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Malliavin Calculus

Paul Malliavin (1925-2010) introduced in the 70’s a calculus of
variations with respect to the trajectories of Brownian motion.
The purpose of this calculus was to provide a probabilistic proof of
Hörmander’s hypoellipticity theorem.
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The Malliavin calculus was further developed by Bismut, Stroock,
Kusuoka and Watanabe, among others.

The main application of this calculus is to show the existence and
smoothness of densities of functionals of Gaussian processes.
In this talk we will present some recent applications of the Mallavin
calculus, combined with Stein’s method, to normal approximations
(Nourdin-Peccati ’12 : Normal Approximations with Malliavin
Calculus).
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Multiple stochastic integrals

H is a separable Hilbert space.

H1 = {X (h),h ∈ H} is a Gaussian family of random variables in
(Ω,F ,P) with zero mean and covariance

E(X (h)X (g)) = 〈h,g〉H .

For q ≥ 2 we define the qth Wiener chaos as

Hq = Span{hq(X (h)),h ∈ H, ‖h‖H = 1},

where hq(x) is the qth Hermite polynomial.

Multiple stochastic integral of order q :

Iq :
(

H⊗̂q ,
√

q!‖ · ‖H⊗q

)
→ Hq

is a linear isometry defined by Iq(h⊗q) = hq(X (h)), where H⊗̂q is the qth
symmetric tensor product of H.
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Example :
Let B = {Bt , t ∈ [0,1]} be a Brownian motion.

Then, H = L2([0,1]) and X (h) =
∫ 1

0 htdBt .

For any q ≥ 2, H⊗̂q = L2
sym([0,1]q) and Iq is the iterated Itô

stochastic integral :

Iq(h) = q!

∫ 1

0
. . .

∫ t2

0
h(t1, . . . , tq)dBt1 . . . dBtq .
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Wiener chaos expansion

Assume F is generated by H1. We have the orthogonal decomposition

L2(Ω) =
∞⊕

q=0

Hq,

where H0 = R. Any F ∈ L2(Ω) can be written as

F = E(F ) +
∞∑

q=1

Iq(fq),

where fq ∈ H⊗̂q are determined by F .
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Elements of Malliavin Calculus

S is the space of random variables of the form

F = f (X (h1), ...,X (hn)),

where hi ∈ H and f ∈ C∞b (Rn).
If F ∈ S we define its derivative by

DF =
n∑

i=1

∂f
∂xi

(X (h1), ...,X (hn))hi .

DF is a random variable with values in H.
D1,2 ⊂ L2(Ω; H) is the closure of S with respect to the norm

‖DF‖1,2 =
√

E(F 2) + E(‖DF‖2H).
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The adjoint of D is the divergence operator δ defined by the duality
relationship

E(〈DF ,u〉H) = E(Fδ(u))

for any F ∈ D1,2 and u ∈ Domδ ⊂ L2(Ω; H).

Basic formula
δ(DF ) = −LF ,

where L is the generator of the Ornstein-Uhlenbeck semigroup
defined by

LF = −
∞∑

q=1

qIq(fq)

if F =
∑∞

q=0 Iq(fq) and
∑∞

q=1 q2q!‖fq‖2H⊗q <∞.
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Integration-by-parts formula

Let F ∈ D1,2 with E(F ) = 0 and f ∈ C1
b(R). Using that

F = LL−1F = −δ(DL−1F )

yields

E [f (F )F ] = −E [f (F )δ(DL−1F )]

= −E [〈D(f (F )),DL−1F 〉H ]

= E [f ′(F )〈DF ,−DL−1F 〉H ].

If F ∈ Hq, with q ≥ 1, then DL−1F = − 1
q DF and

E [f (F )F ] =
1
q

E [f ′(F )‖DF‖2H ].
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Stein’s method for normal approximation

Stein’s lemma :

Z ∼ N(0,1) ⇔ E [f (Z )Z − f ′(Z )] = 0 ∀ f ∈ C1
b(R).

Let Z ∼ N(0,1), and fix h such that E(|h(Z )|) <∞. The Stein’s
equation associated with h is

f ′h(x)− xfh(x) = h(x)− E(h(Z ))

Proposition
The unique solution to Stein’s equation satisfying
limx→±∞ e−x2/2fh(x) = 0 is

fh(x) = ex2/2
∫ x

−∞
(h(y)− E [h(Z )])e−y2/2dy .
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Substituting x by a random variable F and taking the expectation
we obtain

E [h(F )]− E [h(Z )] = E [f ′h(F )− Ffh(F )].

