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1 Introduction

Finite element methods in which two spaces are used to approximate two dif-
ferent variables receive the general denomination of mixed methods. In some
cases, the second variable is introduced in the formulation of the problem
because of its physical interest and it is usually related with some derivatives
of the original variable. This is the case, for example, in the elasticity equa-
tions, where the stress can be introduced to be approximated at the same
time as the displacement. In other cases there are two natural independent
variables and so, the mixed formulation is the natural one. This is the case
of the Stokes equations, where the two variables are the velocity and the
pressure.

The mathematical analysis and applications of mixed finite element meth-
ods have been widely developed since the seventies. A general analysis for
this kind of methods was first developed by Brezzi [13]. We also have to
mention the papers by Babuska [9] and by Crouzeix and Raviart [22] which,
although for particular problems, introduced some of the fundamental ideas
for the analysis of mixed methods. We also refer the reader to [32, 31], where
general results were obtained, and to the books [17, 45, 37].

The rest of this work is organized as follows: in Section 2 we review some
basic tools for the analysis of finite element methods. Section 3 deals with
the mixed formulation of second order elliptic problems and their finite ele-
ment approximation. We introduce the Raviart-Thomas spaces [44, 49, 41]
and their generalization to higher dimensions, prove some of their basic
properties, and construct the Raviart-Thomas interpolation operator which
is a basic tool for the analysis of mixed methods. Then, we prove optimal
order error estimates and a superconvergence result for the scalar variable.
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We follow the ideas developed in several papers (see for example [24, 16]).
Although for simplicity we consider the Raviart-Thomas spaces, the error
analysis depends only on some basic properties of the spaces and the inter-
polation operator, and therefore, analogous results hold for approximations
obtained with other finite element spaces. We end the section recalling
other known families of spaces and giving some references. In Section 4
we introduce an a posteriori error estimator and prove its equivalence with
an appropriate norm of the error up to higher order terms. For simplicity,
we present the a posteriori error analysis only in the two dimensional case.
Finally, in Section 5, we introduce the general abstract setting for mixed
formulations and prove general existence and approximation results.

2 Preliminary results

In this section we recall some basic results for the analysis of finite element
approximations.

We will use the standard notation for Sobolev spaces and their norms,
namely, given a domain Ω ⊂ IRn and any positive integer k

Hk(Ω) = {φ ∈ L2(Ω) : Dαφ ∈ L2(Ω) ∀ |α| ≤ k},
where

α = (α1, · · · , αn) , |α| = α1 + · · ·+ αn and Dαφ =
∂|α|φ

∂xα1
1 · · · ∂xαn

n

and the derivatives are taken in the distributional or weak sense.
Hk(Ω) is a Hilbert space with the norm given by

‖φ‖2
Hk(Ω) =

∑

|α|≤k

‖Dαφ‖2
L2(Ω).

Given φ ∈ Hk(Ω) and j ∈ IN such 1 ≤ j ≤ k we define ∇jφ by

|∇jφ|2 =
∑

|α|=j

|Dαφ|2.

Analogous notations will be used for vector fields, i.e., if v = (v1, · · · , vn)
then Dαv = (Dαv1, · · · , Dαvn) and

‖v‖2
Hk(Ω) =

n∑

i=1

‖vi‖2
Hk(Ω) and |∇jv|2 =

n∑

i=1

|∇jvi|2.
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We will also work with the following subspaces of H1(Ω):

H1
0 (Ω) = {φ ∈ H1(Ω) : φ|∂Ω = 0},

Ĥ1(Ω) = {φ ∈ H1(Ω) :
∫

Ω
φdx = 0}.

Also, we will use the standard notation Pk for the space of polynomials
of degree less than or equal to k and, if x ∈ IRn and α is a multi-index, we
will set xα = xα1

1 · · ·xαn
n .

The letter C will denote a generic constant not necessarily the same at
each occurrence.

Given a function in a Sobolev space of a domain Ω it is important to
know whether it can be restricted to ∂Ω, and conversely, when can a function
defined on ∂Ω be extended to Ω in such a way that it belongs to the original
Sobolev space. We will use the following trace theorem. We refer the reader
for example to [38, 33] for the proof of this theorem and for the definition
of the fractional-order Sobolev space H

1
2 (∂Ω).

Theorem 2.1 Given φ ∈ H1(Ω), where Ω ⊂ IRn is a Lipschitz domain,
there exists a constant C depending only on Ω such that

‖φ‖
H

1
2 (∂Ω)

≤ C‖φ‖H1(Ω).

In particular,
‖φ‖L2(∂Ω) ≤ C‖φ‖H1(Ω). (2.1)

Moreover, if g ∈ H
1
2 (∂Ω), there exists φ ∈ H1(Ω) such that φ|∂Ω = g and

‖φ‖H1(Ω) ≤ C‖g‖
H

1
2 (∂Ω)

.

One of the most important results in the analysis of variational methods
for elliptic problems is the Friedrichs-Poincaré inequality for functions with
vanishing mean average, that we state below (see for example [36] for the
case of Lipschitz domains and [43] for another proof in the case of convex
domains). Assume that Ω is a Lipschitz domain. Then, there exists a
constant C depending only on the domain Ω such that for any f ∈ Ĥ1(Ω),

‖f‖L2(Ω) ≤ C‖∇f‖L2(Ω). (2.2)

The Friedrichs-Poincaré inequality can be seen as a particular case of
the next result on polynomial approximation which is basic in the analysis
of finite element methods.
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Several different arguments have been given for the proof of the next
lemma. See for example [12, 25, 26, 51]. Here we give a nice argument
which, to our knowledge, is due to M. Dobrowolski for the lowest order
case on convex domains (and as far as we know has not been published).
The proof given here for the case of domains which are star-shaped with
respect to a subset of positive measure and any degree of approximation
is an immediate extension of Dobrowolski’s argument. For simplicity we
present the proof for the L2-case (which is the case that we will use), but the
reader can check that an analogous argument applies for Lp based Sobolev
spaces (1 ≤ p < ∞).

Assume that Ω is star-shaped with respect to a set B ⊆ Ω of positive
measure. Given an integer k ≥ 0 and f ∈ Hk+1(Ω) we introduce the aver-
aged Taylor polynomial approximation of f , Qk,Bf ∈ Pk defined by

Qkf(x) =
1
|B|

∫

B
Tkf(y, x) dy

where Tkf(y, x) is the Taylor expansion of f centered at y, namely,

Tkf(y, x) =
∑

|α|≤k

Dαf(y)
(x− y)α

α!
.

Lemma 2.2 Let Ω ⊂ IRn be a domain with diameter d which is star-shaped
with respect to a set of positive measure B ⊂ Ω. Given an integer k ≥ 0 and
f ∈ Hk+1(Ω), there exists a constant C = C(k, n) such that, for 0 ≤ |β| ≤
k + 1,

‖Dβ(f −Qk,Bf)‖L2(Ω) ≤ C
|Ω|1/2

|B|1/2
dk+1−|β| ‖∇k+1f‖L2(Ω). (2.3)

In particular, if Ω is convex,

‖Dβ(f −Qk,Ωf)‖L2(Ω) ≤ C dk+1−|β| ‖∇k+1f‖L2(Ω). (2.4)

Proof. By density we can assume that f ∈ C∞(Ω). Then we can write

f(x)− Tkf(y, x) = (k + 1)
∑

|α|=k+1

(x− y)α

α!

∫ 1

0
Dαf(ty + (1− t)x) tk dt.
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Integrating this inequality over B (in the variable y) and dividing by |B| we
have

f(x)−Qk,Bf(x) =
k + 1
|B|

∑

|α|=k+1

∫

B

∫ 1

0

(x− y)α

α!
Dαf(ty + (1− t)x) tk dt dy

and so,
∫

Ω
|f(x)−Qk,Bf(x)|2 dx ≤ C

d2(k+1)

|B|2
∑

|α|=k+1

∫

Ω

( ∫

B

∫ 1

0
|Dαf(ty+(1−t)x)|tk dt dy

)2
dx

≤ C
d2(k+1)

|B|2
∑

|α|=k+1

∫

Ω

( ∫

B

∫ 1

0
|Dαf(ty+(1−t)x)|2 dt dy

)( ∫

B

∫ 1

0
t2k dt dy

)
dx.

Therefore,
∫

Ω
|f(x)−Qk,Bf(x)|2 dx ≤ C

d2(k+1)

|B|
∑

|α|=k+1

∫

Ω

∫

B

∫ 1

0
|Dαf(ty+(1−t)x)|2 dt dy dx

(2.5)
Now, for each α,

∫

Ω

∫

B

∫ 1

0
|Dαf(ty + (1− t)x)|2dt dy dx

=
∫

Ω

∫

B

∫ 1
2

0
|Dαf(ty+(1−t)x)|2dt dy dx+

∫

Ω

∫

B

∫ 1

1
2

|Dαf(ty+(1−t)x)|2dt dy dx =: I+II

Let us call gα the extension by zero of Dαf to IRn. Then, by Fubini’s
theorem and two changes of variables we have

I ≤
∫

B

∫ 1
2

0

∫

IRn
|gα(ty+(1−t)x)|2 dx dt dy =

∫

B

∫ 1
2

0

∫

IRn
|gα((1−t)x)|2 dx dt dy

=
∫

B

∫ 1
2

0

∫

IRn
|gα(z)|2(1− t)−n dz dt dy ≤ 2n−1|B|

∫

Ω
|Dαf(z)|2 dz.

Analogously,

II ≤
∫

Ω

∫ 1

1
2

∫

IRn
|gα(ty + (1− t)x)|2 dy dt dx =

∫

Ω

∫ 1

1
2

∫

IRn
|gα(ty)|2 dy dt dx

=
∫

Ω

∫ 1

1
2

∫

IRn
|gα(z)|2t−n dz dt dx ≤ 2n−1|Ω|

∫

Ω
|Dαf(z)|2 dz.
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Therefore, replacing these bounds in (2.5) we obtain (2.3) for β = 0.
On the other hand, an elementary computation shows that

DβQk,Bf(x) = Qk−|β|,B(Dβf)(x) ∀|β| ≤ k

and therefore, the estimate (2.3) for |β| > 0 follows from the case β = 0
applied to Dβf .

An important consequence of this result are the following error estimates
for the L2-projection onto Pm.

Corollary 2.3 Let Ω ⊂ IRn be a domain with diameter d which is star-
shaped with respect to a set of positive measure B ⊂ Ω. Given an integer
m ≥ 0, let P : L2(Ω) → Pm be the L2-orthogonal projection. There exists a
constant C = C(j, n) such that, for 0 ≤ j ≤ m, if f ∈ Hj(Ω), then

‖f − Pf‖L2(Ω) ≤ C
|Ω|1/2

|B|1/2
dj |∇jf |L2(Ω).

Remark 2.1 Analogous results to Lemma 2.3 and its corollary hold for
bounded Lipschitz domains because this kind of domains can be written as a
finite union of star-shaped domains (see [25] for details).

The following result is fundamental in the analysis of mixed finite element
approximations.

Lemma 2.4 Let Ω ⊂ IRn be a bounded domain. Given f ∈ L2(Ω) there
exists v ∈ H1(Ω)n such that

divv = f in Ω (2.6)

and
‖v‖H1(Ω) ≤ C‖f‖L2(Ω) (2.7)

with a constant C depending only on Ω.

Proof. Let B ∈ IRn be a ball containing Ω and φ be the solution of the
boundary problem {

∆φ = f in B
φ = 0 on ∂B

(2.8)

It is known that φ satisfies the following a priori estimate (see for example
[36])

‖φ‖H2(Ω) ≤ C‖f‖L2(Ω)

and therefore v = ∇φ satisfies (2.6) and (2.7).
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Remark 2.2 To treat Neumann boundary conditions we would need the ex-
istence of a solution of divv = f satisfying (2.7) and the boundary condition
v · n = 0 on ∂Ω. Such a v can be obtained by solving a Neumann problem
in Ω for smooth domains or convex polygonal or polyhedral domains. For
more general domains, including arbitrary polygonal or polyhedral domains,
the existence of v satisfying (2.6) and (2.7) can be proved in different ways.
In fact v can be taken such that all its components vanish on ∂Ω (see for
example [2, 7, 30]).

