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" True” self-avoiding random walk (TSAW), discrete time:
n— X(n) € 2%,
It's local time (occupation time measure):
l(n,x) . =£0,x) +F[{0<m<n:X(m)=uc}|
Self-interaction function:
w:Z — (0,00) increasing
The law of the walk:
P(X(n—l— 1) = y‘]—"n,X(n) = g;) —

w(l(n,z) —£(n,y))

1{{'$—y'=1}}zzz|z_x|=1 w((n, z) — £(n, 2))



TSAW, continuous time:

t— X(t) € 2¢

Local time

L(t,x) :=0(0,z) +[{0<s<t: X(s) =x}|
Rate function:

w R — (0, 00), ir&fw(u) =~ >0 (unif. ellipticity)
r(u) = w(w) _Qw(_u) increasing, s(u) = w(w) _I_Qw(_u)

The law of the walk:

P<X(t—|—dt) =y \ Fp, X () = a:) = 1,y =1 w(l(t, x) —£(t, y))dt



Self-repelling Brownian polymer (SRBP):

t— X(¢t) € RY
Local time (occupation time measure):

((t,A) = L(0,A) +[|{0<s<t: X(s) e A}|

VvV :iR9 R, approximate §: C°°, fast decay, positive type:
V(p) := (2m) /2 /R PV (2)da > 0 (*)
E.g. V(x) = ezl

T he driving force:

F:R% - R?, F(x) ;= —grad V().



The law of the process:

X(t) = B(¢) + /Ot /OSF(X(s) _ X(u))duds.
or.
dX (1) = dB(t) + (/Ot FIX (1) — X(u))du) dt.
or:
dX (t) = dB(t) — grad (v « (1, -))(X(t))dt

Note: the position process is pushed by the negative gradi-
ent of its own occupation time measure.

Question:
Scaling and (super)diffusive asymptotics of X (¢) as ¢t — co?
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Roots, history:

TSAW, physics:

[D. Amit, G. Parisi, L. Peliti (1983)],
[S. Obukhov, L. Peliti (1983)],
[L. Peliti, L. Pietronero (1987)]

SRBP, probability:

[J. Norris, C. Rogers, D. Williams (1987)]
R. Durrett, C. Rogers (1992)],

(M. Cranston, Y. Le Jan (1995)],

M. Cranston, T. Mountford (1996)],




Conjectures, based on RG and scaling arguments (" physics” ):

ed=1: X(t)~t2/3, intricate, non-Gausssian scaling limit.
(Limit distributions not identified.)

e d=2: X(t)~t¥2(ogt)s, Gaussian scaling limit.
(Controversy about the value of (.)

ed>3: X(t)~tl/2 Gaussian scaling limit.

Some results: ...



e d=1: o Limit thm. in some particular cases
[B. Toth (AP, 1995)], [B. Toth, B. Vetd (ALEA, 2009)]:

X (1)
+2/3
o Construction of the scaling limit process

(TSRM, the Brownian Web, ...)
[B. Toth, W. Werner (PTRF, 1998)]

= X.

t— X (1)

o ""Robust” superdiffusive bounds
[P. Tarres, B. Toth, B. Valké (AP, 2012)]:

C1t2/% < E(X(t)Q) < Oot3/2,
(and more bounds for more general self-interactions)

o Missing: fully robust proofs.



e d =2: o Super diffusive lower bounds
[B. Toth, B. Valké (JSP, 2012)]:

C1tloglogt < E(X(t)Q) < Ootlogt.

o Expected order:

E(X(t)2> ~ t\/1ogt

e d>3: 0 CLT under diffusive scaling
[I. Horvath, B. To6th, B. Vetd (PTRF, 2012)]:

X (@)
1/2

= N(O,0).



Random walks and diffusions in div-free drift field

Notation:

(7,75 2z € Z%

E={kez%: |kl =1}
’UkZQ—)[—].,].], ke&
o vp(w)+v_p(rpw) =0

o Z vk(w) =0

ke&

o /Q vp(W)dr(w) = 0,

probability space
with ergodic 7% action

possible steps of the rw

vector field

divergence-free

no overall drift

10



Lift it to a stationary and divergence free vector field over Z¢:

Vi(w,x) = vp(1zw)

V_p(z 4+ k) + Vi (z) =0, S Vi(z) =0, E(Vi(z)) =0.
ke&y

T he random walk:

Pw<X(t +dt)=z+k ) X(t) = x) = (1 4+ V. (w, 2)) dt + O((dt)?).

T he diffusion analogue:
V : R% — RY stationary, divergence-free vector field,

dX (1) = dB(t) + V(X (t))dt,

Question:
Scaling and (super)diffusive asymptotics of X (¢) as ¢t — co?
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Drift field and its covariances:

o(w) = Z kv (w), d(w,x) = Z kVi(w,z) = p(1zw).
ke&y kel

Cij(z) = B(®;(2)®;(0)), Cij(p) = Y. eV P7C; ()
reZd

H_q{-condition:

(27r)_d/ >4 1 Cii(p) dp < o0
[—m,m]d ngjzl(l —cos(p-e;)) = 00O HN\

Equivalently:

im T-1E( ([ o(s()dt ) [
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Helmholtz’s Theorem, stream field: Z¢ : =794 (1/2,...,1/2)

d =2:
There exists a scalar field (height function): H : Q xZ2 — R with
stationary increments such that

k—+ k

V = curl H, Vk(w)zH(:v-l-T)—H(i’?‘l‘%)

d = 3:
There exists a vector field (stream field) H. : Q2 x7Z3 - R, k € &,
with stationary increments such that

V = curl H, Vi(w,x) = ...explain in plain words

The H_q condition equiv.: The height function/stream field is
stationary (not just of stationary increments!) and £2.
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Roots, history:

[Papanicolaou, Varadhan (1981)] diffusion problem formulated
[Osada (1983)] diffusion, CLT with £° stream-field

[Kozlov (1985)] RW, partly incomplete proof, CLT with £
stream-field

Oelschlager (1988)] diffusion, CLT with £2 stream-field
[

[IKomorowski, Olla (2003)] RW, strong sector condition, CLT
with £ stream-field

[Komorowski, Landim, Olla (2012)] RW, CLT with £max{2+d,d}

stream-field
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e d =2 : o Super diffusive bounds
[B. Toth, B. Valko (JSP, 2012)]: V : R?2 — R? curl of (locally
smoothed) GFF, dX(t) =dB(t) + V(X (t))dt.