If ‖h‖∞ ≤ 1, then ‖fh‖∞ ≤
√
π/2 and ‖f ′h‖∞ ≤ 2.

So, for any random variable F , taking h = 1B,

dTV (F ,Z ) = sup
B∈B(R)

|P(F ∈ B)− P(Z ∈ B)|

≤ sup
f∈CTV

|E [f ′(F )− Ff (F )]|,

where CTV is the class of functions with ‖f‖∞ ≤
√
π/2 and

‖f ′‖∞ ≤ 2.
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If F ∈ Hq for some q ≥ 2 and E(F 2) = 1, then

dTV (F ,Z ) ≤ sup
f∈CTV

|E [f ′(F )− Ff (F )]|

= sup
f∈CTV

∣∣∣∣E [f ′(F )

(
1− 1

q
‖DF‖2

H

)]∣∣∣∣
≤ 2

q

√
Var
(
‖DF‖2

H

)
,

because E [‖DF‖2
H ] = q.

Moreover, using Wiener chaos expansions and product formulas for
multiple stochastic integrals

Var
(
‖DF‖2

H
)
≤ (q − 1)q

3
(E(F 4)− 3) ≤ (q − 1)Var

(
‖DF‖2

H
)
.
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Fourth Moment theorem

Stein’s method combined with Malliavin calculus leads to a simple proof of
the Fourth Moment theorem :

Theorem (N.-Peccati ’05, N.-Ortiz ’07)
Fix q ≥ 2. Let Fn = Iq(fn) ∈ Hq , n ≥ 1 be such that

lim
n→∞

E(F 2
n ) = σ2.

The following conditions are equivalent :

(i) Fn ⇒ N(0, σ2), as n→∞.

(ii) E(F 4
n )→ 3σ4, as n→∞.

(iii) For all 1 ≤ r ≤ q − 1, ‖fn ⊗r fn‖H⊗(2q−2r) → 0, as n→∞.

(iv) ‖DFn‖2
H → qσ2 in L2(Ω), as n→∞.

fn ⊗r fn denotes the contraction of r coordinates.
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Remarks :

This theorem constitutes a drastic simplification of the method of
moments.

The convergence is in total variation. Nourdin-Peccati ’13 proved the
following optimal version of the fourth moment theorem (for σ = 1) :

cM(Fn) ≤ dTV (Fn,Z ) ≤ CM(Fn),

where M(Fn) = max(|E [F 3
n ]|,E [F 4

n ]− 3).

Peccati-Tudor ’05 obtained a multidimensional extension, which can also
be derived by Stein’s method and Malliavin calculus.

Malliavin calculus and normal approximation 37th SPA, July 2014 14 / 33



Remarks :

This theorem constitutes a drastic simplification of the method of
moments.

The convergence is in total variation. Nourdin-Peccati ’13 proved the
following optimal version of the fourth moment theorem (for σ = 1) :

cM(Fn) ≤ dTV (Fn,Z ) ≤ CM(Fn),

where M(Fn) = max(|E [F 3
n ]|,E [F 4

n ]− 3).

Peccati-Tudor ’05 obtained a multidimensional extension, which can also
be derived by Stein’s method and Malliavin calculus.

Malliavin calculus and normal approximation 37th SPA, July 2014 14 / 33



Remarks :

This theorem constitutes a drastic simplification of the method of
moments.

The convergence is in total variation. Nourdin-Peccati ’13 proved the
following optimal version of the fourth moment theorem (for σ = 1) :

cM(Fn) ≤ dTV (Fn,Z ) ≤ CM(Fn),

where M(Fn) = max(|E [F 3
n ]|,E [F 4

n ]− 3).

Peccati-Tudor ’05 obtained a multidimensional extension, which can also
be derived by Stein’s method and Malliavin calculus.

Malliavin calculus and normal approximation 37th SPA, July 2014 14 / 33



Applications

(i) Central limit theorem for the renormalized self-intersection local time of
the d-dimensional fractional Brownian motion with Hurst parameter
H ∈

[ 3
2d ,

3
4

)
(Hu-N. ’05).