A usual technique to obtain error estimates for finite element approxima-
tions is to work in a reference element and then change variables to prove
results for a general element. Let us introduce some notations and recall
some basic estimates.

Fix a reference simplex T̂ ⊂ IRn. Given a simplex T ⊂ IRn, there exists
an invertible affine map F : T̂ → T , F (x̂) = Ax̂ + b, with A ∈ IRn×n and
b ∈ IRn.

We call hT the diameter of T and ρT the diameter of the largest ball
inscribed in T (see Figure 1). We will use the regularity assumption on the
elements, namely, many of our estimates will depend on a constant σ such
that

hT

ρT
≤ σ (2.9)

F
h
T

h
T

ˆ

ρ
T ρ

T

ˆ

Figure 1

It is known that (see [19]), for the matrix norm associated with the
euclidean vector norm, the following estimates hold:

‖A‖ ≤ hT

ρ
T̂

and ‖A−1‖ ≤ h
T̂

ρT
(2.10)

With any φ ∈ L2(T ) we associate φ̂ ∈ L2(T̂ ) in the usual way, namely,

φ(x) = φ̂(x̂) (2.11)
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where x = F (x̂).
We end this section by recalling the so-called inverse estimates which are

a fundamental tool in finite element analysis. We give only a particular case
which will be needed for our proofs (see for example [19] for more general
inverse estimates).

Lemma 2.5 Given a simplex T there exists a constant C = C(σ, k, n, T̂ )
such that, for any p ∈ Pk(T ),

‖∇p‖L2(T ) ≤
C

hT
‖p‖L2(T ).

Proof. Since Pk(T̂ ) is a finite dimensional space, all the norms defined on
it are equivalent. In particular, there exists a constant Ĉ depending on k
and T̂ such that

‖∇̂p̂‖
L2(T̂ )

≤ Ĉ‖p̂‖
L2(T̂ )

(2.12)

for any p̂ ∈ Pk(T̂ ).
An easy computation shows that

∇p = A−T ∇̂p̂

where A−T is the transpose matrix of A−1. Therefore, using the bound for
‖A−1‖ given in (2.10) together with (2.12) and (2.9) we have

∫

T
|∇p|2 dx =

∫

T̂
|A−T ∇̂p̂|2|detA| dx̂ ≤ ‖A−1‖2

∫

T̂
|∇̂p̂|2|detA| dx̂

≤ Ĉ
h2

T̂

ρ2
T

∫

T̂
|p̂|2|detA| dx̂ = Ĉ

h2
T̂

ρ2
T

∫

T
|p|2 dx ≤ Ĉσ2

h2
T̂

h2
T

∫

T
|p|2 dx.

3 Mixed approximation of second order elliptic
problems

In this section we introduce the mixed finite element approximation of sec-
ond order elliptic problems and we develop the a priori error analysis. We
consider the so called h-version of the finite element method, namely, fixing
a degree of approximation we prove error estimates in terms of the mesh
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size. We present the error analysis for the case of L2 based norms (following
essentially [24]) and refer to [27, 34, 35] for error estimates in other norms.

As it is usually done, we prove error estimates for any degree of approx-
imation under the hypothesis that the solution is regular enough in order
to show the best possible order of a method. However, the reader has to be
aware that, in practice, for polygonal or polyhedral domains (which is the
case considered here!) the solution is in general not smooth due to singu-
larities at the angles and therefore the order of convergence is limited by
the regularity of the solution of each particular problem considered. On the
other hand, for domains with smooth boundary where the solutions might
be very regular, a further error analysis considering the approximation of
the boundary is needed.

Consider the elliptic problem
{
−div (a∇p) = f in Ω

p = 0 on ∂Ω
(3.1)

where Ω ⊂ IRn is a polyhedral domain and a = a(x) is a function bounded
by above and below by positive constants.

In many applications the variable of interest is

u = −a∇p

and then, it could be desirable to use a mixed finite element method which
approximates u and p simultaneously. With this purpose, problem (3.1) is
decomposed into a first order system as follows:





u + a∇p = 0 in Ω
divu = f in Ω

p = 0 on ∂Ω
(3.2)

To write an appropriate weak formulation of this problem we introduce
the space

H(div , Ω) = {v ∈ L2(Ω)n : divv ∈ L2(Ω)}
which is a Hilbert space with norm given by

‖v‖2
H(div ,Ω)

= ‖v‖2
L2(Ω) + ‖divv‖2

L2(Ω).

Defining µ(x) = 1/a(x), the first equation in (3.2) can be rewritten as

µu +∇p = 0 in Ω.
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Multiplying by test functions and integrating by parts we obtain the stan-
dard weak mixed formulation of problem (3.2), namely,

{ ∫
Ω µu · v dx− ∫

Ω p divv dx = 0 ∀v ∈ H(div , Ω)∫
Ω q div u dx =

∫
Ω fq dx ∀q ∈ L2(Ω)

(3.3)

Observe that the Dirichlet boundary condition is implicit in the weak
formulation (i.e., it is the type of condition usually called natural). Instead,
Neumann boundary conditions would have to be imposed on the space (es-
sential conditions). This is exactly opposite to what happens in the case of
standard formulations.

The weak formulation (3.3) involves the divergence of the solution and
of the test functions but not arbitrary first derivatives. This fact allows us
to work on the space H(div , Ω) instead of the smaller H1(Ω)n and this will
be important for the finite element approximation because piecewise poly-
nomials vector functions do not need to have both components continuous
to be in H(div ,Ω), but only their normal component.

In order to define finite element approximations to the solution (u, p) of
(3.3) we need to introduce finite dimensional subspaces of H(div , Ω) and
L2(Ω) made of piecewise polynomial functions.

For simplicity we will consider the case of triangular elements (or its
generalizations to higher dimensions) and the associated Raviart-Thomas
spaces which are the best-known spaces for this problem. This family of
spaces was introduced in [44] in the two dimensional case, while its extension
to three dimensions was first considered in [41]. Since no essential technical
difficulties arise in the general case, we prefer to present the spaces and the
analysis of their properties in the general n-dimensional case (although, of
course, we are mainly interested in the cases n = 2 and n = 3). Below we
will comment and give references on different variants of spaces.

First we introduce the local spaces, analyze their properties and con-
struct the Raviart-Thomas interpolation.

Given a simplex T ∈ IRn, the local Raviart-Thomas space [44, 41] of
order k ≥ 0 is defined by

RT k(T ) = Pk(T )n + xPk(T ) (3.4)

In the following lemma we give some basic properties of the spaces
RT k(T ). We denote with Fi, i = 1, · · · , n + 1, the faces of a simplex T
and with ni their corresponding exterior normals.
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Lemma 3.1 a) dimRT k(T ) = n
(k+n

k

)
+

(k+n−1
k

)

b) If v ∈ RT k(T ) then, v · ni ∈ Pk(Fi) for i = 1, · · · , n + 1

c) If v ∈ RT k(T ) is such that divv = 0 then, v ∈ Pn
k

Proof. Any v ∈ RT k(T ) can be written as

v = w + x
∑

|α|=k

aαxα (3.5)

with w ∈ Pn
k .

Recall that dimPk =
(k+n

k

)
and that the number of multi-indeces α such

that |α| = k is
(k+n−1

k

)
. Then, a) follows from (3.5).

Now, the face Fi is on a hyperplane of equation x · ni = s with s ∈ IR.
Therefore, if v = w + x p with w ∈ Pn

k and p ∈ Pk, we have

v · ni = w · ni + x · ni p = w · ni + s p ∈ Pk

which proves b).
Finally, if divv = 0 we take the divergence in the expression (3.5) and

conclude easily that aα = 0 for all α and therefore c) holds.
Our next goal is to construct an interpolation operator

ΠT : H1(T )n →RT k

which will be fundamental for the error analysis. We fix k and to simplify
notation we omit the index k in the operator.

For simplicity we define the interpolation for functions in H1(T )n al-
though it is possible (and necessary in many cases!) to do the same con-
struction for less regular functions. Indeed, the reader who is familiar with
fractional order Sobolev spaces and trace theorems will realize that the de-
grees of freedom defining the interpolation are well defined for functions in
Hs(T )n, with s > 1/2.

The local interpolation operator is defined in the following lemma.

Lemma 3.2 Given v ∈ H1(T )n, where T ∈ IRn is a simplex, there exists a
unique ΠTv ∈ RT k(T ) such that

∫

Fi

ΠTv · ni pk ds =
∫

Fi

v · ni pk ds ∀pk ∈ Pk(Fi) , i = 1, · · · , n + 1 (3.6)
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and, if k ≥ 1,
∫

T
ΠTv · pk−1 dx =

∫

T
v · pk−1 dx ∀pk−1 ∈ Pn

k−1(T ) (3.7)

Proof. First, we want to see that the number of conditions defining ΠTv
equals the dimension of RT k(T ). This is easily verified for the case k = 0,
so let us consider the case k ≥ 1.

Since dimPk(Fi) =
(k+n−1

k

)
, the number of conditions in (3.6) is

# of faces × dimPk(Fi) = (n + 1)

(
k + n− 1

k

)
.

On the other hand, the number of conditions in (3.7) is

dimPn
k−1(T ) = n

(
k + n− 1

k − 1

)
.

Then, the total number of conditions defining ΠTv is

(n + 1)

(
k + n− 1

k

)
+ n

(
k + n− 1

k − 1

)
.

Therefore, in view of a) of Lemma (3.1), we have to check that

n

(
k + n

k

)
+

(
k + n− 1

k

)
= (n + 1)

(
k + n− 1

k

)
+ n

(
k + n− 1

k − 1

)

or equivalently,
(

k + n

k

)
=

(
k + n− 1

k

)
+

(
k + n− 1

k − 1

)

which can be easily verified.
Therefore, in order to show the existence of ΠTv, it is enough to prove

uniqueness. So, take v ∈ RT k(T ) such that
∫

Fi

v · ni pk ds = 0 ∀pk ∈ Pk(Fi) , i = 1, · · · , n + 1 (3.8)
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and ∫

T
v · pk−1 dx = 0 ∀pk−1 ∈ Pn

k−1(T ) (3.9)

From b) of Lemma 3.1 and (3.8) it follows that v · ni = 0 on Fi. Then,
using now (3.9) we have

∫

T
(divv)2 dx = −

∫

T
v · ∇(divv) dx = 0

because ∇(divv) ∈ Pn
k−1(T ). Consequently divv = 0 and so, from c) of

Lemma 3.1 we know that v ∈ Pn
k (T ).

Therefore, for each i = 1, · · · , n+1, the component v ·ni is a polynomial
of degree k on T which vanishes on Fi. Therefore, calling λi the barycentric
coordinates associated with T (i.e., λi(x) = 0 on Fi), we have

v · ni = λiqk−1

with qk−1 ∈ Pk−1(T ). But, from (3.9) we know that
∫

T
v · ni pk−1 dx = 0 ∀pk−1 ∈ Pk−1(T )

and choosing pk−1 = qk−1 we obtain
∫

T
λiq

2
k−1 dx = 0.

Therefore, since λi does not change sign on T , it follows that qk−1 = 0 and
consequently v · ni = 0 in T for i = 1, · · · , n + 1. In particular, there are n
linearly independent directions in which v has vanishing components and,
therefore, v = 0 as we wanted to see.

Figure 2 shows the degrees of freedom defining ΠT for k = 0 and k = 1
in the two dimensional case. The arrows indicate normal components values
and the filled circle, values of v (and so it corresponds to two degrees of
freedom).

