∀ζ ∈ Ph.

Hence, (ũh, ṽh) ∈ Wh and it satisfies a∗((ũh, ṽh), (φ,ψ)) = λhd((uh,vh), (φ,ψ)), for all
(φ,ψ) ∈ Wh. Since the only solution of this problem is (uh,vh), then (λh, (uh,vh, µh)) is
an eigenpair of HPh.

Since problems IPh and HPh are equivalent, the latter may be conveniently solved to
compute the approximate eigenvalues of our original problem. On the other hand, we show
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below that µh is an approximation of the pressure of the fluid at the interface p|Γ
I
. Notice

that HPh can also be considered as a conforming discretization of the following variational
eigenvalue problem:

HP: Find λ ∈ R, (u,v, µ) ∈ Y × P , (u,v, µ) 6= (0,0, 0), such that:

a∗((u,v), (φ,ψ)) +

∫

Γ
I

µ(φ · ν −ψ · ν) = λd((u,v), (φ,ψ)), ∀(φ,ψ) ∈ Y,

∫

Γ
I

ζ(u · ν − v · ν) = 0, ∀ζ ∈ P,

where P := L2(Γ
I
) and Y := {(u,v) ∈ X : div u = 0 inΩ

F
and u · ν|Γ

I
∈ L2(Γ

I
)} with

the norm ‖(u,v)‖2
Y

:= ‖(u,v)‖2 + ‖u · ν‖2
L2(Γ

I
).

The continuous bilinear forms a∗ on Y × Y and
∫

Γ
I

ζ(u · ν − v · ν) on Y × P satisfy

both Brezzi’s conditions:

Lemma 8.1. i) a∗ is coercive on {(u,v) ∈ Y :
∫

Γ
I

ζ(u · ν − v · ν) = 0, ∀ζ ∈ P}.
ii) There exists β > 0 such that

sup
(u,v)∈Y

(u,v) 6=(0,0)

∫

Γ
I

ζ(u · ν − v · ν)

‖(u,v)‖Y

≥ β‖ζ‖L2(Γ
I
), ∀ζ ∈ P.

Proof. Since {(u,v) ∈ Y :
∫

Γ
I

ζ(u · ν − v · ν) = 0, ∀ζ ∈ P} = W, (i) is a consequence

of Lemma 3.2 and the fact that, for all (u,v) ∈ W, ‖u · ν‖L2(Γ
I
) = ‖v · ν‖L2(Γ

I
) ≤

C‖v‖
[H1(Ω

S
)]

2 ≤ ‖(u,v)‖.
To prove (ii) we are going to show that for each ζ ∈ P = L2(Γ

I
), there exists (u,v) ∈ Y

such that

(u · ν − v · ν) = ζ and ‖(u,v)‖Y ≤ C‖ζ‖L2(Γ
I
).

Let ζ ∈ L2(Γ
I
). Since the normal trace operator is onto H−1/2(Γ

I
), then there exists

φ ∈ H(div,Ω
F
) such that φ · ν = −ζ and ‖φ‖H(div,Ω

F
) ≤ C‖ζ‖L2(Γ

I
). Let q = divφ and

q̃ be its extension to Ω := Ω
S
∪ Ω̄

F
as in (3.4). Let w ∈ [H1

0 (Ω)
]2

be as defined in Lemma
3.1; that is,

div w = q̃ in Ω and ‖w‖[H1(Ω)]2 ≤ C‖q̃‖L2(Ω) ≤ C‖divφ‖L2(Ω
F

).

Let u := w|Ω
F
− φ and v := w|Ω

S
; then (u,v) ∈ Y, (u · ν − v · ν) = ζ and

‖(u,v)‖Y ≤ C‖ζ‖L2(Γ
I
).

By using the previous lemma, problem HP can be shown to be equivalent to VP∗ for
c = ∞, with µ = p|Γ

I
being the pressure of the fluid at the interface. Since this pressure

is harmonic in Ω
F
, it can be recovered from these boundary values. We are going to show

that, for each eigenpair of HPh, µh ∈ Ph gives an approximation of that pressure at the
interface that can be used to effectively compute it into the fluid.