(ii) Exact Berry-Esséen asymptotics for functionals of Gaussian processes
(Nourdin-Peccati ’10) :

[P(Fn ≤ z)− P(Z ≤ z)] ∼ ϕ(n)
ρ

3q
Φ(3)(z),

as n→∞, where Fn ∈ Hq , E(F 2
n )→ 1, ϕ(n) =

√
E
[(

1− 1
q ‖DFn‖2

H

)2
]
,

ρ = limn E(Fn‖DFn‖2
H), and Φ(z) = P(Z ≤ z).
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(iii) Quantitative Breuer-Major theorems for functionals of Gaussian
stationary sequences (Nourdin-Peccati ’12, Nourdin-Peccati-Podolskij
’12, ...).

Theorem (Brauer-Major ’73)
Let f ∈ L2(R, γ), where γ = N(0,1), with Hermite rank d, that is,

f (x) =
∞∑

q=d

aqhq(x),

and ad 6= 0. Let X = {Xk , k ∈ Z} be a centered Gaussian stationary
sequence with unit variance. Set ρ(v) = E [X0Xv ] for v ∈ Z and assume∑

v∈Z |ρ(v)|d <∞. Then,

Vn :=
1√
n

n∑
k=1

f (Xk )⇒ N(0, σ2),

as n→∞, where σ2 =
∑∞

q=d q!a2
q
∑

v∈Z ρ(v)q .
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Sketch of the proof :

We reduce the proof to the case f = aqhq, q ≥ d .
E [V 2

n ]→ σ2.
Let H be the closure of {(bj , j ∈ Z)} by the scalar product
〈b, c〉H =

∑
i,j∈Z bicjρ(i − j), and assume that Xk = X (ek ), with

ek = (δkj , j ∈ Z).
It suffices to show that

‖DF‖2H → qq!a2
q

∑
v∈Z

ρ(v)q

in L2(Ω).
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We have

‖DF‖2
H =

a2
q

n

n∑
i,j=1

h′q(Xi )h′q(Xj )ρ(i − j),

which has the same limit in L2 as the sequence

Bn :=
a2

q

n

n∑
j=1

h′q(Xj )

( ∞∑
m=−∞

h′q(Xj+m)ρ(m)

)
.

The sequence {
h′q(Xj )

( ∞∑
m=−∞

h′q(Xj+m)ρ(m)

)
, j ≥ 1

}

is strictly stationary and ergodic. By the Ergodic Theorem, converges in
L2(Ω) to its expectation which is equal to

qq!a2
q

∑
v∈Z

ρ(v)q .
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Convergence in law on a finite sum of Wiener chaos

Convergence in law is metrizable by the Fortet-Mourier distance :

dFM(F ,G) = sup
ϕ
|E [ϕ(F )]− E [ϕ(G)]| ,

where the supremum is over ‖ϕ‖Lip ≤ 1 and ‖ϕ‖∞ ≤ 1.

On a finite sum Wiener chaos, convergence in law to a
non-degenerate limit implies convergence in total variation.

Theorem (Nourdin-Poly ’12)

Let Fn ∈ ⊕p
k=1Hk , F ⇒ F∞, and F∞ is not identically zero. Then

dTV (Fn,F∞) ≤ cdFM(Fn,F∞)
1

2p+1 .
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A multidimensional extension :

Theorem (Nourdin-N.-Poly ’13)

Let Fn = (F1,n, . . . ,Fd ,n) be such that Fi,n ∈ ⊕p
k=1Hk , F ⇒ F∞, and

E [det Γn] ≥ β > 0, (1)

where Γi,j
n = 〈DFi,n,DFj,n〉H . Then

dTV (Fn,F∞) ≤ cdFM(Fn,F∞)γ ,

for any γ < [(d + 1)(4d(q − 1) + 3) + 1]−1.
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Sketch of the proof :
(i) Let ϕ : Rd → R with ‖ϕ‖∞ ≤ 1. Then,

|E [ϕ(Fn)− ϕ(Fm)]| ≤ |E [ϕ ∗ ρα(Fn)− ϕ ∗ ρα(Fm)]|
+2 sup

n
|E [ϕ(Fn)− ϕ ∗ ρα(Fn)]|

≤ 1
α

dFM(Fn,Fm) + 2Rα.

(ii) Let hα = ϕ− ϕ ∗ ρα. For any ε > 0,

|E [hα(Fn)]| =

∣∣∣∣E [hα(Fn)

(
ε

det Γn + ε
+

det Γn

det Γn + ε

)]∣∣∣∣
≤ 2εE [(det Γn + ε)−1] +

∣∣∣∣E [hα(Fn)
det Γn

det Γn + ε

]∣∣∣∣ .
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(iii) For the first term we obtain

2εE [(det Γn + ε)−1] ≤ cε
1

2(q−1)d+1 .

