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Plan of the talk

For non-experts

• Basics

What is the KPZ equation?

The KPZ equation is not really well-defined.

• Explicit formula for height distribution

Tracy-Widom distributions from random matrix theory

Behind the tractability … Stochastic integrability

• Universality

”KPZ is everywhere”
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1. Basics of the KPZ equation: Surface growth

• Paper combustion, bacteria colony, crystal

growth, etc

• Non-equilibrium statistical mechanics

• Stochastic interacting particle systems

• Connections to integrable systems, representation theory, etc
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Simulation models

Ex: ballistic deposition
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KPZ equation

h(x, t): height at position x ∈ R and at time t ≥ 0

1986 Kardar Parisi Zhang

∂th(x, t) = 1
2
λ(∂xh(x, t))

2 + ν∂2
xh(x, t) +

√
Dη(x, t)

where η is the Gaussian noise with mean 0 and covariance

⟨η(x, t)η(x′, t′)⟩ = δ(x − x′)δ(t − t′)

By a simple scaling we can and will do set ν = 1
2
, λ = D = 1.

The KPZ equation now looks like

∂th(x, t) = 1
2
(∂xh(x, t))

2 + 1
2
∂2
xh(x, t) + η(x, t)
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”Derivation”
• Diffusion ∂th(x, t) = 1

2
∂2
xh(x, t)

Not enough: no fluctuations in the stationary state

• Add noise: Edwards-Wilkinson equation

∂th(x, t) = 1
2
∂2
xh(x, t) + η(x, t)

Not enough: does not give correct exponents

• Add nonlinearity (∂xh(x, t))
2 ⇒ KPZ equation

∂th = v
√

1 + (∂xh)2

≃ v + (v/2)(∂xh)
2 + . . .

Dynamical RG analysis: → β = 1/3 (KPZ class)
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Cole-Hopf transformationIf we set
Z(x, t) = exp (h(x, t))

this quantity (formally) satisfies

∂

∂t
Z(x, t) =

1

2

∂2Z(x, t)

∂x2
+ η(x, t)Z(x, t)

This can be interpreted as a (random) partition function for a

directed polymer in random environment η.
2λt/δ

x

h(x,t)

The polymer from the origin: Z(x, 0) = δ(x) = lim
δ→0

cδe
−|x|/δ

corresponds to narrow wedge for KPZ.
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The KPZ equation is not well-defined

• With η(x, t)” = ”dB(x, t)/dt, the equation for Z can be

written as (Stochastic heat equation)

dZ(x, t) =
1

2

∂2Z(x, t)

∂x2
dt + Z(x, t) × dB(x, t)

Here B(x, t) is the cylindrical Brownian motion with

covariance dB(x, t)dB(x′, t) = δ(x − x′)dt.

• Interpretation of the product Z(x, t) × dB(x, t) should be

Stratonovich Z(x, t) ◦ dB(x, t) since we used usual

calculus. Switching to Ito by

Z(x, t)◦dB(x, t) = Z(x, t)dB(x, t)+dZ(x, t)dB(x, t),

we encounter δ(0).
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• On the other hand SHE with Ito interpretation from the

beginning

dZ(x, t) =
1

2

∂2Z(x, t)

∂x2
dt + Z(x, t)dB(x, t)

is well-defined. For this Z one can define the ”Cole-Hopf”

solution of the KPZ equation by h = logZ.

So the well-defined version of the KPZ equation may be

written as

∂th(x, t) = 1
2
(∂xh(x, t))

2 + 1
2
∂2
xh(x, t) − ∞ + η(x, t)

• Hairer found a way to define the KPZ equation without but

equivalent to Cole-Hopf (using ideas from rough path and

renormalization).
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2. Explicit formula for the 1D KPZ equation

Thm (2010 TS Spohn, Amir Corwin Quastel )

For the initial condition Z(x, 0) = δ(x) (narrow wedge for KPZ)

⟨e−eh(0,t)+ t
24−γts⟩ = det(1 − Ks,t)

where γt = (t/2)1/3 and Ks,t is

Ks,t(x, y) =

∫ ∞

−∞
dλ

Ai(x + λ)Ai(y + λ)

eγt(s−λ) + 1
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Explicit formula for the height distribution

