Dimer models, Glauber dynamics and height fluctuations

F. Toninelli, CNRS and Université Lyon 1

SPA, Buenos Aires ${ }^{1}$

[^0]
Plan

- Dimer models (parfect matchings) and height function
- Random perfect matchings
- Macroscopic shape and Gaussian fluctuations
- Glauber dynamics: approaching the macroscopic shape
- Beyond the solvable case: interacting dimers (and the GFF)

Perfect matchings of bipartite planar graphs

Perfect matchings of bipartite planar graphs

Height function

Height function:

$$
h\left(f^{\prime}\right)-h(f)=\sum_{e \in C_{f \rightarrow f^{\prime}}} \sigma_{e}\left(1_{e \in M}-1 / 4\right)
$$

where $\sigma_{e}=+1 /-1$ if e crossed with white on the right/left.

Height function

Height function:

$$
h\left(f^{\prime}\right)-h(f)=\sum_{e \in C_{f \rightarrow f^{\prime}}} \sigma_{e}\left(1_{e \in M}-1 / 4\right)
$$

where $\sigma_{e}=+1 /-1$ if e crossed with white on the right/left.
Definition is path-independent. Crucial: graph is bipartite.

A 2D statistical mechanics model

If Λ is a large domain, e.g. the $2 L \times 2 L$ square/torus, many $\left(\approx \exp \left(c L^{2}\right)\right)$ perfect matchings exist.
Call $\langle\cdot\rangle_{\Lambda}$ the uniform measure.

A 2D statistical mechanics model

If Λ is a large domain, e.g. the $2 L \times 2 L$ square/torus, many $\left(\approx \exp \left(c L^{2}\right)\right)$ perfect matchings exist.
Call $\langle\cdot\rangle_{\wedge}$ the uniform measure.
Observe:

- By symmetry, on the torus, $\left\langle 1_{e \in M}\right\rangle_{\wedge}=1 / 4$ for every e, so that $\left\langle h(f)-h\left(f^{\prime}\right)\right\rangle_{\wedge}=0$.
- Dimers do not interact (except for hard-core constraint).

A 2D statistical mechanics model

If Λ is a large domain, e.g. the $2 L \times 2 L$ square/torus, many $\left(\approx \exp \left(c L^{2}\right)\right)$ perfect matchings exist.
Call $\langle\cdot\rangle_{\Lambda}$ the uniform measure.
Observe:

- By symmetry, on the torus, $\left\langle 1_{e \in M}\right\rangle_{\wedge}=1 / 4$ for every e, so that $\left\langle h(f)-h\left(f^{\prime}\right)\right\rangle_{\wedge}=0$.
- Dimers do not interact (except for hard-core constraint).

Somewhat analogous to the critical Ising model: power-law decay of correlations, conformal invariance...

Kasteleyn theory ('61)

Partition functions and correlations given by determinants
Define a $|\Lambda| / 2 \times|\Lambda| / 2$ matrix K, indexed by white/black sites, as $K(x, x+(1,0))=1, K(x, x+(0,1))=i$ and zero otherwise. Then,

$$
Z_{\Lambda}=\#\{\text { perfect matchings of } \Lambda\}=\operatorname{det}(K)
$$

Kasteleyn theory and determinantal representation

Similarly, if $e_{1}=\left(b_{1}, w_{1}\right), e_{2}=\left(b_{2}, w_{2}\right)$ are two bonds (b_{i} black site, neighboring white site w_{i}), then

$$
\left\langle 1_{e_{1} \in M} 1_{e_{2} \in M}\right\rangle_{\Lambda}=K\left(e_{1}\right) K\left(e_{2}\right) \operatorname{det}(R)
$$

with R the 2×2 matrix with $R_{i j}=K^{-1}\left(b_{i}, w_{j}\right)$.
Analogous expression for multi-dimer correlations

Macroscopic shape

[Cohn-Kenyon-Propp, JAMS 2001]
Scaling limit: lattice step $1 / L \rightarrow 0$, domain $U \equiv \Lambda / L$ of size $O(1)$, boundary height φ on ∂U.