This follows from E [det Γn] ≥ β and the Carbery-Wright ’01 inequality :

Lemma
For any polynomial Q of degree at most d we have

E [Q(X )
q
d ]

1
q P(|Q(X )| ≤ α) ≤ Cqα

1
d ,

where X is a standard Gaussian vector.

(iv) For the second term, if |Fn| ≤ M, using Malliavin calculus we obtain∣∣∣∣E [hα(Fn)
det Γn

det Γn + ε

]∣∣∣∣ ≤ cε−2α
1

d+1 M
d

d+1 .

(v) We optimize in ε, α and M to get the result.
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det Γn

det Γn + ε

]∣∣∣∣ ≤ cε−2α
1

d+1 M
d

d+1 .

(v) We optimize in ε, α and M to get the result.
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Sufficient conditions for E [det Γn] ≥ β > 0 (assumption (1)) :

If F∞ is normal Nd (0,C) with det(C) > 0, then (1) holds, because
Γn → C in L2(Ω) (N.-Ortiz ’07).
If F∞ has independent and non degenerate components, then (1)
holds.
If Fn → F∞ in L2(Ω), then E [det Γn]→ E [det ΓF∞ ] and (1) holds if

E [det ΓF∞ ] > 0.

By Kusuoka’s ’83 theorem, this is equivalent to say that F∞ has an
absolutely continuous law.
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Convergence of densities

The total variation distance is equivalent to L1-norm of the densities :

dTV (F ,Z ) =

∫
R
|pF (x)− φ(x)|dx ,

where Z ∼ N(0,1) and φ is the density of Z .

Uniform convergence, however, requires stronger hypotheses :

Theorem (Hu-Lu-N. ’13)
Let F ∈ Hq , q ≥ 2, be such that E(F 2) = 1 and E(‖DF‖−6

H ) ≤ M. Then,

sup
x∈R
|pF (x)− φ(x)| ≤ CM,q

√
E(F 4)− 3.

Using the notion of Fisher information, Nourdin and N., provided al
alternative proof of this theorem under the weaker assumption
E(‖DF‖−4−ε

H ) ≤ M for some ε > 0.
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Sketch of the proof :
(i) Formula for the density

pF (x) = E
[
1{F>x}δ

(
DF
‖DF‖2

H

)]
= E

[
1{F>x}

qF
‖DF‖2

H

]
− E [1{F>x}〈DF ,D(‖DF‖−2

H )〉H ]

= E [1{F>x}F ] + E [q‖DF‖−2
H − 1]− E [1{F>x}〈DF ,D(‖DF‖−2

H )〉H ].

(ii) The terms E [|q‖DF‖−2
H − 1|] and E [|〈DF ,D(‖DF‖−2

H )〉H |] can be estimated
by a constant times

√
E(F 4)− 3.

(iii) Taking into account that

φ(x) = E [1{Z>x}Z ],

where Z ∼ N(0,1), it suffices to estimate the difference

E [1{F>x}F ]− E [1{Z>x}Z ],

which can be done by Stein’s method and Malliavin calculus.
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Example 1

Let q = 2 and

F =
∞∑

i=1

λi(X (ei)
2 − 1),

where {ei , i ≥ 1} is a complete orthonormal system in H and λi is
a decreasing sequence of positive numbers such that∑∞

i=1 λ
2
i <∞. Suppose E [F 2] = 1.

Then, if λN 6= 0 for some N > 4, we obtain

sup
x∈R
|pF (x)− φ(x)| ≤ CN,λN

√√√√ ∞∑
i=1

λ4
i .
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Example 2 (Brauer-Major theorem revisited)
Fix q ≥ 2 and consider the sequence

Vn =
1√
n

n∑
k=1

q∑
j=d

ajhj (Xk ), ad 6= 0,

where X = {Xk , k ∈ Z} is a centered Gaussian stationary sequence with unit
variance and covariance ρ(v).

Theorem (Hu-N.-Tindel-Xu ’14)
Suppose the spectral density of X , fρ, satisfies log(fρ) ∈ L1([−π, π]). Assume∑

v∈Z |ρ(v)|d <∞. Set σ2 := q!a2
q
∑

v∈Z ρ(v)q ∈ (0,∞). Then for any p ≥ 1,
there exists n0 such that

sup
n≥n0

E [‖DVn‖−p
H ] <∞. (2)

Therefore, if q = d and Fn = Vn/
√

E [V 2
n ], we have

sup
x∈R
|pFn (x)− φ(x)| ≤ c

√
E [F 4

n ]− 3.
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Sketch of the proof :

From the non-causal representation Xk =
∑∞

j=0 ψjwk−j , where
{wk , k ∈ Z} is a discrete Gaussian white noise, it follows that

‖DVn‖2
H ≥

1
n

n∑
m=1

 n∑
k=m

q∑
j=d

ajh′j (Xk )ψk−m

2

:= Bn.