Thm

h(x, t) = −x2/2t − 1
12

γ3
t + γtξt

where γt = (t/2)1/3. The distribution function of ξt is

Ft(s) = P[ξt ≤ s] = 1 −
∫ ∞

−∞
exp

[
− eγt(s−u)

]
×
(
det(1 − Pu(Bt − PAi)Pu) − det(1 − PuBtPu)

)
du

where PAi(x, y) = Ai(x)Ai(y), Pu is the projection onto

[u,∞) and the kernel Bt is

Bt(x, y) =

∫ ∞

−∞
dλ

Ai(x + λ)Ai(y + λ)

eγtλ − 1
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Finite time KPZ distribution and TW
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s
: exact KPZ density F ′

t (s) at γt = 0.94

−−: Tracy-Widom density

• In the large t limit, Ft tends to the GUE Tracy-Widom

distribution F2 from random matrix theory.
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Tracy-Widom distributions
For GUE (Gaussian unitary ensemble) with density

P (H)dH ∝ e−TrH2
dH for H: N × N hermitian matrix, the

joint eigenvalue density is (with ∆(x) Vandelmonde)
1

Z
∆(x)2

∏
i

e−x2
i

GUE Tracy-Widom distribution

lim
N→∞

P

[
xmax −

√
2N

2−1/2N−1/6
< s

]
= F2(s) = det(1 − PsK2Ps)

where Ps: projection onto [s,∞) and K2 is the Airy kernel

K2(x, y) =

∫ ∞

0
dλAi(x + λ)Ai(y + λ)

There is also GOE TW (F1) for GOE (Gaussian orthogonal

ensemble, real symmetric matrices).
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Probability densities of Tracy-Widom distributions

F ′
2(GUE), F

′
1(GOE)
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Derivation of the formula by replica approach

Dotsenko, Le Doussal, Calabrese

Feynmann-Kac expression for the partition function,

Z(x, t) = Ex

(
e
∫ t
0 η(b(s),t−s)dsZ(b(t), 0)

)
Because η is a Gaussian variable, one can take the average over

the noise η to see that the replica partition function can be

written as (for narrow wedge case)

⟨ZN(x, t)⟩ = ⟨x|e−HN t|0⟩

where HN is the Hamiltonian of the (attractive) δ-Bose gas,

HN = −
1

2

N∑
j=1

∂2

∂x2
j

−
1

2

N∑
j ̸=k

δ(xj − xk).
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We are interested not only in the average ⟨h⟩ but the full

distribution of h. We expand the quantity of our interest as

⟨e−eh(0,t)+ t
24−γts⟩ =

∞∑
N=0

(
−e−γts

)N
N !

⟨
ZN(0, t)

⟩
eN

γ3
t

12

Using the integrability (Bethe ansatz) of the δ-Bose gas, one gets

explicit expressions for the moment ⟨Zn⟩ and see that the

generating function can be written as a Fredholm determinant.

But for the KPZ, ⟨ZN⟩ ∼ eN
3
!

One should consider regularized discrete models.
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ASEP
ASEP = asymmetric simple exclusion process

· · · ⇒

p

⇐

q

⇐

q

⇒

p

⇐

q

· · ·

-3 -2 -1 0 1 2 3

• TASEP(Totally ASEP, p = 0 or q = 0)

• N(x, t): Integrated current at (x, x + 1) upto time t

⇔ height for surface growth

• In a certain weakly asymmetric limit

ASEP ⇒ KPZ equation
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q-TASAEP and q-TAZRP

• q-TASEP 2011 Borodin-Corwin

A particle i hops with rate 1 − qxi−1−xi−1.

x1x2x3x4x5x6
y0y1y2y3y4y5y6

• q-TAZRP 1998 TS Wadati

The dynamics of the gaps yi = xi−1 − xi − 1 is a version of

totally asymmetric zero range process in which a particle hops

to the right site with rate 1 − qyi . The generator of the

process can be written in terms of q-boson operators.