To obtain error estimates for the mixed finite element approximations
we need to know the approximation properties of the Raviart-Thomas inter-
polation ΠT . The analysis given in [44, 49] makes use of general standard
arguments for polynomial-preserving operators (see [19]). The main differ-
ence with the error analysis for Lagrange interpolation is that here we have
to use an appropriate transformation, known as the Piola transform, which
preserves the degrees of freedom defining ΠTv.
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Figure 2: Degrees of freedom for RT 0 and RT 1 in IR2

The Piola transform is defined in the following way. Given two domains
Ω̂, Ω ⊂ IRn and a bijective map F : Ω̂ → Ω, let DF be the Jacobian matrix
of F and J := detDF . Assume that J does not vanish at any point, then,
we define for v̂ ∈ L2(Ω̂)n

v(x) =
1

|J(x̂)|D̂F (x̂)v̂(x̂)

where x = F (x̂). Here and in what follows, the hat over differential operators
indicates that the derivatives are taken with respect to x̂.

We recall that scalar functions are transformed as indicated in (2.11)
(we are using the same notation for the transformation of vector and scalar
functions since no confusion is possible).

In the particular case that F is an affine map given by Ax̂ + b we have
J = det A and

v(x) =
1
|J |Av̂(x̂). (3.10)

In the next lemma we give some fundamental properties of the Piola
transform. For simplicity, we prove the results only for affine transforma-
tions, which is the useful case for our purposes. However, it is important to
remark that analogous results hold for general transformations and this is
important, for example, to work with general quadrilateral elements.

Lemma 3.3 If v ∈ H(div , T ) and φ ∈ H1(T ) then
∫

T
div v φdx =

∫

T̂
d̂iv v̂ φ̂ dx̂ , (3.11)
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∫

T
v · ∇φdx =

∫

T̂
v̂ · ∇̂φ̂ dx̂ (3.12)

and ∫

∂T
v · nφds =

∫

∂T̂
v̂ · n̂ φ̂ dŝ. (3.13)

Proof. From the definition of the Piola transform (3.10) we have

Dv(x) =
1
|J |AD(v̂ ◦ F−1)(x) =

1
|J |AD̂v̂(x̂)DF−1(x) =

1
|J |AD̂v̂(x̂)A−1.

Then,

divv = trDv =
1
|J |tr(AD̂v̂A−1) =

1
|J |tr D̂v̂ =

1
|J | d̂iv v̂

and therefore (3.11) follows by a change of variable.
To prove (3.12) recall that

∇φ = A−T ∇̂φ̂.

Then, ∫

T
v · ∇φdx =

∫

T̂
Av̂ ·A−T ∇̂φ̂ dx̂ =

∫

T̂
v̂ · ∇̂φ̂ dx̂.

Finally,(3.13) follows from (3.11) and (3.12) applying the divergence theo-
rem.

Remark 3.1 The integral over ∂T in the previous lemma has to be under-
stood as a duality product between v · n ∈ H− 1

2 (∂T ) and φ ∈ H
1
2 (∂T ).

We can now prove the invariance of the Raviart-Thomas interpolation
under the Piola transform.

Lemma 3.4 Given a simplex T ∈ IRn and v ∈ H1(T )n we have

ΠT̂ v̂ = Π̂Tv. (3.14)

Proof. We have to check that Π̂Tv satisfies the conditions defining Π
T̂
v̂,

namely,
∫

F̂i

Π̂Tv · n̂i p̂k dŝ =
∫

F̂i

v̂ · n̂i p̂k dŝ ∀p̂k ∈ Pk(F̂i) , i = 1, · · · , n + 1 , (3.15)
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where F̂i = F−1(Fi), and
∫

T̂
Π̂Tv · p̂k−1 dx̂ =

∫

T̂
v̂ · p̂k−1 dx̂ ∀p̂k−1 ∈ Pn

k−1(T̂ ). (3.16)

Given p̂k ∈ Pk(F̂i) we have
∫

F̂i

v̂ · n̂i p̂k dŝ =
∫

Fi

v · ni pk ds. (3.17)

Indeed, this follows from (3.13) by a density argument. We can not apply
(3.13) directly because the function obtained by extending pk by zero to the
other faces of T is not in H

1
2 (∂T ) and, therefore, it is not the restriction to

the boundary of a function φ ∈ H1(T ). However, we can take a sequence of
functions qj ∈ C∞

0 (Fi) such that qj → pk in L2(Fi) and, since the extension
by zero to ∂T of qj is in H

1
2 (∂T ), there exists φj ∈ H1(T ) such that the

restriction of φj to Fi is equal to qj . Therefore, applying (3.13) we obtain,
∫

F̂i

v̂ · n̂i q̂j dŝ =
∫

Fi

v · ni qj ds

and therefore, since v ·ni ∈ L2(Fi), we can pass to the limit to obtain (3.17).
Analogously we have

∫

F̂i

Π̂Tv · n̂i p̂k dŝ =
∫

Fi

ΠTv · ni pk ds.

and therefore (3.15) follows from condition (3.6) in the definition of ΠTv.
To check (3.16) observe that, for p̂k−1 ∈ Pn

k−1(T̂ ), we have
∫

T̂
Π̂Tv · p̂k−1 dx̂ =

∫

T
|J |A−1ΠTv · |J |A−1pk−1|J |−1 dx

=
∫

T
ΠTv · |J |A−T A−1pk−1 dx =

∫

T
v · |J |A−T A−1pk−1 dx =

∫

T̂
v̂ · p̂k−1 dx̂

where we have used condition (3.7) and that |J |A−T A−1pk−1 ∈ Pn
k−1(T ).

We can now prove the optimal order error estimates for the Raviart-
Thomas interpolation.

Theorem 3.5 There exists a constant C depending on k, n and the regu-
larity constant σ such that, for any v ∈ Hm(T )n and 1 ≤ m ≤ k + 1,

‖v −ΠTv‖L2(T ) ≤ Chm
T ‖∇mv‖L2(T ). (3.18)
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Proof. First we prove an estimate on the reference element T̂ . We will
denote with Ĉ a generic constant which depends only on k, n and T̂ . For
each face F̂i of T̂ let {pi

j}1≤j≤N be a basis of Pk(F̂i) and let {pm}1≤m≤M be
a basis of Pn

k−1(T̂ ). Then, associated with this basis we can introduce the
Lagrange-type basis of RT k(T̂ ), {φi

j , ψm} defined by
∫

F̂i

φi
j · ni p

r
s = δirδjs ,

∫

T̂
φi

j · pm = 0 ,

∀ i, r = 1, · · · , n + 1 , j, s = 1, · · · , N , m = 1, · · · ,M
and ∫

T̂
ψm · p` = δm` , ψm · ni = 0

∀ m, ` = 1, · · · ,M , i = 1, · · · , n + 1.

Then,

Π
T̂
v̂(x̂) =

n∑

i=1

N∑

j=1

( ∫

F̂i

v̂ · nip
i
j

)
φi

j(x̂) +
M∑

m=1

( ∫

T̂
v̂ · pm

)
ψm(x̂).

Now, from the trace theorem (2.1) on T̂ we have

∣∣∣
∫

F̂i

v̂ · nip
i
j

∣∣∣ ≤ Ĉ‖v̂‖
H1(T̂ )

.

Clearly, we also have
∣∣∣
∫

T̂
v̂ · pm

∣∣∣ ≤ Ĉ‖v̂‖
L2(T̂ )

.

In both estimates the constant Ĉ depends on bounds for the polynomials pi
j

and pm and then, it depends only on k, n and T̂ .
Therefore, using now that ‖φi

j‖L2(T̂ )
and ‖ψm‖L2(T̂ )

are also bounded by

a constant Ĉ we obtain

‖Π
T̂
v̂‖

L2(T̂ )
≤ Ĉ‖v̂‖

H1(T̂ )
. (3.19)

Using now the relation (3.14) and making a change of variables we have
∫

T
|ΠTv|2 dx =

∫

T̂
|J |−2|AΠ

T̂
v̂|2|J | dx̂ ≤ |J |−1‖A‖2

∫

T̂
|Π

T̂
v̂|2 dx̂

17



Then, using the bound for ‖A‖ (2.10) and (3.19) we obtain
∫

T
|ΠTv|2 dx ≤ |J |−1 h2

T

ρ2
T̂

{ ∫

T̂
|v̂|2 dx̂ +

∫

T̂
|D̂v̂|2 dx̂

}
(3.20)

but, since v̂ = |J |A−1v and D̂v̂ = |J |A−1DvA, using the bounds for ‖A‖
and ‖A−1‖ (2.10),

|v̂| ≤ |J |hT̂

ρT
|v| and |D̂v̂| ≤ |J |hT̂

ρT

hT

ρ
T̂

|Dv|

and so, it follows from (3.20), changing variables again, that

‖ΠTv‖2
L2(T ) ≤ Ĉ

{h2
T

ρ2
T

‖v‖2
L2(T ) +

h4
T

ρ2
T

‖Dv‖2
L2(T )

}
.

Therefore, from the regularity hypothesis (2.9) we obtain

‖ΠTv‖L2(T ) ≤ C
{
‖v‖L2(T ) + hT ‖Dv‖L2(T )

}
(3.21)

where the constant depends only on T̂ , k, n and the regularity constant σ.
Now we use a standard argument. Since Pn

k (T ) ⊂ RT (T ) we know that
ΠTq = q for all q ∈ Pn

k (T ) and then

‖v−ΠTv‖L2(T ) = ‖v−q−ΠT (v−q)‖L2(T ) ≤ C{‖v−q‖L2(T )+hT ‖D(v−q)‖L2(T )}
where the constant depends on that in (3.21). Therefore, we conclude the
proof applying Lemma 2.2.

Let us now introduce the global Raviart-Thomas finite element spaces.
Assume that we have a family of triangulations {Th} of Ω, i.e., Ω = ∪T∈Th

T ,
such that the intersection of two triangles in Th is either empty, or a vertex, or
a common side and h is a measure of the mesh-size, namely, h = maxT∈Th

hT .
We assume that the family of triangulations is regular, i.e., for any T ∈

Th and any h, the regularity condition (2.9) is satisfied with a uniform σ.
Associated with the triangulation Th we introduce the global space

RT k(Th) = {v ∈ H(div , Ω) : v|T ∈ RT k(T ) ∀T ∈ Th} (3.22)

When no confusion arises we will drop the Th from the definition and call
RT k the global space. A fundamental tool in the error analysis is the
operator

Πh : H(div ,Ω) ∩
∏

T∈Th

H1(T )n −→ RT k

18



defined by
Πhv|T = ΠTv ∀T ∈ Th

We have to check that Πhv ∈ RT k. Since by definition ΠTv ∈ RT k(T ), it
only remains to see that Πhv ∈ H(div ,Ω).

First we observe that a piecewise polynomial vector function is in H(div ,Ω)
if and only if it has continuous normal component across the elements
(this can be verified by applying the divergence theorem). But, since v ∈
H(div , Ω), the continuity of the normal component of Πhv follows from b)
of Lemma 3.1 in view of the degrees of freedom (3.6) in the definition of ΠT .

The finite element space for the approximation of the scalar variable p
is the standard space of, not necessarily continuous, piecewise polynomials
of degree k, namely,

Pd
k (Th) = {q ∈ L2(Ω) : q|T ∈ Pk(T ) : ∀T ∈ Th} (3.23)

where the d stands for “discontinuous”. Also in this case we will write only
Pd

k when no confusion arises. Observe that, since no derivative of the scalar
variable appears in the weak form, we do not require any continuity in the
approximation space for this variable.

In the following lemma we give two fundamental properties for the error
analysis.

