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”True” self-avoiding random walk (TSAW), discrete time:

n 7→ X(n) ∈ Zd,

It’s local time (occupation time measure):

`(n, x) := `(0, x) + |{0 < m ≤ n : X(m) = x} |

Self-interaction function:

w : Z→ (0,∞) increasing

The law of the walk:

P
(
X(n+ 1) = y

∣∣∣Fn, X(n) = x
)

=

11{{|x−y |=1}}
w(`(n, x)− `(n, y))∑

z:|z−x |=1w(`(n, x)− `(n, z))
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TSAW, continuous time:

t 7→ X(t) ∈ Zd

Local time

`(t, x) := `(0, x) + |{0 < s ≤ t : X(s) = x} |

Rate function:

w : R→ (0,∞), inf
u
w(u) = γ > 0 (unif. ellipticity)

r(u) =
w(u)− w(−u)

2
increasing, s(u) =

w(u) + w(−u)

2
The law of the walk:

P
(
X(t+dt) = y

∣∣∣Ft, X(t) = x
)

= 11{{|x−y |=1}}w(`(t, x)− `(t, y))dt
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Self-repelling Brownian polymer (SRBP):

t 7→ X(t) ∈ Rd

Local time (occupation time measure):

`(t, A) := `(0, A) + |{0 < s ≤ t : X(s) ∈ A} |

V : Rd → R, approximate δ: C∞, fast decay, positive type:

V̂ (p) := (2π)−d/2
∫
Rd
eip·xV (x)dx ≥ 0 (*)

E.g. V (x) = e−|x|
2

The driving force:

F : Rd → Rd, F (x) := −grad V (x).
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The law of the process:

X(t) = B(t) +
∫ t

0

∫ s
0
F (X(s)−X(u))du ds,

or:

dX(t) = dB(t) +
(∫ t

0
F (X(t)−X(u))du

)
dt.

or:

dX(t) = dB(t)− grad
(
V ∗ `(t, ·)

)
(X(t))dt

Note: the position process is pushed by the negative gradi-
ent of its own occupation time measure.

Question:
Scaling and (super)diffusive asymptotics of X(t) as t→∞?
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Roots, history:

TSAW, physics:
[D. Amit, G. Parisi, L. Peliti (1983)],
[S. Obukhov, L. Peliti (1983)],
[L. Peliti, L. Pietronero (1987)]
. . .

SRBP, probability:
[J. Norris, C. Rogers, D. Williams (1987)]
[R. Durrett, C. Rogers (1992)],
[M. Cranston, Y. Le Jan (1995)],
[M. Cranston, T. Mountford (1996)],
. . .
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Conjectures, based on RG and scaling arguments (”physics”):

• d = 1 : X(t) ∼ t2/3, intricate, non-Gausssian scaling limit.
(Limit distributions not identified.)

• d = 2 : X(t) ∼ t1/2(log t)ζ, Gaussian scaling limit.
(Controversy about the value of ζ.)

• d ≥ 3 : X(t) ∼ t1/2, Gaussian scaling limit.

Some results: . . .
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• d = 1 : ◦ Limit thm. in some particular cases
[B. Tóth (AP, 1995)], [B. Tóth, B. Vető (ALEA, 2009)]:

X(t)

t2/3
⇒ X .

◦ Construction of the scaling limit process
(TSRM, the Brownian Web, . . . )
[B. Tóth, W. Werner (PTRF, 1998)]

t 7→ X (t)

◦ ”Robust” superdiffusive bounds
[P. Tarrès, B. Tóth, B. Valkó (AP, 2012)]:

C1t
5/4 ≤ E

(
X(t)2

)
≤ C2t

3/2.

(and more bounds for more general self-interactions)

◦ Missing: fully robust proofs.
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• d = 2 : ◦ Super diffusive lower bounds
[B. Tóth, B. Valkó (JSP, 2012)]:

C1t log log t ≤ E
(
X(t)2

)
≤ C2t log t.

◦ Expected order:

E
(
X(t)2

)
∼ t

√
log t

• d ≥ 3 : ◦ CLT under diffusive scaling
[I. Horváth, B. Tóth, B. Vető (PTRF, 2012)]:

X(t)

t1/2
⇒ N(0, σ).
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Random walks and diffusions in div-free drift field

Notation:

(Ω, π, τz : z ∈ Zd) probability space

with ergodic Zd-action

E = {k ∈ Zd : |k| = 1} possible steps of the rw

vk : Ω→ [−1,1], k ∈ E

◦ vk(ω) + v−k(τkω) ≡ 0 vector field

◦
∑
k∈E

vk(ω) ≡ 0 divergence-free

◦
∫

Ω
vk(ω)dπ(ω) = 0, no overall drift
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Lift it to a stationary and divergence free vector field over Zd:

Vk(ω, x) := vk(τxω)

V−k(x+ k) + Vk(x) ≡ 0,
∑
k∈Ed

Vk(x) ≡ 0, E
(
Vk(x)

)
= 0.

