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Plan

• Dimer models (parfect matchings) and height function

• Random perfect matchings

• Macroscopic shape and Gaussian fluctuations

• Glauber dynamics: approaching the macroscopic shape

• Beyond the solvable case: interacting dimers (and the GFF)



Perfect matchings of bipartite planar graphs
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Height function
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Height function:

h(f ′)− h(f ) =
∑

e∈Cf→f ′

σe(1e∈M − 1/4)

where σe = +1/− 1 if e crossed with white on the right/left.

Definition is path-independent. Crucial: graph is bipartite.
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A 2D statistical mechanics model

If Λ is a large domain, e.g. the 2L× 2L square/torus, many
(≈ exp(cL2)) perfect matchings exist.

Call 〈·〉Λ the uniform measure.

Observe:

• By symmetry, on the torus, 〈1e∈M〉Λ = 1/4 for every e, so
that 〈h(f )− h(f ′)〉Λ = 0.

• Dimers do not interact (except for hard-core constraint).

Somewhat analogous to the critical Ising model: power-law decay
of correlations, conformal invariance...



A 2D statistical mechanics model

If Λ is a large domain, e.g. the 2L× 2L square/torus, many
(≈ exp(cL2)) perfect matchings exist.

Call 〈·〉Λ the uniform measure.

Observe:

• By symmetry, on the torus, 〈1e∈M〉Λ = 1/4 for every e, so
that 〈h(f )− h(f ′)〉Λ = 0.

• Dimers do not interact (except for hard-core constraint).

Somewhat analogous to the critical Ising model: power-law decay
of correlations, conformal invariance...



A 2D statistical mechanics model

If Λ is a large domain, e.g. the 2L× 2L square/torus, many
(≈ exp(cL2)) perfect matchings exist.

Call 〈·〉Λ the uniform measure.

Observe:

• By symmetry, on the torus, 〈1e∈M〉Λ = 1/4 for every e, so
that 〈h(f )− h(f ′)〉Λ = 0.

• Dimers do not interact (except for hard-core constraint).

Somewhat analogous to the critical Ising model: power-law decay
of correlations, conformal invariance...



Kasteleyn theory (’61)

Partition functions and correlations given by determinants

Define a |Λ|/2× |Λ|/2 matrix K , indexed by white/black sites, as
K (x , x + (1, 0)) = 1,K (x , x + (0, 1)) = i and zero otherwise. Then,

ZΛ = #{perfect matchings of Λ} = det(K )



Kasteleyn theory and determinantal representation

Similarly, if e1 = (b1,w1), e2 = (b2,w2) are two bonds (bi black
site, neighboring white site wi ), then

〈1e1∈M1e2∈M〉Λ = K (e1)K (e2) det(R)

with R the 2× 2 matrix with Rij = K−1(bi ,wj).

Analogous expression for multi-dimer correlations



Macroscopic shape

[Cohn-Kenyon-Propp, JAMS 2001]

Scaling limit: lattice step 1/L→ 0, domain U ≡ Λ/L of size O(1),
boundary height ϕ on ∂U.

Theorem The height function concentrates with high probability
around a deterministic shape Φ : U 7→ R. This minimizes a surface
tension functional

Γ(φ) =

∫
U
F (∇φ)d2u

with φ∂U = ϕ. F is convex and explicitly known.

According to the boundary height, the minimizer Φ can be either
C∞ or have “facets”.
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An example with facets: arctic circle
[Cohn, Larsen, Propp ’98]



Fluctuations

Take periodic b.c.

• Dimer-dimer correlations decay slowly:

lim
Λ→Z2

〈1e∈M ; 1e′∈M〉Λ ≈ |e − e ′|−2

• Height fluctuations grow logarithmically:

lim
Λ→Z2

VarΛ(h(f )− h(f ′)) ∼ 1

π2
log |f − f ′| as |f − f ′| → ∞

(see Kenyon-Okounkov-Sheffield for general bipartite graphs)

• the height field is asymptotically Gaussian: for m ≥ 3, the mth

cumulant of h(f )− h(f ′) is

〈h(f )− h(f ′);m〉Λ = o(VarΛ(h(f )− h(f ′))m/2).
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Glauber (stochastic) dynamics

Dynamics for Monotone surfaces (or lozenge tilings)

Theorem (Caputo, Martinelli, F. T. 2011)
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Defines a continuous-time Markov chain

The unique stationary (reversible) measure is the uniform one, 〈·〉Λ.
As t →∞, convergence to 〈·〉Λ: a way to sample random tilings.

Corresponds to zero-temperature dynamics of 3D Ising model
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Natural mathematical questions

Speed of convergence to equilibrium, mixing time, etc
[Theoretical computer science motivation: running time of
algorithm, counting # of tilings]

Deterministic interface evolution on diffusive time-scales?
[MathPhys motivation: motion of interfaces. Similar questions e.g.
for Ising interfaces at low temperature]

Influence of singularities of Φ on the dynamics?



Heuristics: diffusive scaling and hydrodynamic limit

Three types of particles (lozenges) exchanging randomly their
positions.
Analogy with Simple Exclusion Process suggests Trel ≈ L2.

After diffusive time rescaling (set τ = t/L2) expected convergence
to deterministic evolution (hydrodynamic limit).