Lemma 3.6 The operator Πh satisfies
∫

Ω
div (v −Πhv) q dx = 0 (3.24)

∀v ∈ H(div , Ω) ∩∏
T∈Th

H1(T )n and ∀q ∈ Pd
k . Moreover,

divRT k = Pd
k (3.25)

Proof. Using (3.6) and (3.7) it follows that, for any v ∈ H1(T )n and any
q ∈ Pk(T ),
∫

T
div (v −ΠTv)q dx = −

∫

T
(v −ΠTv) · ∇q dx +

∫

∂T
(v −ΠTv) · n q = 0

thus, (3.24) holds.
It is easy to see that div RT k ⊂ Pd

k . In order to see the other inclusion
recall that from Lemma 2.4 we know that div : H1(Ω)n → L2(Ω) is surjec-
tive. Therefore, given q ∈ Pd

k there exists v ∈ H1(Ω)n such that divv = q.
Then, it follows from (3.24) that div Πhv = q and so (3.25) is proved. .
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Introducing the orthogonal L2-projection Ph : L2(Ω) → Pd
k , properties

(3.24) and (3.25) can be summarized in the following commutative diagram

H1(Ω)n div−→ L2(Ω)
Πh

y
yPh

RT k
div−→ Pd

k −→ 0

(3.26)

where, to simplify notation, we have replaced H(div , Ω)∩∏
T∈Th

H1(T )n by
its subspace H1(Ω)n.

Our next goal is to give error estimates for the mixed finite element
approximation of Problem 3.1, namely, (uh, ph) ∈ RT k × Pd

k defined by
{ ∫

Ω µuh · v dx− ∫
Ω ph divv dx = 0 ∀v ∈ RT k∫

Ω q div uh dx =
∫
Ω fq dx ∀q ∈ Pd

k
(3.27)

It is important to remark that, although we are considering the par-
ticular case of the Raviart-Thomas spaces on simplicial elements, the error
analysis only makes use of the fundamental commutative diagram property
(3.26) and of the approximation properties of the projections Πh and Ph.
Therefore, similar results can be obtained for other finite element spaces.

Lemma 3.7 If u and uh are the solutions of (3.3) and (3.27) then,

‖u− uh‖L2(Ω) ≤ (1 + ‖a‖L∞(Ω)‖µ‖L∞(Ω))‖uh −Πhu‖L2(Ω)

Proof. Subtracting (3.27) from (3.3) we obtain the error equations

∫

Ω
µ (u− uh) · v dx−

∫

Ω
(p− ph) divv dx = 0 ∀v ∈ RT k (3.28)

and, ∫

Ω
q div (u− uh) dx = 0 ∀q ∈ Pd

k (3.29)

Using (3.24) and (3.29) we obtain
∫

Ω
q div (Πhu− uh) dx = 0 ∀q ∈ Pd

k
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and, since (3.25) holds, we can take q = div (Πhu− uh) to conclude that

div (Πhu− uh) = 0.

Therefore, taking v = Πhu− uh in (3.28) we obtain
∫

Ω
µ (u− uh) · (Πhu− uh) dx = 0

and so,

‖Πhu− uh‖2
L2(Ω) ≤ ‖a‖L∞(Ω)

∫

Ω
µ (Πhu− u)(Πhu− uh) dx

≤ ‖a‖L∞(Ω)‖µ‖L∞(Ω)‖Πhu− u‖L2(Ω)‖Πhu− uh‖L2(Ω)

and we conclude the proof by using the triangle inequality.
As a consequence, we have the following optimal order error estimate for

the approximation of the vector variable u.

Theorem 3.8 If the solution u of Problem 3.2 belongs to Hm(Ω)n, 1 ≤
m ≤ k + 1, there exists a constant C depending on ‖a‖L∞(Ω), ‖µ‖L∞(Ω), k,
n and the regularity constant σ, such that

‖u− uh‖L2(Ω) ≤ Chm‖∇mu‖L2(Ω)

Proof. The result is an immediate consequence of Lemma 3.7 and Theorem
3.5.

In the next theorem we obtain error estimates for the scalar variable p. We
will use that

‖v −Πhv‖L2(Ω) ≤ Ch‖v‖H1(Ω) ∀v ∈ H1(Ω) (3.30)

which follows from a particular case of Theorem 3.5. In particular,

‖Πhv‖L2(Ω) ≤ C‖v‖H1(Ω). (3.31)

Lemma 3.9 If (u, p) and (uh, ph) are the solutions of (3.3) and (3.27),
there exists a constant C depending on ‖a‖L∞(Ω), ‖µ‖L∞(Ω), k, n, Ω and the
regularity constant σ, such that

‖p− ph‖L2(Ω) ≤ C{‖p− Php‖L2(Ω) + ‖u−Πhu‖L2(Ω)} (3.32)

21



Proof. From (3.25) we know that for any q ∈ Pd
k there exists wh ∈ RT k

such that divwh = q. Moreover, it is easy to see that wh can be taken such
that

‖wh‖L2(Ω) ≤ C‖q‖L2(Ω). (3.33)

Indeed, recall that wh = Πhw where w ∈ H1(Ω) satisfies divw = q and
‖w‖H1(Ω) ≤ C‖q‖L2(Ω) (from Lemma 2.4 we know that such a w exists).
Then, (3.33) follows from (3.31).

Now, from the error equation (3.28) we have
∫

Ω
(Php− ph) divv dx =

∫

Ω
(u− uh)v dx ∀v ∈ RT k

and so, taking v ∈ Vh such that divv = Php− ph and

‖v‖L2(Ω) ≤ C‖Php− ph‖L2(Ω),

we obtain

‖Php− ph‖2
L2(Ω) ≤ C‖u− uh‖L2(Ω)‖Php− ph‖L2(Ω)

which combined with Lemma 3.7 and the triangular inequality yields (3.32).
As a consequence, we obtain an error estimate for the approximation of

the scalar variable p.

Theorem 3.10 If the solution (u, p) of Problem 3.2 belongs to Hm(Ω)n ×
Hm(Ω), 1 ≤ m ≤ k + 1, there exists a constant C depending on ‖a‖L∞(Ω),
‖µ‖L∞(Ω), k, n and the regularity constant σ, such that

‖p− ph‖L2(Ω) ≤ Chm{‖∇mu‖L2(Ω) + ‖∇mp‖L2(Ω)} (3.34)

Proof. The result follows immediately from Theorem 3.8, Lemma 3.9 and
the error estimates for the L2-projection given in (2.3).

For the case in which Ω is a convex polygon or a smooth domain and
the coefficient a is smooth enough to have the a priori estimate

‖p‖H2(Ω) ≤ C0‖f‖L2(Ω) (3.35)

we also obtain a higher order error estimate for ‖Php − ph‖L2(Ω) using a
duality argument.
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Lemma 3.11 If a ∈ W 1,∞(Ω) and (3.35) holds, there exists a constant C
depending on ‖a‖W 1,∞(Ω), ‖µ‖L∞(Ω), k, n, Ω and C0 such that

‖Php− ph‖L2(Ω) ≤ Ch{‖u− uh‖L2(Ω) + ‖div (u− uh)‖L2(Ω)} (3.36)

Proof. We use a duality argument. Let φ be the solution of
{

div (a∇φ) = Php− ph in Ω
φ = 0 on ∂Ω

Using (3.24), (3.25), (3.28), (3.29), and (3.30) we have,

‖Php−ph‖2
L2(Ω) =

∫

Ω
(Php−ph) div (a∇φ) dx =

∫

Ω
(Php−ph) div Πh(a∇φ) dx

=
∫

Ω
(p− ph) div Πh(a∇φ) dx =

∫

Ω
µ(u− uh) · (Πh(a∇φ)− a∇φ) dx

+
∫

Ω
(u−uh)·∇φ dx =

∫

Ω
µ(u−uh)·(Πh(a∇φ)−a∇φ) dx−

∫

Ω
div (u−uh)(φ−Phφ) dx

≤ C‖u− uh‖L2(Ω)h‖φ‖H2(Ω) + C‖div (u− uh)‖L2(Ω)h‖φ‖H1(Ω)

where for the last inequality we have used that a ∈ W 1,∞(Ω). The proof
concludes by using the a priori estimate (3.35) for φ.

Theorem 3.12 If a ∈ W 1,∞(Ω), (3.35) holds, u ∈ Hk+1(Ω)n and f ∈
Hk+1(Ω), there exists a constant C depending on ‖a‖W 1,∞(Ω), ‖µ‖L∞(Ω), k,
n, Ω and C0 such that

‖Php− ph‖L2(Ω) ≤ Chk+2{‖∇k+1u‖L2(Ω) + ‖∇k+1f‖L2(Ω)} (3.37)

Proof. The second equation in (3.27) can be written as divuh = Phf . Then
we have

div (u− uh) = f − Phf

and, therefore, the theorem follows from Theorem 3.8 and Lemma 3.11 and
the error estimates for the L2-projection given in (2.3).

The estimate for ‖Php − ph‖L2(Ω) given by this theorem is important
because it can be used to construct superconvergent approximations of p, i.e.,
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approximations which converge at a higher order than ph (see for example
[11, 48])

For the sake of clarity we have presented the error analysis for the
Raviart-Thomas spaces which were the first ones introduced for the mixed
approximation of second order elliptic problems. However, as we mentioned
above, the analysis makes use only of the existence of a projection Πh satis-
fying the commutative diagram property and on approximation properties of
Πh and of the L2-projection on the finite element space used to approximate
the scalar variable p.

For the particular case of the Raviart-Thomas spaces the regularity as-
sumption (2.9) can be replaced by the weaker “maximum angle condition”
(see [1] for k = 0 and n = 2, 3, [28] for k = 1 and n = 2 and [29] for general
k ≥ 0 and n = 2).

The Raviart-Thomas spaces were constructed in order to approximate
both vector and scalar variables with the same order. However, if one is
more interested in the approximation of the vector variable u, one can try
to use different order approximations for each variable in order to reduce the
degrees of freedom (thus reducing the computational cost) while preserving
the same order of convergence for u provided by the RT k spaces. This is the
main idea to define the following spaces which were introduced by Brezzi,
Douglas and Marini [16]. Although with this choice the order of convergence
for p is reduced, estimate (3.37) allows to improve it by a post-processing of
the computed solution [16].

In the examples below, we will define the local spaces for each variable.
It is not difficult to check that the degrees of freedom defining the spaces
approximating the vector variable guarantee the continuity of the normal
component and therefore the global spaces are subspaces of H(div ,Ω).

For n = 2, k ≥ 1 and T a triangle, the space BDMk(T ) is defined in the
following way:

BDMk(T ) = P2
k(T ) (3.38)

and the corresponding space for the scalar variable is Pk−1(T ).
Observe that

dimBDMk(T ) = (k + 1)(k + 2).

For example, dimBDM1(T ) = 6 and dimBDM2(T ) = 12. Figure 3 shows
the degrees of freedom for these two spaces. The arrows correspond to de-
grees of freedom of normal components while the circles indicate the internal
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Figure 3: Degrees of freedom for BDM1 and BDM2

degrees of freedom corresponding to the second and third conditions in the
definition of ΠT below.

In what follows, `i, i = 1, 2, 3 are the sides of T , bT = λ1λ2λ3 is a
“bubble” function and, for φ ∈ H1(Ω),

curlφ =
(∂φ

∂y
,−∂φ

∂x

)

The operator ΠT for this case is defined as follows:
∫

`i

ΠTv · nipk ds =
∫

`i

v · nipk ds ∀pk ∈ Pk(`i) , i = 1, 2, 3

∫

T
ΠTv · ∇pk−1 dx =

∫

T
v · ∇pk−1 dx ∀pk−1 ∈ Pk−1(T )

and, when k ≥ 2
∫

T
ΠTv · curl (bT pk−2) dx =

∫

T
v · curl (bT pk−2) dx ∀pk−2 ∈ Pk−2(T )

The reader can check that all the conditions for convergence are satisfied
in this case. Property (3.24) follows from the definition of ΠT and the proof
of its existence is similar to that of Lemma 3.2. Consequently, the same
arguments used for the Raviart-Thomas approximation provide the same
error estimate for the approximation of u that we had in Theorem 3.8 while
for p we have

‖p− ph‖L2(Ω) ≤ Chm{‖∇mu‖L2(Ω) + ‖∇mp‖L2(Ω)},
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1 ≤ m ≤ k and the estimate does not hold for m = k + 1 i.e., the best order
of convergence is reduced in one with respect to the estimate obtained for
the Raviart-Thomas approximation.