First we show that the bilinear forms a∗ and
∫

Γ
I

ζ(u · ν − v · ν) satisfy both Brezzi’s

conditions on the discrete spaces Yh and Ph uniformly on h:

Lemma 8.2. i) a∗ is coercive on {(u,v) ∈ Yh :
∫

Γ
I

ζ(u · ν − v · ν) = 0, ∀ζ ∈ Ph}.
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ii) There exists β > 0 (independent of h) such that

sup
(u,v)∈Yh

(u,v) 6=(0,0)

∫

Γ
I

ζ(u · ν − v · ν)

‖(u,v)‖Y

≥ β‖ζ‖L2(Γ
I
), ∀ζ ∈ Ph.

Proof. Since {(u,v) ∈ Yh :
∫

Γ
I

ζ(u ·ν−v ·ν) = 0, ∀ζ ∈ Ph} = Wh, (i) is a consequence

of Theorem 5.1 and the fact that, for all (u,v) ∈ Wh, u · ν|Γ
I

is the L2(Γ
I
) projection of

v · ν|Γ
I

onto Ph and, hence, ‖u · ν‖L2(Γ
I
) ≤ ‖v · ν‖L2(Γ

I
) ≤ C‖v‖

[H1(Ω
S
)]

2 ≤ ‖(u,v)‖.
In order to prove (ii), for ζ ∈ Ph, let ζ̄ := 1

|Γ
I
|

∫

Γ
I

ζ and ζ∗ := ζ − ζ̄; hence,
∫

Γ
I

ζ∗ = 0,

both ζ̄ and ζ∗ belong to Ph and ‖ζ‖2
L2(Γ

I
) = ‖ζ∗‖2

L2(Γ
I
) + ‖ζ̄‖2

L2(Γ
I
).

Let g(x), x ∈ Γ
I
, be the piecewise linear function obtained by integrating ζ∗ along

Γ
I

from a given point x0 ∈ Γ
I

to x. Since
∫

Γ
I

ζ∗ = 0, then g is continuous and

‖g‖H1(Γ
I
) ≤ C‖ζ∗‖L2(Γ

I
).

Let ξ ∈ H1(Ω
F
) be the solution of the Dirichlet problem

∆ξ = 0, in Ω
F
,

ξ = g, on Γ
I
.

By a standard a priori estimate, ξ ∈ H1+ε(Ω
F
) for any ε ∈

(

0, 1
2

)

and ‖ξ‖H1+ε(Ω
F

) ≤
‖g‖H1(Γ

I
) ≤ C‖ζ∗‖L2(Γ

I
).

Let ξI ∈ Lh(ΩF
) be the Lagrange interpolant of ξ; hence curl ξI · ν = ∂ξ

∂τ = ζ∗ on Γ
I

and ‖ curl ξI‖H(div,Ω
F

) ≤ C‖ξ‖H1+ε(Ω
F

) ≤ C‖ζ∗‖L2(Γ
I
).

On the other hand, since ζ̄ ∈ L2(Γ
I
), we have shown in the proof of Lemma 8.1 that

there exists (u,v) ∈ Y satisfying

(u · ν − v · ν) = ζ̄ and ‖(u,v)‖Y ≤ C‖ζ̄‖L2(Γ
I
).

Now we proceed as in Theorem 5.1. Let vh ∈ [Lh(ΩS
)]2 be the Clement’s type

interpolant of v defined therein; then ‖vh‖[H1(Ω
S
)]

2 ≤ C‖v‖
[H1(Ω

S
)]

2 ≤ C‖ζ̄‖L2(Γ
I
),

∫

Γ
I

vh =
∫

Γ
I

v and, hence, the following Neumann problem is compatible:

∆ϕ = 0, in Ω
F
,

∂ϕ
∂ν = vh · ν + ζ̄, on Γ

I
.