Theorem The height function concentrates with high probability around a deterministic shape $\Phi: U \mapsto \mathbb{R}$. This minimizes a surface tension functional

$$
\Gamma(\phi)=\int_{U} F(\nabla \phi) d^{2} u
$$

with $\phi_{\partial U}=\varphi . F$ is convex and explicitly known.

Macroscopic shape

[Cohn-Kenyon-Propp, JAMS 2001]
Scaling limit: lattice step $1 / L \rightarrow 0$, domain $U \equiv \Lambda / L$ of size $O(1)$, boundary height φ on ∂U.

Theorem The height function concentrates with high probability around a deterministic shape $\Phi: U \mapsto \mathbb{R}$. This minimizes a surface tension functional

$$
\Gamma(\phi)=\int_{U} F(\nabla \phi) d^{2} u
$$

with $\phi_{\partial U}=\varphi . F$ is convex and explicitly known.
According to the boundary height, the minimizer Φ can be either C^{∞} or have "facets".

An example with facets: arctic circle
[Cohn, Larsen, Propp '98]

Fluctuations

Take periodic b.c.

- Dimer-dimer correlations decay slowly:

$$
\lim _{\Lambda \rightarrow \mathbb{Z}^{2}}\left\langle 1_{e \in M} ; 1_{e^{\prime} \in M}\right\rangle_{\Lambda} \approx\left|e-e^{\prime}\right|^{-2}
$$

Fluctuations

Take periodic b.c.

- Dimer-dimer correlations decay slowly:

$$
\lim _{\Lambda \rightarrow \mathbb{Z}^{2}}\left\langle 1_{e \in M} ; 1_{e^{\prime} \in M}\right\rangle_{\Lambda} \approx\left|e-e^{\prime}\right|^{-2}
$$

- Height fluctuations grow logarithmically:
$\lim _{\Lambda \rightarrow \mathbb{Z}^{2}} \operatorname{Var}_{\Lambda}\left(h(f)-h\left(f^{\prime}\right)\right) \sim \frac{1}{\pi^{2}} \log \left|f-f^{\prime}\right| \quad$ as $\quad\left|f-f^{\prime}\right| \rightarrow \infty$
(see Kenyon-Okounkov-Sheffield for general bipartite graphs)

Fluctuations

Take periodic b.c.

- Dimer-dimer correlations decay slowly:

$$
\lim _{\Lambda \rightarrow \mathbb{Z}^{2}}\left\langle 1_{e \in M} ; 1_{e^{\prime} \in M}\right\rangle_{\Lambda} \approx\left|e-e^{\prime}\right|^{-2}
$$

- Height fluctuations grow logarithmically:
$\lim _{\Lambda \rightarrow \mathbb{Z}^{2}} \operatorname{Var}_{\Lambda}\left(h(f)-h\left(f^{\prime}\right)\right) \sim \frac{1}{\pi^{2}} \log \left|f-f^{\prime}\right| \quad$ as $\quad\left|f-f^{\prime}\right| \rightarrow \infty$
(see Kenyon-Okounkov-Sheffield for general bipartite graphs)
- the height field is asymptotically Gaussian: for $m \geq 3$, the $m^{t h}$ cumulant of $h(f)-h\left(f^{\prime}\right)$ is

$$
\left\langle h(f)-h\left(f^{\prime}\right) ; m\right\rangle_{\Lambda}=o\left(\operatorname{Var}_{\Lambda}\left(h(f)-h\left(f^{\prime}\right)\right)^{m / 2}\right)
$$

Glauber (stochastic) dynamics

Defines a continuous-time Markov chain

Glauber (stochastic) dynamics

Defines a continuous-time Markov chain

The unique stationary (reversible) measure is the uniform one, $\langle\cdot\rangle_{\Lambda}$. As $t \rightarrow \infty$, convergence to $\langle\cdot\rangle_{\wedge}$: a way to sample random tilings.

Glauber (stochastic) dynamics

Defines a continuous-time Markov chain

The unique stationary (reversible) measure is the uniform one, $\langle\cdot\rangle_{\wedge}$. As $t \rightarrow \infty$, convergence to $\langle\cdot\rangle_{\wedge}$: a way to sample random tilings.