Citloglogt < E(X(t)Q) < Cstlogt.

o Expected order:

E(X(t)Q) ~ t\/1ogt

ed>2:0CLT under H_;:
[G. Kozma, B. Toth (preprint, 2014)]: If H_1 holds then

X(1)
41/2

= N(0,0).
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Environment seen from the position of the walker, SRBP:
n(t,z) := —grad (v « 0(t, -))(X(t) + ).
t— n(t,-) is a Markov process with continuous sample path in

Q:={we C®RT >R : w grad-field, [jw|gm, < oo}

—1/r
[l = sup (L4 lz )" o] g ()

rERY

Stationary measure: by some " miracle”, gradient of (mollified)
GFF:

(wi(@)w(v)) = —OR VA" Hy—z) = Ky(y—z),  Kpp) = j;f—f;lm).

Proof 1: Ito-calculus. Proof 2: Functional analytic.
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Environment seen from the walker, RWDFRE:

n(t) = TX(t)w

t — n(t,-) is a Markov process with bounded jump rates in
(2, ) = is stationary and ergodic for n(t), due to div-freeness.

All mentioned results valid in the stationary regime.

Put ourselves in the Hilbert space H = £2(2, 7) and apply various
resolvent methods . ..
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Martingale decomposition:

t
X() = M@®) + | ¢(n(s))ds
o M(t): L£2-martingale with stationary and ergodic increments
o ¢:Q — R

SRBP: ¢(w) := w(0) RWDFRE: ¢(w) = > kug(w).
k:Egd

o (partial) decorrelation: easy

Goals:
. diffusive limit (CLT) for the second term on the r.h.s.

— try non-reversible Kipnis-Varadhan theory

H\L . superdiffusive bound for var. of the second term on r.h.s.
— try Landim-Quastel-Salmhofer-Yau method
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SRBP: Gaussian Hilbert Space (Fock space / Wiener space):
@)
L2(Qm)=H= P Hn
n=0

The infinitesimal generator acting on £2(Q,7):

d
G=0+Y (Vig+afV,)=-S+ A + A,
=1
where
aj Wy, (1) - wp, (xn): = wi(0)wy, (1) - - - wy,, (Tn):

ap W, (1) - wy, (@n): = Y K, (@m) wp, (1) -+ - wp, Com) -+ - wy, (@)
m=1

Proof: careful use of commutation relations, plus "directional
derivative"” identity (a la Malliavin calculus).
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SRBP, Proofs:

Diffusive limits in d > 3:

Non-reversible Kipnis-Varadhan theory: H_4q-bound and graded
sector condition

[S. Sethuraman, S.R.S. Varadhan, H-T. Yau (2000)]

— with improvement on conditions of applicability. [ ]

Superdiffusive lower bound in d = 2:

Variational approach of

[C. Landim, J. Quastel, M. Salmhofer, H-T. Yau (2004)]

— with particularities . . . H
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RWDFRE, some details:

Some operators on the Hilbert space £2(2,n):

£2(Q, m)-gradient : Vif(w) = f(rmw) — f(w)
Vi =V_k
£2(, 7)-Laplacian : Af(w):= > (flrpw) — f(w))
ke&
A*=A<0
multiplication ops. : Mpf(w) = vp(w) f(w)

My = My,
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A commutation relation — due to div-freeness of v:

Y MiVie+ > V_ i Mp=0
ke& ke&

T he infinitesimal generator of the environment process:

1
L=P—I:§A+2Mkvk:: -S4+ A

ke&
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Relaxed Sector Condition [I. Horvath, B. Toth, B. Vet (2012)]

Theorem: Efficient martingale approximation (a la Kipnis-Varadhan)
holds for [§p(ns)ds if

(1) v §g1/249-1/2 is skew self-adjoint
(not just skew symmetric).
(2) © € Ran(S_l/Q) H_{-condition
Remarks:

(1) Extends Varadhan et al.’s Graded Sector Condition.
(2) Proof: partly reminiscent of Trotter-Kurtz.
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What is missing from skew self-adjointmess of B = S—1/245-1/27
(defined on an appropriately chosen dense subspace)

von Neumann’s criterion:
(B skew symmetric, and) ( B essentially )
2N

Ran(B+ 1) =H skew self-adjoint

Needed:

S M ((—2) V2V ) p = ()2 = y=o0,
ke&

Warning: Formal manipulation deceives: 1 ¢ Dom(—A)~1/2!
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Raise it to the lattice Z2:

Wanted:
NO nontrivial scalar field W : Q x Zz¢9 — R with stationary

increment, and E(w) — 0 solves the PDE
AV =V .VW.

Note similarity: No sublinearly growing harmonic function on 74,

d = 2 : with bare hands

d > 3 : use Nash inequality or [Morris, Peres (2005)]: heat-kernel
upper bound
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