Its solution ϕ ∈ H1+s(Ω
F
) with s ∈

(

1
2 , 1
]

as in Theorem 4.1; thus, its gradient is smooth

enough as to define its Raviart-Thomas interpolant uh ∈ Rh(ΩF
). This interpolant satisfies

div uh = 0,

∫

ℓ
uh · ν =

∫

ℓ
(vh · ν + ζ̄), ∀ℓ ⊂ Γ

I
,

and

‖uh‖H(div,Ω
F

) ≤ C‖∇ϕ‖
[Hs(Ω

F
)]

2 ≤ C
J
∑

j=1

‖vh · ν + ζ̄‖H1/2(Γj)
≤ C‖ζ̄‖L2(Γ

I
)

(in the last inequality we have used that ζ̄ is constant).
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Now, (uh + curl ξI,vh) ∈ Yh, ‖(uh + curl ξI,vh)‖Y ≤ C‖ζ‖L2(Γ
I
) and

∫

Γ
I

ζ
(

(uh + curl ξI) · ν − vh · ν
)

=

∫

Γ
I

ζ(ζ̄ + ζ∗) =

∫

Γ
I

ζ2,

since ζ|ℓ is constant for each ℓ ⊂ Γ
I
. So, we conclude the lemma.

Now we are able to prove the convergence of the pressures at the interface. More
precisely, given an eigenpair (λ, (u,v, µ)) of HP, since problems HP and HPh are
respectively equivalent to problems VP∗ and VP∗

h, by virtue of Theorems 6.5 and 6.6,
there exists an eigenpair (λh, (uh,vh, µh)) of problem HPh such that |λ− λh| ≤ Ch2r and
‖(u,v)− (uh,vh)‖ ≤ C‖(u,v)‖hr. Next theorem shows that the pressures at the interface
converge with the same order as that of the displacements.

Theorem 8.1. Let (λ, (u,v, µ)) and (λh, (uh,vh, µh)) be eigenpairs of HP and HPh

respectively such that λh → λ as h → 0 and ‖(u,v) − (uh,vh)‖ ≤ C‖(u,v)‖hr. Then
‖µ− µh‖L2(Γ

I
) ≤ Chr‖(u,v)‖, with r as in Section 6.

Proof. For all (φ,ψ) ∈ Yh ⊂ Y we have

a∗((u,v) − (uh,vh), (φ,ψ)) +

∫

Γ
I

(µ− µh)(φ · ν −ψ · ν) = d(λ(u,v) − λh(uh,vh), (φ,ψ));

hence for ζ ∈ Ph and (φ,ψ) ∈ Yh,

∫

Γ
I

(ζ − µh)(φ · ν −ψ · ν) =

∫

Γ
I

(ζ − µ)(φ · ν −ψ · ν) +

∫

Γ
I

(µ− µh)(φ · ν −ψ · ν)

=

∫

Γ
I

(ζ − µ)(φ · ν −ψ · ν) + d(λ(u,v) − λh(uh,vh), (φ,ψ))

−a∗((u,v) − (uh,vh), (φ,ψ)),

and, because of the discrete inf-sup condition in the previous lemma,

β‖ζ − µh‖L2(Γ
I
) ≤ sup

(φ,ψ)∈Yh

(φ,ψ) 6=(0,0)

∫

Γ
I

(ζ − µh)(φ · ν −ψ · ν)

‖(φ,ψ)‖Y

≤ ‖ζ − µ‖L2(Γ
I
) +C

[

|λ(u,v) − λh(uh,vh)| + ‖(u,v) − (uh,vh)‖
]

.

Therefore, by using the triangle inequality,

‖µ− µh‖L2(Γ
I
) ≤ C

[

inf
ζ∈Ph

‖ζ − µ‖L2(Γ
I
) + |λ(u,v) − λh(uh,vh)| + ‖(u,v) − (uh,vh)‖

]

.