• N(x, t): Integrated current for q-TAZRP

18



Rigorous replica

2012 Borodin-Corwin-TS

• For ASEP and q-TAZRP, the n-point function like

⟨
∏

i q
N(xi,t)⟩ satisfies the n particle dynamics of the same

process (Duality). This is a discrete generalization of δ-Bose

gas for KPZ. One can apply the replica approach to get a

Fredholm det expression for generating function for N(x, t).

• Rigorous replica: the one for KPZ (which is not rigorous) can

be thought of as a shadow of the rigorous replica for ASEP or

q-TAZRP.

• BCS+Petrov Plancherel theorem, more generalizations to

come soon!
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Various generalizations and developments

• Flat case (replica) (Le Doussal, Calabrese)

The limiting distribution is GOE TW F1 (Geometry

dependence)

• Multi-point case (replica) (Dotsenko)

• Stochastic integrability...Connections to quantum integrable

systems

quantum Toda lattice, XXZ chain, Macdonald polynomials...

(⇒ Talk by Ivan Corwin)
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Stationary 2pt correlation

Not only the height/current distributions but correlation functions

show universal behaviors.

• For the KPZ equation, the Brownian motion is stationary.

h(x, 0) = B(x)

where B(x), x ∈ R is the two sided BM.

• Two point correlation

x

h

t2/3 t1/3

∂xh(x,t)∂xh(0,0)

o
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Figure by exact solution

Imamura TS (2012)

⟨∂xh(x, t)∂xh(0, 0)⟩ =
1

2
(2t)−2/3g′′

t (x/(2t)
2/3)

The figure can be drawn from the exact formula (which is a bit

involved though).
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γt=1

γt=∞

Stationary 2pt correlation function g′′
t (y) for γt := ( t

2
)

1
3 = 1.

The solid curve is the scaling limit g′′(y).
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3. Universality

• The Tracy-Widom distributions appear in various contexts

(Universality).

• A simplest example of universality is the central limit theorem.

For any independent random variables with moment

conditions CLT holds.

• Understanding of universality of TW distributions from the

context of random matrix theory has been developed.

• Its universality from the context of surface growth or directed

polymer has been much less well understood.
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Universality 1: Expeirments by Takeuchi-Sano
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Takeuchi Sano TS Spohn, Sci. Rep. 1,34(2011)
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Universality 2: Beijeren-Spohn Conjecture
• The scaled KPZ 2-pt function would appear in rather generic

1D multi-component systems

This would apply to (deterministic) 1D Hamiltonian dynamics

with three conserved quantities, such as the

Fermi-Pasta-Ulam chain with V (x) = x2

2
+ αx3

3!
+ βx4

4!
.

There are two sound modes with velocities ±c and one heat

mode with velocity 0. The sound modes would be described

by KPZ; the heat mode by 5
3
−Levy.

• Now there have been several attempts to confirm this by

numerical simulations. Mendl, Spohn, Dhar, Beijeren, …

• If nonlinearity vanishes, can show appearance of Levy modes

and/or diffusive modes (Olla), but in general difficult to prove.
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Mendl Spohn

MD simulations for shoulder potential

V (x) = ∞ (0 < x < 1
2
), 1(1

2
< x < 1), 0(x > 1)
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Stochastic model

The conjecture would hold also for stochastic models with more

than one conserved quantities.

Arndt-Heinzel-Rittenberg(AHR) model (1998)

• Rules

+ 0
α→ 0 +

0 − α→ − 0

+ − 1→ − +

• Two conserved quantities (numbers of + and − particles).

• Exact stationary measure is known in a matrix product form.
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2013 Ferrari TS Spohn
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The KPZ 2pt correlation describes those for the two modes.

Proving the conjecture for this process seems already difficult.
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KPZ in higher dimension?

In higher dimensions, there had been several conjectures for

exponents. There are almost no rigorous results.
2012 Halpin-Healy
New extensive Monte-Carlo simulations in 2D on the distributions.

New universal distributions?
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4. Summary

• KPZ equation is a model equation to describe surface growth.

It is considered to be of fundamental importance from several

points of view.

• One can write down fairy compact explicit formula for its

height distribution. This is related to nice algebraic structures

behind the equation.

• There is a strong universality associated with the KPZ

equation. Understanding its nature is an outstanding

challenge for the future.
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