The random walk:

Pω
(
X(t+ dt) = x+ k

∣∣∣ X(t) = x
)

= (1 + Vk(ω, x)) dt+O((dt)2).

The diffusion analogue:
V : Rd → Rd stationary, divergence-free vector field,

dX(t) = dB(t) + V (X(t))dt,

Question:
Scaling and (super)diffusive asymptotics of X(t) as t→∞?
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Drift field and its covariances:

ϕ(ω) :=
∑
k∈Ed

kvk(ω), Φ(ω, x) :=
∑
k∈Ed

kVk(ω, x) = ϕ(τxω).

Ci,j(x) := E
(

Φi(x)Φj(0)
)
, Ĉi,j(p) :=

∑
x∈Zd

e
√
−1p·xCi,j(x)

H−1-condition:

(2π)−d
∫

[−π,π]d

∑d
i=1 Ĉi,i(p)∑d

i=1(1− cos(p · ei))
dp

<∞ H−1X

=∞ HH
HHH

H−1

Equivalently:

lim
T→∞

T−1E
( (∫ T

0
Φ(S(t))dt

)2 ) <∞ H−1X

=∞ H
HHHH
H−1
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Helmholtz’s Theorem, stream field: Zd∗ := Zd+ (1/2, . . . ,1/2)

d = 2:
There exists a scalar field (height function): H : Ω×Z2

∗ → R with
stationary increments such that

V = curlH, Vk(x) = H(x+
k + k̃

2
)−H(x+

k − k̃
2

)

d = 3:
There exists a vector field (stream field) Hk : Ω×Z3

∗ → R, k ∈ E,
with stationary increments such that

V = curlH, Vk(ω, x) = . . . explain in plain words

The H−1 condition equiv.: The height function/stream field is
stationary (not just of stationary increments!) and L2.
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Roots, history:

[Papanicolaou, Varadhan (1981)] diffusion problem formulated

[Osada (1983)] diffusion, CLT with L∞ stream-field

[Kozlov (1985)] RW, partly incomplete proof, CLT with L∞
stream-field

[Oelschläger (1988)] diffusion, CLT with L2 stream-field

[Komorowski, Olla (2003)] RW, strong sector condition, CLT
with L∞ stream-field

[Komorowski, Landim, Olla (2012)] RW, CLT with Lmax{2+δ,d}

stream-field
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• d = 2 : ◦ Super diffusive bounds
[B. Tóth, B. Valkó (JSP, 2012)]: V : R2 → R2 curl of (locally
smoothed) GFF, dX(t) = dB(t) + V (X(t))dt.

C1t log log t ≤ E
(
X(t)2

)
≤ C2t log t.

◦ Expected order:

E
(
X(t)2

)
∼ t

√
log t

• d ≥ 2 : ◦ CLT under H−1:
[G. Kozma, B. Tóth (preprint, 2014)]: If H−1 holds then

X(t)

t1/2
⇒ N(0, σ).
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Environment seen from the position of the walker, SRBP:

η(t, x) := −grad
(
V ∗ `(t, ·)

)
(X(t) + x).

t 7→ η(t, ·) is a Markov process with continuous sample path in

Ω :=
{
ω ∈ C∞(Rd → Rd) : ω grad-field, ||ω||k,m,r <∞

}

||ω||k,m,r := sup
x∈Rd

(
1 + |x |

)−1/r
∣∣∣∣∂|m |m1,...,md

ωk(x)
∣∣∣∣

Stationary measure: by some ”miracle”, gradient of (mollified)
GFF:

〈ωk(x)ωl(y)〉 = −∂2
klV ∗∆

−1(y−x) =: Kkl(y−x), K̂kl(p) =
pkpl

|p|2
V̂ (p).

Proof 1: Itô-calculus. Proof 2: Functional analytic.
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Environment seen from the walker, RWDFRE:

η(t) := τX(t)ω

t 7→ η(t, ·) is a Markov process with bounded jump rates in
(Ω, π) π is stationary and ergodic for η(t), due to div-freeness.