∂tφ = µ(∇φ)div(∇F ◦ ∇φ)

Idea: system decreases surface free energy Γ(φ) =
∫
F (∇φ).
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“Rapid mixing”

Theorem: [Luby-Randall-Sinclair, Wilson, Randall-Tetali
(theoretical computer science community)]

The mixing time grows at most as a polynomial of L, uniformly in
the boundary height.

Based on “path coupling methods”; at best, these can give
Tmix ≤ cL4+ε.



An almost optimal result

ht(·): height function of the time-evolving discrete interface.

Theorem: [B. Laslier, F. T. ’13] Assume the macroscopic shape Φ
is C∞. With probability close to 1,

‖ht(·)− Φ(·)‖∞ = o(1) t ≥ L2+ε

‖ht(·)− h0(·)‖∞ = o(1) t � L2

Uses refined results on equilibrium height fluctuations (L. Petrov)

If Φ is affine, see [Caputo, Martinelli, Toninelli ’12 and Laslier,
Toninelli ’14]: mixing time of order L2+o(1).
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Beyond the solvable case: interacting dimers

Associate an energy λ ∈ R to adjacent dimers:

I.e., with N(M) the number of adjacent pairs of dimers in M,

〈·〉Λ,λ =

∑
M eλN(M) ·
ZΛ,λ

[Alet et al., Phys. Rev. Lett 2005]



Beyond the solvable case: interacting dimers

Theorem [Giuliani, Mastropietro, T. 2014] If |λ| ≤ λ0 then:

• Fluctuations still grow logarithmically:

lim
Λ→Z2

VarΛ,λ(h(f )−h(f ′))
|f−f ′|→∞

=
K (λ)

π2
log |f−f ′|+O(1)

with K (·) analytic and K (0) = 1;

• for m ≥ 3, the mth cumulant of h(f )− h(f ′) is bounded:

sup
f ,f ′

lim
Λ→Z2

〈h(f )− h(f ′);m〉Λ,λ ≤ C (m).



Beyond the solvable case: interacting dimers

Theorem [Giuliani, Mastropietro, T. 2014] If |λ| ≤ λ0 then:

• Convergence to Gaussian Free Field: if ϕ ∈ C∞c (R2) with∫
R2 ϕ(x)dx = 0 then, as ε→ 0,

ε2
∑
f

ϕ(εf )h(f )→
∫
R2

ϕ(x)X (x)dx

with X the Gaussian Free Field of covariance

−K (λ)

2π2
log |x − y |.



Universality or not? dimer correlations

Back to the non-interacting case. From Kasteleyn’s solution,

σeσe′ lim
Λ→Z2

〈1e∈M ; 1e′∈M〉Λ,λ=0

= − 1

2π2
<
[
∆ze∆ze′

1

(ze − ze′)2

]
+Osc(ze , ze′)

1

|ze − ze′ |2
+ O(|ze − ze′ |−3).

∑
e∈Cf→f ′ ,e

′∈C ′
f→f ′

Ae,e′ ∼ −
1

2π2
<
∫ f ′

f

dzdz ′

(z − z ′)2
=

1

π2
log |f − f ′|
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Universality or not? dimer correlations

If λ is small, then [see also Falco, Phys Rev E 2013]

σeσe′ lim
Λ→Z2

〈1e∈M ; 1e′∈M〉Λ,λ

= −K (λ)

2π2
<
[
∆ze∆ze′

1

(ze − ze′)2

]
+Osc(ze , ze′)

1

|ze − ze′ |2+η(λ)
+ O(|ze − ze′ |−3+O(λ)).

with K (·), η(·) analytic and K (0) = 1, η(0) = 0.

• in the main term the critical exponent remains 2

• in the oscillating term it changes to 2 + η(λ) (non-universal).
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A Renormalization Group approach

Algebraic identity: Determinants can be written as “Grassmann
Gaussian integrals”, or “Lattice free fermions”.

To each lattice site, associate Grassmann variable ψx .
Anticommutation rule: ψxψy = −ψyψx

Then, with (ψ,Kψ) =
∑

b,w ψwK (w , b)ψb,

det(K ) =

∫ ∏
x

dψxe
− 1

2
(ψ,Kψ)

and

K−1(b,w) =
1

det(K )

∫ ∏
x

dψxe
− 1

2
(ψ,Kψ)ψbψw .
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A Renormalization Group approach

Similarly, the partition function of the interacting model is written
as

ZΛ,λ =
1

det(K )

∫ ∏
dψx exp

(
−1

2
(ψ,Kψ) + λV (ψ)

)
with V a non-quadratic polynomial of the ψ.

Naive power series in λ diverges

Constructive Renormalization Group methods (Benfatto, Brydges,
Gallavotti, Gawedzki, Kupiainen, Mastropietro, Rivasseau, ...
≥ 1980′s) allow to obtain convergent expansion for correlation
functions and to study large-distance behavior.
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Open problems

• Effect of facets on Glauber dynamics?

• Kenyon ’00 proved conformal invariance of height moments
e.g.

gD(x , y) = lim
L→∞
〈(hxL − 〈hxL〉Λ)(hyL − 〈hyL〉Λ)〉Λ

(lattice spacing 1/L→ 0, Λ ⊂ (Z/L)2 suitable discretization
of domain D ⊂ C and xL, yL tend to distinct points x , y)

Conformal invariance for the interacting dimer model?
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Thank you!