By using Theorem 6.6 and the assumed bound on ‖(u,v) − (uh,vh)‖, the two last
terms in the right hand side can be bounded by Chr‖(u,v)‖. On the other hand, by
using Theorem 4.3, we know that p ∈ H1+s(Ω

F
) for s > 1/2 with ‖p‖H1+s(Ω

F
) ≤ |(u,v)|

and, hence, µ = p|Γ
I
∈ H1(Γ

I
). Therefore, infζ∈Ph

‖ζ − µ‖L2(Γ
I
) ≤ Ch‖µ‖H1(Γ

I
) =

Ch‖p‖H1(Γ
I
) ≤ Ch|(u,v)|. Consequently, ‖µ− µh‖L2(Γ

I
) ≤ Chr‖(u,v)‖.

The computed approximation of the pressure at the interface can be used to recover
the pressure into the fluid by solving a Dirichlet problem by means of piecewise linear
continuous finite elements. However µh /∈ H1/2(Γ

I
); moreover, µh is discontinuous at the
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vertices on Γ
I

and these nodal values are needed to solve the discrete problem. Therefore,
µh should be post-processed.

For each vertex B ∈ Γ
I
, let ℓ−B and ℓ+B be the two edges on Γ

I
sharing B. We define µ∗h

as the piecewise linear continuous function on Γ
I

with average nodal values

µ∗h(B) :=
1

2

(

µh|ℓ−B + µh|ℓ+B
)

.

Let Λh : L2(Γ
I
) −→ Lh(ΓI

) := {ζ ∈ H1(Γ
I
) : ζ|ℓ ∈ P1(ℓ), ∀ℓ ⊂ Γ

I
} be the Clement’s type

interpolation defined by the nodal values

Λhζ(B) :=
1

2

(

1

|ℓ−B|

∫

ℓ−B

ζ +
1

|ℓ+B|

∫

ℓ+B

ζ

)

;

then µ∗h = Λhµh and, by using the techniques in [6], it is straightforward to show that

‖Λhζ‖L2(Γ
I
) ≤ ‖ζ‖L2(Γ

I
), ∀ζ ∈ L2(Γ

I
),

‖ζ − Λhζ‖L2(Γ
I
) ≤ Ch‖ζ‖H1(Γ

I
), ∀ζ ∈ H1(Γ

I
)

By using these estimates, the fact that µ = p|Γ
I
, a standard trace theorem, Theorem

8.1 and Theorem 4.3, we have:

‖µ− µ∗h‖L2(Γ
I
) ≤ ‖µ− Λhµ‖L2(Γ

I
) + ‖Λh(µ− µh)‖L2(Γ

I
)

≤ Ch‖µ‖H1(Γ
I
) + ‖(µ− µh)‖L2(Γ

I
)

≤ Ch‖p‖H3/2(Ω
F

) +Chr‖(u,v)‖
≤ Chr‖(u,v)‖(8.3)

Therefore, µ∗h gives an approximation of p|Γ
I

of the same order as µh in L2(Γ
I
).

Now, we can approximate the pressure into the fluid by means of the solution p̃h ∈
Lh(ΩF

) of the following discrete Dirichlet problem:
∫

Ω
F

∇p̃h · ∇ζ = 0, ∀ζ ∈ L0
h(ΩF

),

p̃h = µ∗h, on Γ
I
,

where L0
h(ΩF

) := {ζ ∈ Lh(ΩF
) : ζ = 0 on Γ

I
}.

We have the following error estimates:

Theorem 8.2. If the family of meshes {Th} is quasiuniform, then

‖p− p̃h‖L2(Ω
F

) ≤ Chr‖(u,v)‖,
‖∇(p− p̃h)‖L2(Ω

F
) ≤ Chr−1/2‖(u,v)‖,

where r := min{s, t} with s and t as in Theorem 4.1.
Proof. We prove first the second inequality. Let pI be the Lagrange interpolant of p.