All mentioned results valid in the stationary regime.

Put ourselves in the Hilbert space H = L2(Ω, π) and apply various
resolvent methods . . .
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Martingale decomposition:

X(t) = M(t) +
∫ t

0
ϕ(η(s))ds

◦ M(t): L2-martingale with stationary and ergodic increments

◦ ϕ : Ω→ Rd

SRBP: ϕ(ω) := ω(0) RWDFRE: ϕ(ω) :=
∑
k∈Ed

kvk(ω).

◦ (partial) decorrelation: easy

Goals:
H−1X: diffusive limit (CLT) for the second term on the r.h.s.

— try non-reversible Kipnis-Varadhan theory

HH
HHH

H−1 : superdiffusive bound for var. of the second term on r.h.s.
— try Landim-Quastel-Salmhofer-Yau method
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SRBP: Gaussian Hilbert Space (Fock space / Wiener space):

L2(Ω, π) =: H =
∞⊕
n=0

Hn

The infinitesimal generator acting on L2(Ω, π):

G = ∆ +
d∑
l=1

(
∇lal + a∗l∇l

)
= −S +A−+A+,

where

a∗l :ωk1
(x1) · · ·ωkn(xn): = :ωl(0)ωk1

(x1) · · ·ωkn(xn):

al :ωk1
(x1) · · ·ωkn(xn): =

n∑
m=1

Klkm(xm) :ωk1
(x1) · · ·

���
���

���ωkm(xm) · · ·ωkn(xn):

Proof: careful use of commutation relations, plus ”directional
derivative” identity (a la Malliavin calculus).
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SRBP, Proofs:

Diffusive limits in d ≥ 3:
Non-reversible Kipnis-Varadhan theory: H−1-bound and graded
sector condition
[S. Sethuraman, S.R.S. Varadhan, H-T. Yau (2000)]
— with improvement on conditions of applicability.

Superdiffusive lower bound in d = 2:
Variational approach of
[C. Landim, J. Quastel, M. Salmhofer, H-T. Yau (2004)]
— with particularities . . .
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RWDFRE, some details:

Some operators on the Hilbert space L2(Ω, π):

L2(Ω, π)-gradient : ∇kf(ω) := f(τkω)− f(ω)

∇∗k = ∇−k

L2(Ω, π)-Laplacian : ∆f(ω) :=
∑
k∈E

(f(τkω)− f(ω))

∆∗ = ∆ ≤ 0

multiplication ops. : Mkf(ω) := vk(ω)f(ω)

M∗k = Mk
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A commutation relation – due to div-freeness of v:∑
k∈E

Mk∇k +
∑
k∈E
∇−kMk = 0

The infinitesimal generator of the environment process:

L = P − I =
1

2
∆ +

∑
k∈E

Mk∇k =: −S +A
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Relaxed Sector Condition [I. Horváth, B. Tóth, B. Vető (2012)]

Theorem: Efficient martingale approximation (a la Kipnis-Varadhan)
holds for

∫ t
0ϕ(ηs)ds if

(1) ” S−1/2AS−1/2 ” is skew self-adjoint

(not just skew symmetric).

(2) ϕ ∈ Ran(S−1/2) H−1-condition

Remarks:

(1) Extends Varadhan et al.’s Graded Sector Condition.

(2) Proof: partly reminiscent of Trotter-Kurtz.
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What is missing from skew self-adjointmess of B = S−1/2AS−1/2?
(defined on an appropriately chosen dense subspace)

von Neumann’s criterion:B skew symmetric, and

Ran(B ± I) = H

⇔
 B essentially

skew self-adjoint



Needed:∑
k∈E

Mk

(
(−∆)−1/2∇k

)
ψ = (−∆)1/2ψ ⇒ ψ = 0.

Warning: Formal manipulation deceives: ψ /∈ Dom(−∆)−1/2!
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Raise it to the lattice Zd:

Wanted:
NO nontrivial scalar field Ψ : Ω × Zd → R with stationary
increment, and E

(
Ψ
)

= 0 solves the PDE

∆Ψ = V · ∇Ψ.

Note similarity: No sublinearly growing harmonic function on Zd.

d = 2 : with bare hands

d ≥ 3 : use Nash inequality or [Morris, Peres (2005)]: heat-kernel
upper bound
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B. Tóth, B. Vető: Continuous time ‘true’ self-avoiding random walk on Z. ALEA, Lat. Am.
J. Probab. Math. Stat. 8: 5975 (2011)
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