However, with the same argument used in Lemma 3.36 it can be proved
that , for k ≥ 2,

‖Php− ph‖L2(Ω) ≤ C{h‖u− uh‖L2(Ω) + h2‖div (u− uh)‖L2(Ω)},

indeed, since Ph is the orthogonal projection on Pd
k−1 and k − 1 ≥ 1, this

follows by using that

‖φ− Phφ‖L2(Ω) ≤ Ch2‖φ‖H2(Ω) (3.39)

in the last step of the proof of that lemma.
Therefore, for k ≥ 2, we obtain the following result analogous to that in

Theorem 3.37

‖Php− ph‖L2(Ω) ≤ Chk+2{‖∇k+1u‖L2(Ω) + ‖∇kf‖L2(Ω)}.

On the other hand, if k = 1, (3.39) does not hold (because in this case Ph

is the projection over piece-wise constant functions). Then, in this case we
can prove only

‖Php− ph‖L2(Ω) ≤ Ch2{‖∇u‖L2(Ω) + ‖∇f‖L2(Ω)}.

As we mentioned before, these estimates for ‖Php− ph‖L2(Ω) can be used to
improve the order of approximation for p by a local post-processing.

Several rectangular elements have also been introduced for mixed ap-
proximations. We recall some of them (and refer to [17] for a more complete
review).

First we define the spaces introduced by Raviart and Thomas [44]. For
nonnegative integers j, k we call Qk,m the space of polynomials of the form

q(x, y) =
k∑

i=0

m∑

j=0

aijx
iyj

then, the RT k(R) space on a rectangle R is given by

RT k(R) = Qk+1,k(R)×Qk,k+1(R)
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Figure 4: Degrees of freedom for RT 0 and RT 1

and the space for the scalar variable is Qk(R). It can be easily checked that

dimRT k(R) = 2(k + 1)(k + 2).

Figure 4 shows the degrees of freedom for k = 0 and k = 1.
Denoting with `i, i = 1, 2, 3, 4 the four sides of R, the degrees of freedom

defining the operator ΠT for this case are

∫

`i

ΠTv · nipk d` =
∫

`i

v · nipk d` ∀pk ∈ Pk(`i) , i = 1, 2, 3, 4

and (for k ≥ 1)
∫

R
ΠTv · φk dx =

∫

R
v · φk dx ∀φk ∈ Qk−1,k(R)×Qk,k−1(R)

Our last example in the 2-d case are the spaces introduced by Brezzi,
Douglas and Marini on rectangular elements. They are defined for k ≥ 1 as

BDMk(R) = P2
k(R) + 〈curl (xk+1y)〉+ 〈curl (xyk+1)〉

and the associated scalar space is Pk−1(R). It is easy to see that

dimBDMk(R) = (k + 1)(k + 2) + 2.

. The degrees of freedom for k = 1 and k = 2 are shown in Figure 5.
The operator ΠT is defined by

∫

`i

ΠTv · nipk d` =
∫

`i

v · nipk d` ∀pk ∈ Pk(`i) , i = 1, 2, 3, 4
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Figure 5: Degrees of freedom for BDM1 and BDM2

and (for k ≥ 2)
∫

R
ΠTv · pk−2 dx =

∫

R
v · pk−2 dx ∀pk−2 ∈ P2

k−2(R)

The RT k as well as the BDMk spaces on rectangles have analogous
properties to those on triangles. Therefore, the same error estimates ob-
tained for triangular elements are valid in both cases.

More generally, one can consider general quadrilateral elements. Given
a convex quadrilateral Q, the spaces are defined using the Piola transform
from a reference rectangle R to Q. Let us define for example the Raviart-
Thomas spaces RT k(Q).

Let R = [0, 1]× [0, 1] be the reference rectangle and F : R → Q a bilinear
transformation taking the vertices of R into the vertices of Q. Then, we
define the local spaceRT k(R) by using the Piola transform, i.e., if x = F (x̂),
DF is the Jacobian matrix of F and J = |det DF |,

RT k(Q) = {v : Q → IR2 : v(x) =
1

J(x̂)
DF (x̂)v̂(x̂) with v̂ ∈ RT k(R)}.

Also in this case similar error estimates to those obtained for triangular
elements can be proved under appropriate regularity assumptions on the
quadrilaterals. The analysis of this case is more technical and so we omit
details and refer to [5, 37, 49].

3-d extensions of the spaces defined above have been introduced by Ned-
elec [41, 42] and by Brezzi, Douglas, Durán and Fortin [14]. For tetrahedral
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elements the spaces are defined in an analogous way, although the construc-
tion of the operator ΠT requires a different analysis (we refer to [41] for the
extension of the RT k spaces and to [42, 14] for the extension of the BDMk

spaces). In the case of 3-d rectangular elements, the extensions of RT k are
again defined in an analogous way [41] and the extensions of BDMk [14]
can be defined for a 3-d rectangle R by

BDDFk(R) = P3
k + 〈{curl (0, 0, xyi+1zk−i), i = 0, . . . , k}〉

+〈{curl (0, xk−iyzi+1, 0), i = 0, . . . , k}〉
+〈{curl (xi+1yk−iz, 0, 0), i = 0, . . . , k}〉

where now we are using the usual notation curl v for the rotational of a
three dimensional vector field v.

All the convergence results obtained in 2-d can be extended for the 3-d
spaces mentioned here. Other families of spaces, in both 2 and 3 dimen-
sions which are intermediate between the RT and the BDM spaces were
introduced and analyzed by Brezzi, Douglas, Fortin and Marini [15].

Finally, we refer to [10] for the case of general isoparametric hexahedral
elements.

4 A posteriori error estimates

In this section we present an a posteriori error analysis for the mixed finite
element approximation of second order elliptic problems. For simplicity, we
will assume that the restriction of the coefficient a in (3.1) to any element
of the triangulation is constant. If not, higher order terms corresponding to
the approximation of a arise in the estimates.

For simplicity, we prove the results for the approximations obtained by
the Raviart-Thomas spaces and in the two dimensional case. However, sim-
ple variants of the method can be applied for mixed approximations in other
spaces, in particular, for all the spaces described in the previous section.

We introduce error estimators of the residual type for both scalar and
vector variables and prove that the error is bounded by a constant times
the estimator plus a term which is of higher order (i.e., what is usually
called “reliability” of the estimator). We also prove that the estimator is
less than or equal a constant times the error. This last estimate (usually
called “efficiency” of the estimator) is local, more precisely, the error in one
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element T can be bounded below by the estimators in the same triangle plus
the estimators in the elements sharing a side with T .

It is well known that several mixed methods are related to non-conforming
finite element approximations (see [6]). In particular the lowest order Raviart-
Thomas method corresponds to the non-conforming linear elements of Crouzeix-
Raviart (see also [40]).

A posteriori error estimates were obtained first for the Crouzeix-Raviart
method by using a Helmoltz type decomposition of the error (see [23]). The
same technique has been applied for mixed finite element approximations in
[4, 18]. In [4] only the vector variable is estimated while in [18] both variables
are estimated, but to estimate the scalar variable the a priori estimate (3.35)
was assumed to hold. In particular, this hypothesis excludes non-convex
polygonal domains. We refer also to [3, 39] for related results.

Our analysis for the vector variable follows the approach of [4, 18], while
for the scalar variable we present a new argument which does not require
the a priori estimate (3.35).

We will use the following well-known approximation result. We denote
with Pc

k+1 the standard continuous piece-wise polynomials of degree k + 1.
For any φ ∈ H1(Ω) there exists φh ∈ Pc

k+1 such that

‖φ− φh‖0,` ≤ C|`|1/2‖∇φ‖
L2(T̃ )

(4.1)

and,
‖φ− φh‖0,T ≤ C|T |1/2‖∇φ‖

L2(T̃ )
(4.2)

where T̃ is the union of all the elements sharing a vertex with T (we can
take for example the Clément approximation [21] or any variant of it (see
for example [37, 47]).

We will use the notation curlφ introduced in the previous section for
φ ∈ H1(Ω) and for v ∈ H1(Ω)2 we define

rotv =
∂v2

∂x
− ∂v1

∂y

Also, for a field v such that its restriction v|T to each T ∈ Th belongs to
H1(T )2 we will denote with rot hv the function such that its restriction to
T is given by rot (v|T ).

For an element T , let ET be the set of edges of T and t be the unit
tangent on ` oriented clockwise. For an interior side `, [[uh · t]]` denotes
the jump of the tangential component of uh, namely, if T1 and T2 are the
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triangles sharing `, and t1 and t2 the corresponding unit tangent vectors on
` then

[[uh · t]]` = uh|T1 · t1 − uh|T2 · t1 = uh|T1 · t1 + uh|T2 · t2.

We define

J` =

{
[[uh · t]]` if ` 6⊂ ∂Ω
2uh · t if ` ⊂ ∂Ω

We now introduce the estimator for the vector variable and prove the
efficiency and reliability of this estimator.

The local error estimator is defined by

η2
vect,T = |T |‖rot huh‖2

L2(T ) +
∑

`∈ET

|`|‖J`‖2
L2(`)

and the global one by,

η2
vect =

∑

T∈Th

η2
vect,T .

The key point to prove the reliability of the estimator is to decompose
the error by using a generalized Helmholtz decomposition given in the next
lemma.

Lemma 4.1 If the domain Ω is simply connected and v ∈ L2(Ω)2, there
exist ψ ∈ H1

0 (Ω) and φ ∈ H1(Ω) such that

v = a∇ψ + curlφ (4.3)

and
‖∇φ‖L2(Ω) + ‖∇ψ‖L2(Ω) ≤ C‖v‖L2(Ω) (4.4)

with a constant C depending only on a.

Proof. To obtain this decomposition we solve the problem

div (a∇ψ) = divv

with ψ ∈ H1
0 (Ω), namely, ψ satisfies

∫

Ω
a∇ψ · ∇ξ =

∫

Ω
v · ∇ξ ∀ξ ∈ H1

0 (Ω).
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In particular, choosing ξ = ψ we obtain

‖∇ψ‖L2(Ω) ≤ C‖v‖L2(Ω). (4.5)

Now, since
div (v − a∇ψ) = 0,

and the domain is simply connected, there exists φ ∈ H1(Ω) such that (4.3)
holds.

Moreover, observe that (4.4) follows easily from (4.5) and (4.3).

Theorem 4.2 If Ω is simply connected and the restriction of a to any T ∈
Th is constant, there exists a constant C1 such that

‖u− uh‖L2(Ω) ≤ C1{ηvect + h‖f − Phf‖L2(Ω)}. (4.6)

Proof. For φ ∈ H1(Ω) we have
∫

Ω
µu · curlφ dx =

∫

Ω
∇p · curlφdx = 0.

Analogously, for φh ∈ Pc
k+1, curlφh ∈ RT k and therefore, using the first

equation in (3.27), ∫

Ω
µuh · curlφh dx = 0.