Corresponds to zero-temperature dynamics of 3D Ising model

Natural mathematical questions

Speed of convergence to equilibrium, mixing time, etc [Theoretical computer science motivation: running time of algorithm, counting \# of tilings]

Deterministic interface evolution on diffusive time-scales? [MathPhys motivation: motion of interfaces. Similar questions e.g. for Ising interfaces at low temperature]

Influence of singularities of Φ on the dynamics?

Heuristics: diffusive scaling and hydrodynamic limit

Three types of particles (lozenges) exchanging randomly their positions.
Analogy with Simple Exclusion Process suggests $T_{r e l} \approx L^{2}$.

Heuristics: diffusive scaling and hydrodynamic limit

Three types of particles (lozenges) exchanging randomly their positions.
Analogy with Simple Exclusion Process suggests $T_{r e l} \approx L^{2}$.
After diffusive time rescaling (set $\tau=t / L^{2}$) expected convergence to deterministic evolution (hydrodynamic limit).

$$
\partial_{t} \phi=\mu(\nabla \phi) \operatorname{div}(\nabla F \circ \nabla \phi)
$$

Idea: system decreases surface free energy $\Gamma(\phi)=\int F(\nabla \phi)$.

"Rapid mixing"

Theorem: [Luby-Randall-Sinclair, Wilson, Randall-Tetali (theoretical computer science community)]

The mixing time grows at most as a polynomial of L, uniformly in the boundary height.

Based on "path coupling methods"; at best, these can give $T_{\text {mix }} \leq c L^{4+\epsilon}$.

An almost optimal result

$h_{t}(\cdot)$: height function of the time-evolving discrete interface.
Theorem: [B. Laslier, F. T. '13] Assume the macroscopic shape Φ is C^{∞}. With probability close to 1 ,

$$
\begin{array}{lr}
\left\|h_{t}(\cdot)-\Phi(\cdot)\right\|_{\infty}=o(1) & t \geq L^{2+\epsilon} \\
\left\|h_{t}(\cdot)-h_{0}(\cdot)\right\|_{\infty}=o(1) & t \ll L^{2}
\end{array}
$$

An almost optimal result

$h_{t}(\cdot)$: height function of the time-evolving discrete interface.
Theorem: [B. Laslier, F. T. '13] Assume the macroscopic shape Φ is C^{∞}. With probability close to 1 ,

$$
\begin{aligned}
\left\|h_{t}(\cdot)-\Phi(\cdot)\right\|_{\infty}=o(1) & t \geq L^{2+\epsilon} \\
\left\|h_{t}(\cdot)-h_{0}(\cdot)\right\|_{\infty}=o(1) & t \ll L^{2}
\end{aligned}
$$

Uses refined results on equilibrium height fluctuations (L. Petrov)

An almost optimal result

$h_{t}(\cdot)$: height function of the time-evolving discrete interface.
Theorem: [B. Laslier, F. T. '13] Assume the macroscopic shape Φ is C^{∞}. With probability close to 1 ,

$$
\begin{aligned}
\left\|h_{t}(\cdot)-\Phi(\cdot)\right\|_{\infty}=o(1) & t \geq L^{2+\epsilon} \\
\left\|h_{t}(\cdot)-h_{0}(\cdot)\right\|_{\infty}=o(1) & t \ll L^{2}
\end{aligned}
$$

Uses refined results on equilibrium height fluctuations (L. Petrov) If Φ is affine, see [Caputo, Martinelli, Toninelli '12 and Laslier, Toninelli '14]: mixing time of order $L^{2+o(1)}$.

Beyond the solvable case: interacting dimers

Associate an energy $\lambda \in \mathbb{R}$ to adjacent dimers:

I.e., with $N(M)$ the number of adjacent pairs of dimers in M,

$$
\langle\cdot\rangle_{\Lambda, \lambda}=\frac{\sum_{M} e^{\lambda N(M)}}{Z_{\Lambda, \lambda}}
$$

[Alet et al., Phys. Rev. Lett 2005]

Beyond the solvable case: interacting dimers

Theorem [Giuliani, Mastropietro, T. 2014] If $|\lambda| \leq \lambda_{0}$ then:

- Fluctuations still grow logarithmically:
$\lim _{\Lambda \rightarrow \mathbb{Z}^{2}} \operatorname{Var}_{\Lambda, \lambda}\left(h(f)-h\left(f^{\prime}\right)\right) \quad \stackrel{\left|f-f^{\prime}\right| \rightarrow \infty}{=} \frac{K(\lambda)}{\pi^{2}} \log \left|f-f^{\prime}\right|+O(1)$
with $K(\cdot)$ analytic and $K(0)=1$;
- for $m \geq 3$, the $m^{t h}$ cumulant of $h(f)-h\left(f^{\prime}\right)$ is bounded:

$$
\sup _{f, f^{\prime}} \lim _{\Lambda \rightarrow \mathbb{Z}^{2}}\left\langle h(f)-h\left(f^{\prime}\right) ; m\right\rangle_{\Lambda, \lambda} \leq C(m) .
$$

Beyond the solvable case: interacting dimers

Theorem [Giuliani, Mastropietro, T. 2014] If $|\lambda| \leq \lambda_{0}$ then:

- Convergence to Gaussian Free Field: if $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{2}\right)$ with $\int_{\mathbb{R}^{2}} \varphi(x) d x=0$ then, as $\epsilon \rightarrow 0$,

$$
\epsilon^{2} \sum_{f} \varphi(\epsilon f) h(f) \rightarrow \int_{\mathbb{R}^{2}} \varphi(x) X(x) d x
$$

with X the Gaussian Free Field of covariance

$$
-\frac{K(\lambda)}{2 \pi^{2}} \log |x-y|
$$

Universality or not? dimer correlations

Back to the non-interacting case. From Kasteleyn's solution,

$$
\begin{aligned}
& \sigma_{e} \sigma_{e^{\prime}} \lim _{\Lambda \rightarrow \mathbb{Z}^{2}}\left\langle 1_{e \in M} ; 1_{e^{\prime} \in M}\right\rangle_{\Lambda, \lambda=0} \\
& =-\frac{1}{2 \pi^{2}} \Re\left[\Delta z_{e} \Delta z_{e^{\prime}} \frac{1}{\left(z_{e}-z_{e^{\prime}}\right)^{2}}\right] \\
& +O s c\left(z_{e}, z_{e^{\prime}}\right) \frac{1}{\left|z_{e}-z_{e^{\prime}}\right|^{2}}+O\left(\left|z_{e}-z_{e^{\prime}}\right|^{-3}\right) .
\end{aligned}
$$

Universality or not? dimer correlations

Back to the non-interacting case. From Kasteleyn's solution,

$$
\begin{aligned}
& \sigma_{e} \sigma_{e^{\prime}} \lim _{\Lambda \rightarrow \mathbb{Z}^{2}}\left\langle 1_{e \in M} ; 1_{e^{\prime} \in M}\right\rangle_{\Lambda, \lambda=0} \\
& =-\frac{1}{2 \pi^{2}} \Re\left[\Delta z_{e} \Delta z_{e^{\prime}} \frac{1}{\left(z_{e}-z_{e^{\prime}}\right)^{2}}\right] \\
& +O s c\left(z_{e}, z_{e^{\prime}}\right) \frac{1}{\left|z_{e}-z_{e^{\prime}}\right|^{2}}+O\left(\left|z_{e}-z_{e^{\prime}}\right|^{-3}\right)
\end{aligned}
$$

Universality or not? dimer correlations

If λ is small, then [see also Falco, Phys Rev E 2013]

$$
\begin{aligned}
& \sigma_{e} \sigma_{e^{\prime}} \lim _{\Lambda \rightarrow \mathbb{Z}^{2}}\left\langle 1_{e \in M ;} ; 1_{e^{\prime} \in M}\right\rangle_{\Lambda, \lambda} \\
& =-\frac{K(\lambda)}{2 \pi^{2}} \Re\left[\Delta z_{e} \Delta z_{e^{\prime}} \frac{1}{\left(z_{e}-z_{e^{\prime}}\right)^{2}}\right] \\
& +O s c\left(z_{e}, z_{e^{\prime}}\right) \frac{1}{\left|z_{e}-z_{e^{\prime}}\right|^{2+\eta(\lambda)}}+O\left(\left|z_{e}-z_{e^{\prime}}\right|^{-3+O(\lambda)}\right)
\end{aligned}
$$

with $K(\cdot), \eta(\cdot)$ analytic and $K(0)=1, \eta(0)=0$.