Fix N and consider a block decomposition Bn =
∑N

i=1 Bi
n, where Bi

n is
the sum of n

N squares.

We use the estimate

B−
p
2

n ≤
N∏

i=1

(Bi
n)−

p
2N

and we can apply the Carbery-Wright inequality to control the
expectation of (Bi

n)−
p

2N if p
2N is small enough.
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Particular case :

Let BH be a fractional Brownian motion with Hurst parameter H ∈ (0,1) :

E(BH
t BH

s ) =
1
2

(
t2H + s2H − |t − s|2H

)
.

Set {Xk = BH
k − BH

k−1 , k ≥ 1}. In this case,

ρH(v) =
1
2

(|v + 1|2H + |v − 1|2H − 2|v |2H),

and the spectral density satisfies log(fρH ) ∈ L1([−π, π]).

As a consequence, we obtain the uniform convergence of densities to φ
for the sequence of Hermite variations Fn = Vn/E [V 2

n ], where

Vn =
1√
n

n∑
k=1

hq(nH∆k/nBH), q ≥ 2,

for 0 < H < 1− 1
2q , where ∆k/nBH = BH

k/n − BH
(k−1)/n.
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For q = 2 we have

Vn =
1√
n

n∑
k=1

[(nH∆k/nBH)2 − 1].

If H ∈ (0, 3
4 ) and Fn = Vn/E [V 2

n ] we have (Biermé-Bonami-León ’11)

sup
x∈R
|pFn (x)− φ(x)| ≤ c

√
E(F 4

n )− 3 ≤ cH


n−

1
2 if H ∈ (0, 5

8 )

n−
1
2 (log n)

3
2 if H = 5

8

n4H−3 if H ∈ ( 5
8 ,

3
4 )
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Generalizations

(i) One can show the uniform approximation of the mth derivative of pF by
the corresponding mth derivative of the Gaussian density φ(m) under the
stronger assumption E(‖DF‖−βH ) <∞ for some β > 6m + 6

(
bm

2 c ∨ 1
)
.

(ii) Consider a d-dimensional vector F , whose components are in a fixed
chaos, and such that E [(det ΓF )−p] <∞ for all p, where ΓF denotes the
Malliavin matrix of F . In this case for any multi-index β = (β1, . . . , βk ),
1 ≤ βi ≤ d , one can show

sup
x∈Rd

|∂βpF (x)− ∂βφd (x)| ≤ c
(
|C − I| 12 +

d∑
j=1

√
E [F 4

j ]− 3(E [F 2
j ])2

)
where C is the covariance matrix of F , φd is the standard d-dimensional
normal density, and ∂β = ∂k

∂xβ1 ···∂xβk
.
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Further developments

Rate of convergence in stable limit theorems when the limit is a mixture
of Gaussian distributions ?

Examples :

(i) Fluctuations of the error in approximation schemes for SDE.
(ii) Weighted Hermite variations of stationary Gaussian processes.

(iv) Central limit theorems for the second and third moments in space of
Brownian local time increments.

General results on the rate of convergence have been obtained by
Nourdin-N.-Peccati ’14 using an interpolation method and Malliavin
calculus.
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Example (Weighted quadratic variation of the fBm) :

Fn =
1√
n

n∑
k=1

f (BH
(k−1)/n)

[
(nH∆k/nBH)2 − 1

]
.

Theorem (Nourdin-N.-Peccati ’14)
Let H ∈ ( 1

4 ,
3
4 ) and f ∈ C4(R) such that |f (i)(x)| ≤ c1 exp(c2|x |β) for some

β < 2 and for i = 0, . . . ,4. Let

S =

√
σH

∫ 1

0
f 2(BH

s )ds,

with σ2
H =

∑∞
k=−∞ ρH(k)2. Suppose E [S−α] <∞ for some α > 2. Then,

|E [ϕ(Fn)]− E [ϕ(Sη)]| ≤ Cf ,H max
1≤i≤5

‖ϕ(i)‖∞ n−(|2H− 1
2 |∧|2H− 3

2 |),

where η is a N(0,1) random variable independent of BH .
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