Then, ∫

Ω
µ (u− uh) · curlφdx = −

∫

Ω
µuh · curl (φ− φh) dx

= −
∑

T

{ ∫

T
rot h(µuh) (φ− φh) dx +

∫

∂T
µuh · t (φ− φh) ds

}

= −
∑

T

{ ∫

T
rot h(µuh) (φ− φh) dx +

1
2

∑

`∈ET

∫

`
J` (φ− φh) ds

}

Then, if φh ∈ Pc
k+1 is an approximation of φ satisfying (4.1) and (4.2),

applying the Schwarz inequality we obtain
∫

Ω
µ (u− uh) · curlφdx ≤ Cηvect|φ|1,Ω. (4.7)

On the other hand, if ψ ∈ H1
0 (Ω) we have

32



∫

Ω
µ (u− uh) · a∇ψ dx =

∫

Ω
(u− uh) · ∇ψ dx

=
∫

Ω
div (u− uh) ψ dx =

∫

Ω
(f − Phf) ψ dx =

∫

Ω
(f − Phf) (ψ − Phψ) dx

and, therefore, using that

‖ψ − Phψ‖L2(Ω) ≤ Ch‖∇ψ‖L2(Ω),

which follows immediately from Corollary 2.3, we obtain
∫

Ω
(u− uh) · ∇ψ dx ≤ Ch‖f − Phf‖L2(Ω)‖∇ψ‖L2(Ω). (4.8)

Using now Lemma 4.3 for v = u− uh we have

u− uh = a∇ψ + curlφ

with ψ ∈ H1
0 (Ω) and φ ∈ H1(Ω) such that

‖∇φ‖L2(Ω) + ‖∇ψ‖L2(Ω) ≤ C‖u− uh‖L2(Ω). (4.9)

Then,

‖u− uh‖2
L2(Ω) ≤ C

{ ∫

Ω
µ(u− uh) · curlφdx +

∫

Ω
(u− uh) · ∇ψ dx

}

and therefore (4.6) follows immediately from (4.7), (4.8) and (4.9).
To prove the efficiency we will use a well-known argument of Verfürth

[50, 52]. In our case this argument will make use of the following lemma.

Lemma 4.3 Given a triangle T and functions qT ∈ L2(T ) and, for each
side ` of T , p` ∈ L2(`), there exists φ ∈ Pk+3(T ) such that





∫
T φ r dx =

∫
T qT r dx ∀r ∈ Pk(T )∫

` φ s dx =
∫
` p` s dx ∀s ∈ Pk+1(`) ∀` ∈ ET ,

φ = 0 at the vertices of T
(4.10)

Moreover,

‖∇φ‖L2(T ) ≤ C{|T |− 1
2 ‖qT ‖L2(T ) +

∑

`∈ET

|`|− 1
2 ‖p`‖L2(`)} (4.11)
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Proof. The number of conditions is

dimPk(T ) + 3 dimPk+1(`) =
(k + 2)(k + 1)

2
+ 3(k + 2) =

(k + 2)(k + 7)
2

while the dimension of the subspace of Pk+3 of polynomials vanishing at the
vertices of T is

dimPk+3(T )− 3 =
(k + 4)(k + 5)

2
− 3 ==

(k + 2)(k + 7)
2

Therefore, (4.10) is a square system and so it is enough to show the unique-
ness. So, assume that





∫
T φ r dx = 0 ∀r ∈ Pk(T )∫
` φ s dx = 0 ∀s ∈ Pk+1(`) ∀` ∈ ET

φ = 0 at the vertices of T.
(4.12)

Since φ vanishes at the vertices of `, it follows from the second condition in
(4.12) that φ = 0 on the sides of T . Then,

φ = λ1λ2λ3 r with r ∈ Pk

and, therefore, it follows from the first condition in (4.12) that φ = 0. .
We will call DT the union of T with the triangles sharing a side with it.

Theorem 4.4 If the restriction of a to any T ∈ Th is constant, there exists
a constant C2 such that, for any T ∈ Th,

ηvect,T ≤ C2‖u− uh‖L2(DT ). (4.13)

Proof. We apply Lemma 4.3 on T and its neighbors Ti, i = 1, 2, 3 (we
assume that T does not have a side on ∂Ω, trivial modifications are needed
if this is not the case). In this way we can construct φ ∈ H1

0 (DT ) vanishing
at the vertices of T and Ti, i = 1, 2, 3 and such that

∫

T
φ r dx = −

∫

T
|T | rot h(µuh) r dx ∀r ∈ Pk(T ) (4.14)

∫

`
φ s dx = −

∫

`
|`|J` s dx ∀s ∈ Pk+1(`) , ∀` ∈ ET , (4.15)
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∫

Ti

φ r dx = 0 ∀r ∈ Pk(Ti) (4.16)

and
∫

`
φ s dx = 0 ∀s ∈ Pk+1(`) on the other two sides of Ti. (4.17)

Since φ vanishes at the boundary of DT we can extend it by zero to obtain
a function φ ∈ H1

0 (Ω). Then,
∫

Ω
µ (u− uh) · curlφdx = −

∑

T

{ ∫

T
rot h(µuh) φdx +

1
2

∑

`∈ET

∫

`
J` φds

}
.

(4.18)
But,

rot h(µuh)|T ∈ Pk(T ) and J` ∈ Pk+1(`),

therefore, we can take r = rot (µuh) and, for each ` ∈ ET , s = J` in (4.14)
and (4.15) respectively to obtain

∫

T
rot h(µuh) φdx = −|T |‖rot huh‖2

L2(T )

and ∑

`∈ET

∫

`
J` φds = −

∑

`∈ET

|`|‖J`‖2
L2(`).

Analogously, using now (4.15), (4.16), (4.17), we obtain
∫

Ti

rot h(µuh) φdx = 0 , i = 1, 2, 3

and ∑

˜̀∈ETi

∫
˜̀
J˜̀φds = −|`|‖J`‖2

L2(`) , i = 1, 2, 3

where ` = T ∩ Ti.
Therefore, recalling that φ vanishes outside DT , it follows from (4.18)

that
η2

vect,T =
∫

DT

µ (u− uh) · curlφdx

and so,
η2

vect,T ≤ C‖u− uh‖L2(Ω)‖∇φ‖L2(DT ).
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But, using (4.11) we have

‖∇φ‖L2(DT ) ≤ C{|T | 12 ‖rot h(µuh)‖L2(T ) +
∑

`∈ET

|`| 12 ‖J`‖L2(`)} ≤ Cηvect,T

and therefore (4.13) holds.
To estimate the error in the scalar variable p we introduce the local

estimator

η2
esc,T = |T |‖∇hph + µuh‖2

L2(T ) +
∑

`∈ET

|`|‖[[ph]]`‖2
L2(`)

where [[ph]]` denotes the jump of ph across the side ` if ` is an interior side
or [[ph]]` = 2ph if ` ⊂ ∂Ω and, for a function q such that its restriction to
each T ∈ Th belongs to H1(T ) we denote with ∇hq the function such that
its restriction to T is given by ∇(q|T )

Then, the global estimator is defined as usual by

η2
esc =

∑

T∈Th

η2
esc,T .

The next lemma shows that the error in the scalar variable is bounded
by ηesc plus the error in the vector variable.

Apart from (3.18) we will use the following error estimate which can be
obtained in a similar way.

If ` is a side of an element T we have

‖(v −ΠTv) · n‖L2(`) ≤ C|`| 12 ‖∇v‖L2(T ). (4.19)

Lemma 4.5 There exists a constant C such that

‖p− ph‖L2(Ω) ≤ C{ηesc + ‖u− uh‖L2(Ω)}.

Proof. By Lemma 2.4 we know that there exists v ∈ H1(Ω)2 such that

divv = p− ph (4.20)

and
‖v‖H1(Ω) ≤ C‖p− ph‖L2(Ω) (4.21)

with a constant C depending only on the domain.
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Then,

‖p−ph‖2
L2(Ω) =

∫

Ω
(p−ph) divv dx =

∫

Ω
(p−ph) div (v−Πhv) dx+

∫

Ω
(p−ph) div Πhv dx

(4.22)

=
∫

Ω
(p−ph) div (v−Πhv) dx−

∫

Ω
µ(u−uh)·(v−Πhv) dx+

∫

Ω
µ(u−uh)·v dx.

But using that
∫

Ω
pdiv (v −Πhv) dx−

∫

Ω
µu · (v −Πhv) dx = 0

and integrating by parts on each element we have
∫

Ω
(p− ph) div (v −Πhv) dx−

∫

Ω
µ(u− uh) · (v −Πhv) dx

=
∑

T∈Th

{ ∫

T
∇hph·(v−Πhv) dx−

∫

∂T
ph(v−Πhv)·n ds+

∫

T
µuh·(v−Πhv) dx

}

=
∑

T∈Th

{ ∫

T
(∇hph + µuh) · (v −Πhv) dx− 1

2

∑

`∈ET

∫

`
[[ph]](v −Πhv) · n ds

}
.

Therefore, the Lemma follows from this equality and (4.22) using the Schwarz
inequality and the error estimates (3.18) and (4.19).

Using now the results for the vector variable we obtain the following a
posteriori error estimate for the scalar variable.

Theorem 4.6 If Ω is simply connected and the restriction of a to any T ∈
Th is constant, there exists a constant C3 such that

‖p− ph‖L2(Ω) ≤ C3{ηesc + ηvect + h‖f − Phf‖L2(Ω)} (4.23)

Proof. This result follows immediately from Theorem 4.6 and Lemma 4.5.
To prove the efficiency of ηesc we first prove that the jumps involved in

the definition of the estimator can be bounded by the error plus the other
part of the estimator.

Lemma 4.7 There exists a constant C such that

|`| 12 ‖[[ph]]‖L2(`) ≤ C{‖p−ph‖L2(D`)+|`|‖u−uh‖L2(D`)+|`|‖∇hph+µuh‖L2(D`)}
where D` is the union of the triangles sharing `.
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Proof. If ` ∈ ET , it follows from the regularity assumption on the
meshes that |`| ∼ hT ∼ |T | 12 . Now, since p is continuous we have

‖[[ph]]‖L2(`) = ‖[[ph − p]]‖L2(`)

and so, applying the trace inequality (2.1), we obtain

|`| 12 ‖[[ph]]‖L2(`) ≤ C{‖ph − p‖L2(D`) + |`|‖∇h(ph − p)‖L2(D`)}

≤ C{‖ph − p‖L2(D`) + |`|‖∇hph + µu‖L2(D`)}
≤ C{‖ph − p‖L2(D`) + |`|‖∇hph + µuh‖L2(D`) + |`|‖µ(u− uh)‖L2(D`)}

concluding the proof because µ is bounded.
Now, in order to bound ‖∇hph +µu‖L2(T ) by the error we will use again

the argument of Verfürth.

Lemma 4.8 There exists a constant C such that

|T | 12 ‖∇hph + µuh‖L2(T ) ≤ C{|T | 12 ‖u− uh‖L2(T ) + ‖p− ph‖L2(T )} (4.24)

Proof. Using again that
∫

Ω
µu · v dx−

∫

Ω
pdivv dx = 0

we have, for any v ∈ H1
0 (T ),

∫

T
µ (u− uh) · v dx−

∫

T
(p− ph) divv dx = −

∫

T
µuh · v dx +

∫

T
ph divv dx

= −
∫

T
µuh · v dx−

∫

T
∇hph · v dx = −

∫

T
(∇hph + µuh) · v dx.

Choosing now v = −bT (∇hph + µuh), with bT ∈ P3(T ) vanishing at the
boundary and equal to one at the barycenter of T , we obtain
∫

T
µ (u− uh) · v dx−

∫

T
(p− ph) divv dx =

∫

T
|∇hph + µuh|2bT dx. (4.25)

But, since ∇hph + µuh ∈ Pk+1(T ), a standard argument (equivalence of
norms in a reference element and an affine change of variables) gives

∫

T
|∇hph + µuh|2 dx ≤ C

∫

T
|∇hph + µuh|2bT dx,
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which together with (4.25) and the Schwarz inequality yields

‖∇hph + µuh‖2
L2(T ) ≤ C{‖u− uh‖0,T ‖v‖L2(T ) + ‖p− ph‖L2(T )‖∇v‖L2(T )}

(4.26)
but, since bT is bounded by a constant independent of T we know that

‖v‖L2(T ) ≤ C‖∇hph + µuh‖L2(T )

and, by a standard inverse inequality,

‖∇v‖L2(T ) ≤ C|T |− 1
2 ‖∇hph + µuh‖L2(T )

and, therefore, (4.24) follows from (4.26).
Collecting the lemmas we can prove the efficiency of the estimator ηesc.