Universality or not? dimer correlations

If λ is small, then [see also Falco, Phys Rev E 2013]

$$
\begin{aligned}
& \sigma_{e} \sigma_{e^{\prime}} \lim _{\Lambda \rightarrow \mathbb{Z}^{2}}\left\langle 1_{e \in M ;} ; 1_{e^{\prime} \in M}\right\rangle_{\Lambda, \lambda} \\
& =-\frac{K(\lambda)}{2 \pi^{2}} \Re\left[\Delta z_{e} \Delta z_{e^{\prime}} \frac{1}{\left(z_{e}-z_{e^{\prime}}\right)^{2}}\right] \\
& +O s c\left(z_{e}, z_{e^{\prime}}\right) \frac{1}{\left|z_{e}-z_{e^{\prime}}\right|^{2+\eta(\lambda)}}+O\left(\left|z_{e}-z_{e^{\prime}}\right|^{-3+O(\lambda)}\right)
\end{aligned}
$$

with $K(\cdot), \eta(\cdot)$ analytic and $K(0)=1, \eta(0)=0$.

- in the main term the critical exponent remains 2
- in the oscillating term it changes to $2+\eta(\lambda)$ (non-universal).

A Renormalization Group approach

Algebraic identity: Determinants can be written as "Grassmann Gaussian integrals", or "Lattice free fermions".

A Renormalization Group approach

Algebraic identity: Determinants can be written as "Grassmann Gaussian integrals", or "Lattice free fermions".
To each lattice site, associate Grassmann variable ψ_{x}.
Anticommutation rule: $\psi_{x} \psi_{y}=-\psi_{y} \psi_{x}$
Then, with $(\psi, K \psi)=\sum_{b, w} \psi_{w} K(w, b) \psi_{b}$,

$$
\operatorname{det}(K)=\int \prod_{x} d \psi_{x} e^{-\frac{1}{2}(\psi, K \psi)}
$$

and

$$
K^{-1}(b, w)=\frac{1}{\operatorname{det}(K)} \int \prod_{x} d \psi_{x} e^{-\frac{1}{2}(\psi, K \psi)} \psi_{b} \psi_{w}
$$

A Renormalization Group approach

Similarly, the partition function of the interacting model is written as

$$
Z_{\Lambda, \lambda}=\frac{1}{\operatorname{det}(K)} \int \prod d \psi_{x} \exp \left(-\frac{1}{2}(\psi, K \psi)+\lambda V(\psi)\right)
$$

with V a non-quadratic polynomial of the ψ.

A Renormalization Group approach

Similarly, the partition function of the interacting model is written as

$$
Z_{\Lambda, \lambda}=\frac{1}{\operatorname{det}(K)} \int \prod d \psi_{x} \exp \left(-\frac{1}{2}(\psi, K \psi)+\lambda V(\psi)\right)
$$

with V a non-quadratic polynomial of the ψ.
Naive power series in λ diverges
Constructive Renormalization Group methods (Benfatto, Brydges, Gallavotti, Gawedzki, Kupiainen, Mastropietro, Rivasseau, ... ≥ 1980 's) allow to obtain convergent expansion for correlation functions and to study large-distance behavior.

Open problems

- Effect of facets on Glauber dynamics?

Open problems

- Effect of facets on Glauber dynamics?
- Kenyon '00 proved conformal invariance of height moments e.g.

$$
g_{\mathcal{D}}(x, y)=\lim _{L \rightarrow \infty}\left\langle\left(h_{x_{L}}-\left\langle h_{x_{L}}\right\rangle_{\wedge}\right)\left(h_{y_{L}}-\left\langle h_{y_{L}}\right\rangle_{\Lambda}\right)\right\rangle_{\Lambda}
$$

(lattice spacing $1 / L \rightarrow 0, \Lambda \subset(\mathbb{Z} / L)^{2}$ suitable discretization of domain $\mathcal{D} \subset \mathbb{C}$ and x_{L}, y_{L} tend to distinct points x, y)

Conformal invariance for the interacting dimer model?

Thank you!

[^0]: ${ }^{1}$ Many thanks to Clay Math Institute \& French Embassy in Buenos Aires for financial support