We extend µ∗h to the interior of Ω
F

as a piecewise linear continuous function by defining
µ∗h(B) := p(B) for all the interior nodes B ∈ Ω

F
of the triangulation. Standard arguments

show that ‖∇(p− p̃h)‖[L2(Ω
F

)]
2 ≤ ‖∇(p− µ∗h)‖[L2(Ω

F
)]

2 and hence

‖∇(p− p̃h)‖[L2(Ω
F

)]
2 ≤ ‖∇(p− pI)‖

[L2(Ω
F

)]
2 + ‖∇(pI − µ∗h)‖[L2(Ω

F
)]

2 .(8.4)
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Since

‖∇(p− pI)‖
[L2(Ω

F
)]

2 ≤ Chs‖p‖H1+s(Ω
F

) ≤ Chs‖(u,v)‖(8.5)

and s > 1
2 ≥ r − 1

2 , then we only need to estimate the second term in the right hand side
of (8.4).

For any B ∈ Γ
I
, node of Th, let ϕB be the basis function of Lh(ΩF

) associated to B.

Since pI and µ∗h coincide at the interior nodes we have pI−µ∗h =
∑

B∈Γ
I

[

pI(B) − µ∗h(B)
]

ϕB

and then

‖∇(pI − µ∗h)‖2

[L2(Ω
F

)]
2 ≤

∑

B∈Γ
I

∣

∣

∣pI(B) − µ∗h(B)
∣

∣

∣

2
‖∇ϕB‖2

[L2(Ω
F

)]
2 ≤ C

∑

ℓ⊂Γ
I

‖pI − µ∗h‖2
L∞(ℓ),

where in the last inequality we have used that ‖∇ϕB‖[L2(Ω
F

)]
2 is bounded independently

of h. By using an inverse inequality,

‖pI − µ∗h‖L∞(ℓ) ≤ C|ℓ|−1/2‖pI − µ∗h‖L2(ℓ)

and hence

‖∇(pI − µ∗h)‖2

[L2(Ω
F

)]
2 ≤ C

∑

ℓ⊂Γ
I

1

|ℓ|‖p
I − µ∗h‖2

L2(ℓ).

Since the mesh is assumed to be quasiuniform, |ℓ| ≥ Ch for any edge ℓ of the triangulation
and hence

‖∇(pI − µ∗h)‖L2(Ω
F

) ≤ Ch−1/2‖pI − µ∗h‖L2(Γ
I
) ≤ Ch−1/2

[

‖pI − p‖L2(Γ
I
) + ‖p− µ∗h‖L2(Γ

I
)

]

≤ Ch−1/2
[

h‖p‖H1(Γ
I
) + hr‖(u,v)‖

]

≤ Chr−1/2‖(u,v)‖,(8.6)

where we have used standard error estimates for (p− pI)|Γ
I
, (8.3) and the a priori estimate

for p. Therefore, by using (8.4), (8.5) and (8.6), since r − 1/2 < s, we prove the second
estimate of the theorem.

Finally, a standard duality argument shows that

‖p− p̃h‖L2(Ω
F

) ≤ Chs‖∇(p− p̃h)‖L2(Ω
F

) +Chr‖p− µ∗h‖L2(Γ
I
) ≤ Chr‖(u,v)‖.

Let us remark that whenever the singularities of the solution in the structure are not
too strong, r > 1/2 (see [10]), and hence ∇p̃h also converge to ∇p.

9 Conclusions

We have introduced a finite element method able to solve internal fluid-structure vibration
problems for compressible as well as for incompressible fluids. In both cases we have proved
convergence and given optimal error estimates for eigenmodes and eigenfrequencies. We
have also proved that this method does not present spurious modes.

In the case of compressible fluids, the approach in this paper can be seen as a theoretical
alternative to that in [1, 3] allowing to obtain error estimates not depending on the acoustic
speed.

An asymptotic analysis shows that the eigenfrequencies for a problem with an
incompressible fluid are limits of those for a compresssible one when the acoustic speed goes
to infinity. This, being true in the continuous as well as in the discrete problem, allows to
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deal with a nearly incompressible fluid by approximating it with a perfectly incompressible
one.

In the incompressible case, a discretization based on the stream function of the fluid
displacements is introduced to save computational effort. A hybrid implementation of this
method and a convenient computation of the pressure in the fluid have been also analyzed.
Numerical results for this problem are reported in [2].

Acknowledgement. The authors want to express their gratitude to the referee for very
helpful suggestions.
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