Theorem 4.9 If the restriction of a to any T ∈ Th is constant, there exists
a constant C4 such that, for any T ∈ Th,

ηesc,T ≤ C4{|T |
1
2 ‖u− uh‖L2(DT ) + ‖p− ph‖L2(DT )} (4.27)

Proof. This result is an immediate consequence of Lemmas 4.7 and 4.8.
Putting together the results for both estimators we have the following a

posteriori error estimate for the mixed finite element approximation.
We define

η2
T = η2

vect,T + η2
esc,T and η2 =

∑

T∈Th

η2
T .

Theorem 4.10 If Ω is simply connected and the restriction of a to any
T ∈ Th is constant, there exist constants C5 and C6 such that

ηT ≤ C5{‖u− uh‖L2(DT ) + ‖p− ph‖L2(DT )}
and

‖u− uh‖L2(Ω) + ‖p− ph‖L2(Ω) ≤ C6{η + h‖f − Phf‖L2(Ω)}.

Proof. This result is an immediate consequence of Theorems 4.2, 4.4, 4.6
and 4.9.
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5 The general abstract setting

The problem considered in the previous sections is a particular case of a
general class of problems that we are going to analize in this section. The
theory presented here was first developed by Brezzi [13]. Some of the ideas
were also introduced for particular problems by Babuska [9] and by Crouzeix
and Raviart [22] We also refer the reader to [32, 31] and to the books [17,
45, 37].

Let V and Q be two Hilbert spaces and suppose that a( , ) and b( , ) are
continuous bilinear forms on V × V and V ×Q respectively, i.e.,

|a(u, v)| ≤ ‖a‖‖u‖V ‖v‖V ∀u ∈ V, ∀v ∈ V

and
|b(v, q)| ≤ ‖b‖‖v‖V ‖q‖Q ∀v ∈ V, ∀q ∈ Q

Consider the problem: given f ∈ V ′ and g ∈ Q′ find (u, p) ∈ V × Q
solution of

{
a(u, v) + b(v, p) = 〈f, v〉 ∀v ∈ V

b(u, q) = 〈g, q〉 ∀q ∈ Q
(5.1)

where 〈 . , . 〉 denotes the duality product between a space and its dual one.
For example, the mixed formulation of second order elliptic problems

considered in the previous sections can be written in this way with

V = H(div , Ω) , Q = L2(Ω)

and
a(u,v) =

∫

Ω
µu · v dx , b(v, p) =

∫

Ω
pdivv dx .

The general problem (5.1) can be written in the standard way

c((u, p), (v, q)) = 〈f, v〉+ 〈g, q〉 ∀(v, q) ∈ V ×Q (5.2)

where c is the continuous bilinear form on V ×Q defined by

c((u, p), (v, q)) = a(u, v) + b(v, p) + b(u, q).

However, the bilinear form is not coercive and therefore the usual finite
element error analysis can not be applied.
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We will give sufficient conditions (indeed, they are also necessary al-
though we are not going to prove it here, we refer to [17, 37]) on the forms a
and b for the existence and uniqueness of a solution of problem (5.1). Below,
we will also show that their discrete version ensures the stability and optimal
order error estimates for the Galerkin approximations. These results were
obtained by Brezzi [13] (see also [17] were more general results are proved).

Introducing the continuous operators A : V → V ′, B : V → Q′ and its
adjoint B∗ : Q → V ′ defined by,

〈Au, v〉V ′×V = a(u, v)

and
〈Bv, q〉Q′×Q = b(v, q) = 〈v, B∗q〉V×V ′

problem (5.1) can also be written as
{

Au + B∗p = f in V ′

Bu = g in Q′ (5.3)

Let us introduce W = KerB ⊂ V and, for g ∈ Q′,

W (g) = {v ∈ V : Bv = g}
Now, if (u, p) ∈ V × Q is a solution of (5.1) then, it is easy to see that
u ∈ W (g) is a solution of the problem

a(u, v) = 〈f, v〉 ∀v ∈ W. (5.4)

We will find conditions under which both problems (5.1) and (5.4) are equiv-
alent, in the sense that for a solution u ∈ W (g) of (5.4) there exists a unique
p ∈ Q such that (u, p) is a solution of (5.1).

In what follows we will use the following well-known result of functional
analysis. Given a Hilbert space V and S ⊂ V we define S0 ⊂ V ′ by

S0 = {L ∈ V ′ : 〈L , v〉 = 0, ∀v ∈ S}
Theorem 5.1 Let V1 and V2 be Hilbert spaces and A : V1 → V ′

2 be a con-
tinuous linear operator. Then,

(Ker A)0 = Im A∗ (5.5)

and
(Ker A∗)0 = Im A (5.6)
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Proof. It is easy to see that Im A∗ ⊂ (Ker A)0 and that (Ker A)0 is a
closed subspace of V ′

1 . Therefore

Im A∗ ⊂ (Ker A)0 .

Suppose now that there exists L0 ∈ V ′
1 such that L0 ∈ (Ker A)0 \ ImA∗.

Then, by the Hahn-Banach theorem there exists a linear continuous func-
tional defined on V ′

1 which vanishes on Im A∗ and is different from zero on
L0. In other words, using the standard identification between V ′′

1 and V1,
there exists v0 ∈ V1 such that

〈L0, v0〉 6= 0 and 〈L, v0〉 = 0 ∀L ∈ Im A∗.

In particular, for all v ∈ V2

〈Av0, v〉 = 〈v0, A
∗v〉 = 0

and so v0 ∈ Ker A which, since L0 ∈ (Ker A)0, contradicts 〈L0, v0〉 6=
0. Therefore, (Ker A)0 ⊂ Im A∗ and so (5.5) holds. Finally, (5.6) is an
immediate consequence of (5.5) because (A∗)∗ = A.

Lemma 5.2 The following properties are equivalent:

a) There exists β > 0 such that

sup
v∈V

b(v, q)
‖v‖V

≥ β‖q‖Q ∀q ∈ Q (5.7)

b) B∗ is an isomorphism from Q onto W 0 and,

‖B∗q‖V ′ ≥ β‖q‖Q ∀q ∈ Q (5.8)

c) B is an isomorphism from W⊥ onto Q′ and,

‖Bv‖Q′ ≥ β‖v‖V ∀v ∈ W⊥ (5.9)

Proof. Assume that a) holds then, (5.8) is satisfied and so B∗ is in-
jective. Moreover Im B∗ is a closed subspace of V ′, indeed, suppose that
B∗qn → w then, it follows from (5.8) that

‖B∗(qn − qm)‖V ′ ≥ β‖qn − qm‖Q
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and, therefore, {qn} is a Cauchy sequence and so it converges to some q ∈ Q
and, by continuity of B∗, w = B∗q ∈ Im B∗. Consequently, using (5.5) we
obtain that Im B∗ = W 0 and therefore b) holds.

Now, we observe that W 0 can be isometrically identified with (W⊥)′.
Indeed, denoting with P⊥ : V → W⊥ the orthogonal projection, for any
g ∈ (W⊥)′ we define g̃ ∈ W 0 by g̃ = g ◦ P⊥ and it is easy to check that
g → g̃ is an isometric bijection from (W⊥)′ onto W 0 and then, we can
identify these two spaces. Therefore b) and c) are equivalent.

Corollary 5.3 If the form b satisfies (5.7) then, problems (5.1) and (5.4)
are equivalent, that is, there exists a unique solution of (5.1) if and only if
there exists a unique solution of (5.4).

Proof. If (u, p) is a solution of (5.1) we know that u ∈ W (g) and that it is
a solution of (5.4). It rests only to check that for a solution u ∈ W (g) of
(5.4) there exists a unique p ∈ Q such that B∗p = f − Au but, this follows
from b) of the previous lemma since, as it is easy to check, f −Au ∈ W 0.

Now we can prove the fundamental existence and uniqueness theorem
for problem (5.1).

Lemma 5.4 If there exists α > 0 such that a satisfies

sup
v∈W

a(u, v)
‖v‖V

≥ α‖u‖V ∀u ∈ W (5.10)

sup
u∈W

a(u, v)
‖u‖V

≥ α‖v‖V ∀v ∈ W (5.11)

then, for any g ∈ W ′ there exists w ∈ W such that

a(w, v) = 〈g, v〉 ∀v ∈ W

and moreover
‖w‖W ≤ 1

α
‖g‖W ′ (5.12)

Proof. Considering the operators

A : W → W ′ and A∗ : W → W ′

43



defined by

〈Au, v〉W ′×W = a(u, v) and 〈u,A∗v〉W×W ′ = a(u, v),

conditions (5.10) and (5.11) can be written as

‖Au‖W ′ ≥ α‖u‖W ∀u ∈ W (5.13)

and
‖A∗v‖W ′ ≥ α‖v‖W ∀v ∈ W (5.14)

respectively. Therefore, it follows from (5.11) that

Ker A∗ = {0}.

Then, from (5.6), we have

(Ker A∗)0 = Im A

and so
Im A = W ′.

Using now (5.13) and the same argument used in Lemma 5.7 to prove that
Im B∗ is closed, we can show that Im A is a closed subspace of W ′ and
consequently ImA = W ′ as we wanted to show. Finally (5.12) follows
immediately from (5.13).

Theorem 5.5 If a satisfies (5.10) and (5.11), and b satisfies (5.7) then,
there exists a unique solution (u, p) ∈ V ×Q of problem (5.1) and moreover,

‖u‖V ≤ 1
α
‖f‖V ′ +

1
β

(1 +
‖a‖
α

)‖g‖Q′ (5.15)

and,

‖p‖Q ≤ 1
β

(1 +
‖a‖
α

)‖f‖V ′ +
‖a‖
β2

(1 +
‖a‖
α

)‖g‖Q′ (5.16)

Proof. First we show that there exists a solution u ∈ W (g) of problem
(5.4). Since (5.7) holds we know from Lemma 5.2 that there exists a unique
u0 ∈ W⊥ such that Bu0 = g and

‖u0‖V ≤ 1
β
‖g‖Q′ (5.17)
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then, the existence of u ∈ W (g) solution of (5.4) is equivalent to the existence
of w = u− u0 ∈ W such that

a(w, v) = 〈f, v〉 − a(u0, v) ∀v ∈ W

but, from Lemma 5.4, it follows that such a w exists and moreover,

‖w‖V ≤ 1
α
{‖f‖V ′ + ‖a‖‖u0‖V } ≤ 1

α
{‖f‖V ′ +

‖a‖
β
‖g‖Q′}

where we have used (5.17).
Therefore, u = w + u0 is a solution of (5.4) and satisfies (5.15).
Now, from Corollary 5.3 it follows that there exists a unique p ∈ Q such

that (u, p) is a solution of (5.1). On the other hand, from Lemma 5.2 it
follows that (5.8) holds and using it, it is easy to check that

‖p‖Q ≤ 1
β
{‖f‖V ′ + ‖a‖‖u‖V }

which combined with (5.15) yields (5.16). Finally, the uniqueness of solution
follows from (5.15) and (5.16).

Assume now that we have two families of subspaces Vh ⊂ V and Qh ⊂ Q.
We can define the Galerkin approximation (uh, ph) ∈ Vh×Qh to the solution
(u, p) ∈ V ×Q of problem (5.1), i.e., (uh, ph) satisfies,

{
a(uh, v) + b(v, ph) = 〈f, v〉 ∀v ∈ Vh

b(uh, q) = 〈g, q〉 ∀q ∈ Qh
(5.18)

For the error analysis it is convenient to introduce the associated operator
Bh : Vh → Q′

h defined by

〈Bhv, q〉Q′
h
×Qh

= b(v, q)

and the subsets of Vh, Wh = Ker Bh and

Wh(g) = {v ∈ Vh : Bhv = g in Q′
h}

where g is restricted to Qh.
In order to have the Galerkin approximation well defined we need to

know that there exists a unique solution (uh, ph) ∈ Vh × Qh of problem
(5.18). In view of Theorem 5.5, this will be true if there exist α∗ > 0 and
β∗ > 0 such that
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sup
v∈Wh

a(u, v)
‖v‖V

≥ α∗‖u‖V ∀u ∈ Wh (5.19)

sup
u∈Wh

a(u, v)
‖u‖V

≥ α∗‖v‖V ∀v ∈ Wh (5.20)

and,

sup
v∈Vh

b(v, q)
‖v‖V

≥ β∗‖q‖Q ∀q ∈ Qh (5.21)

In fact, (5.20) follows from (5.19) since Wh is finite dimensional.
Now, we can prove the fundamental general error estimates due to Brezzi

[13].

Theorem 5.6 If the forms a and b satisfy (5.19), (5.20) and (5.21), prob-
lem (5.18) has a unique solution and there exists a constant C, depending
only on α∗, β∗, ‖a‖ and ‖b‖ such that the following estimates hold. In partic-
ular, if the constants α∗ and β∗ are independent of h then, C is independent
of h.

‖u− uh‖V + ‖p− ph‖Q ≤ C{ inf
v∈Vh

‖u− v‖V + inf
q∈Qh

‖p− q‖Q} (5.22)

and, when Ker Bh ⊂ Ker B ,

‖u− uh‖V ≤ C inf
v∈Vh

‖u− v‖V (5.23)

Proof. From Theorem 5.5 we know that there exists a unique solution
(uh, ph) ∈ Vh ×Qh of (5.18).

On the other hand, given (v, q) ∈ Vh ×Qh, we have

a(uh − v, w) + b(w, ph − q) = a(u− v, w) + b(w, p− q) ∀w ∈ Vh (5.24)

and
b(uh − v, r) = b(u− v, r) ∀r ∈ Qh. (5.25)

Now, for fixed (v, q) , the right hand sides of (5.24) and (5.25)define linear
functionals on Vh and Qh which are continuous with norms bounded by

‖a‖‖u− v‖V + ‖b‖‖p− q‖Q and ‖b‖‖u− v‖V
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respectively. Then, it follows from Theorem 5.5 that, for any (v, q) ∈ Vh×Qh,

‖uh − v‖V + ‖ph − q‖Q ≤ C{‖u− v‖V + ‖p− q‖Q}

and therefore (5.22) follows by the triangular inequality.
On the other hand, we know that uh ∈ Wh(g) is the solution of

a(uh, v) = 〈f, v〉 ∀v ∈ Wh (5.26)

and, since Wh ⊂ W , subtracting (5.26) from (5.4) we have,

a(u− uh, v) = 0 ∀v ∈ Wh (5.27)

Now, for w ∈ Wh(g), uh−w ∈ Wh and so from (5.19) and (5.27) we have

α∗‖uh − w‖V ≤ sup
v∈Wh

a(uh − w, v)
‖v‖V

= sup
v∈Wh

a(u− w, v)
‖v‖V

≤ ‖a‖‖u− w‖V

and therefore,

‖u− uh‖V ≤ (1 +
‖a‖
α∗

) inf
w∈Wh(g)

‖u− w‖V

To conclude the proof we will see that, if (5.21) holds then,

inf
w∈Wh(g)

‖u− w‖V ≤ (1 +
‖b‖
β∗

) inf
v∈Vh

‖u− v‖V . (5.28)

Given v ∈ Vh, from Lemma 5.2 we know that there exists a unique
z ∈ W⊥

h such that

b(z, q) = b(u− v, q) ∀q ∈ Qh

and
‖z‖V ≤ ‖b‖

β∗
‖u− v‖V

thus, w = z + v ∈ Vh satisfies Bhw = g, that is, w ∈ Wh(g). But

‖u− w‖V ≤ ‖u− v‖V + ‖z‖V ≤ (1 +
‖b‖
β∗

)‖u− v‖V

and so (5.28) holds.
In the applications, a very useful criterion to check the inf-sup condition

(5.21) is the following result due to Fortin [32].
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Theorem 5.7 Assume that (5.7) holds. Then, the discrete inf-sup condi-
tion (5.21) holds with a constant β∗ > 0 independent of h, if and only if,
there exists an operator

Πh : V → Vh

such that
b(v −Πhv, q) = 0 ∀v ∈ V , ∀q ∈ Qh (5.29)

and,
‖Πhv‖V ≤ C‖v‖V ∀v ∈ V (5.30)

with a constant C > 0 independent of h.

Proof. Assume that such an operator Πh exists. Then, from (5.29), (5.30)
and (5.7) we have, for q ∈ Qh,

β‖q‖Q ≤ sup
v∈V

b(v, q)
‖v‖V

= sup
v∈V

b(Πhv, q)
‖v‖V

≤ C sup
v∈V

b(Πhv, q)
‖Πhv‖V

and therefore, (5.21) holds with β∗ = β/C.
Conversely, suppose that (5.21) holds with β∗ independent of h. Then,

from (5.9) we know that for any v ∈ V there exists a unique vh ∈ W⊥
h such

that
b(vh, q) = b(v, q) ∀q ∈ Qh

and,

‖vh‖V ≤ ‖b‖
β∗
‖v‖V .

Therefore, Πhv = vh defines the required operator.

Remark 5.1 In practice, it is sometimes enough to show the existence of
the operator Πh on a subspace S ⊂ V , where the exact solution belongs,
verifying (5.29) and (5.30) for v ∈ S and the norm on the right hand side
of (5.30) replaced by a strongest norm (that of the space S). This is in
some cases easier because the explicit construction of the operator Πh re-
quires regularity assumptions which do not hold for a general function in V .
For example, in the problem analyzed in the previous sections we have con-
structed this operator on a subspace of V = H(div , Ω) because the degrees
of freedom defining the operator do not make sense in H(div, T ), indeed, we
need more regularity for v (for example v ∈ H1(T )n) in order to have the
integral of the normal component of v against a polynomial on a face F of T
well defined. It is possible to show the existence of Πh defined on H(div , Ω)
satisfying (5.29) and (5.30) (see [32, 46]). However, as we have seen, this
is not really necessary to obtain optimal error estimates.
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R. Approximation of a structural acoustic vibration problem by hex-
haedral finite elements, IMA J. Numer. Anal. 26, 391-421, 2006.

[11] Bramble, J.H.& Xu, J.M., Local post-processing technique for im-
proving the accuracy in mixed finite element approximations, SIAM J.
Numer. Anal. 26, 1267-1275, 1989.

49



[12] Brenner, S.& Scott, L. R. The Mathematical Analysis of Finite
Element Methods, Springer Verlag, 1994.

[13] Brezzi, F., On the existence, uniqueness and approximation of saddle
point problems arising from lagrangian multipliers, R.A.I.R.O. Anal.
Numer. 8, 129-151, 1974.

[14] Brezzi, F., Douglas, J., Durán, R.& Fortin, M., Mixed finite
elements for second order elliptic problems in three variables, Numer.
Math. 51, 237-250, 1987.

[15] Brezzi, F., Douglas, J., Fortin, M.& Marini, L. D. Efficient rect-
angular mixed finite elements in two and three space variables, Math.
Model. Numer. Anal. 21, 581-604, 1987.

[16] Brezzi, F., Douglas, J.& Marini, L. D.. Two families of mixed
finite elements for second order elliptic problems, Numer. Math. 47,
217-235, 1985.

[17] Brezzi, F.& Fortin, M., Mixed and Hybrid Finite Element Methods,
Springer Verlag, 1991.

[18] Carstensen, C., A posteriori error estimate for the mixed finite ele-
ment method, Math. Comp. 66, 465-476, 1997.

[19] Ciarlet, P. G.,, The Finite Element Method for Elliptic Problems,
North Holland, 1978.

[20] Ciarlet, P. G., Mathematical Elasticity, Volume 1. Three-
Dimensional Elasticity, North Holland, 1988.

[21] Clément, P., Approximation by finite element function using local
regularization, RAIRO R-2, 77-84, 1975.

[22] Crouzeix, M.,& Raviart, P. A., Conforming and non-conforming
finite element methods for solving the stationary Stokes equations,
R.A.I.R.O. Anal. Numer. 7, 33-76, 1973.

[23] Dari, E., Durán, R. G., Padra, C.& Vampa, V., A posteriori error
estimators for nonconforming finite element methods, Math. Model.
Numer. Anal. 30, 385-400, 1996.

[24] Douglas, J.& Roberts, J. E. Global estimates for mixed methods
for second order elliptic equations, Math. Comp. 44, 39-52, 1985.

50



[25] Dupont, T.& Scott, L. R, Polynomial approximation of functions
in Sobolev spaces, Math. Comp. 34, 441–463, 1980.

[26] Durán, R. G., On polynomial Approximation in Sobolev Spaces,
SIAM J. Numer. Anal. 20, 985-988, 1983.

[27] Durán, R. G, Error Analysis in Lp for Mixed Finite Element Methods
for Linear and quasilinear elliptic problems, R.A.I.R.O. Anal. Numér
22, 371-387, 1988.

[28] Durán, R. G., Error estimates for anisotropic finite elements and
applications, Proceedings of the International Congress of Mathemati-
cians, 1181-12002006.

[29] Durán, R. G.& Lombardi, A. L., Error estimates for the Raviart-
Thomas interpolation under the maximum angle condition, preprint,
http://mate.dm.uba.ar/ rduran/papers/dl3.pdf .

[30] Durán, R. G. & Muschietti, M. A., An explicit right inverse of
the divergence operator which is continuous in weighted norms, Studia
Math. 148, 207-219, 2001.

[31] Falk, R. S., Osborn, J., Error estimates for mixed methods,
R.A.I.R.O. Anal. Numer. 4, 249-277, 1980.

[32] Fortin, M., An analysis of the convergence of mixed finite element
methods, R.A.I.R.O. Anal. Numer. 11, 341-354, 1977.

[33] Gagliardo, E., Caratterizzazioni delle tracce sulla frontiera relative
ad alcune classi di funzioni in n variabili, Rend. Sem. Mat. Univ. Padova
27, 284-305, 1957.

[34] Gastaldi, L. & Nochetto, R. H., Optimal L∞ - error estimates
for nonconforming and mixed finite element methods of lowest order,
Numer. Math. 50, 587-611, 1987.

[35] Gastaldi, L. & Nochetto, R. H., On L∞- accuracy of mixed finite
element methods for second order elliptic problems, Mat. Aplic. Comp.
7, 13-39, 1988.

[36] Gilbarg, D.& Trudinger, N. S., Elliptic Partial Differential Equa-
tions of Second Order, Springer Verlag, 1983.

51



[37] Girault, V. & Raviart, P. A. Finite Element Methods for Navier-
Stokes Equations, Berlin, Springer-Verlag, 1986.

[38] Grisvard, P., Elliptic Problems in Nonsmooth Domain, Pitman,
Boston, 1985.

[39] Lovadina, C.& Stenberg, R., Energy norm a posteriori error esti-
mates for mixed finite element methods, Math. Comp. 75, 1659-1674,
2006.

[40] Marini, L. D., An inexpensive method for the evaluation of the so-
lution of the lowest order Raviart-Thomas mixed method, SIAM J.
Numer. Anal. 22, 493-496, 1985.

[41] Nedelec, J. C., Mixed finite elements in IR3, Numer. Math. 35, 315-
341, 1980.

[42] Nedelec, J. C., A new family of mixed finite elements in IR3, Numer.
Math. 50, 57-81, 1986.

[43] Payne, L. E., Weinberger, H. F., An optimal Poincaré inequality
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