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Cayley graphs

Let G be a �nitely-generated group, and let S be a �nite set of
generators.

Assume S is symmetric i.e. s ∈ S ⇒ s−1 ∈ S. We
de�ne the (left) Cayley graph of G with respect to S as the
graph having G as the vertex set, and the edges being
{(g, sg) : g ∈ G, s ∈ S}.

How does random walk on the Cayley
graph behave?

When G is in�nite there it is believed that the choice of
generators is not very important, and that �asymptotic�
properties of the random walk depend only on the group. This
has been proved in some cases, and has also supplied a number
of exciting open problems.

When G is the �nite group Sn, the choice of generators matters
dramatically. We are still very far from appreciating the
richness that hides in the choice of generators.
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Interacting particle systems (exclusion, interchange,
stirring)

The quantum Heisenberg ferromagnet

A model for high rank linear groups
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Arbitrary generators

Conjecture (Babai)

There exists a universal constant C such that the diameter of

any Cayley graph of Sn is smaller than nC .

Worse known example is S = {(12), (12 . . . n)} with
diameter ≈ n2.

Helfgott-Seress 2014: The diameter of any Cayley graph of
Sn is ≤ exp(C log4 n log log n).

It uses the classi�cation of
the �nite simple groups.

Babai-Seress 1992: If one of the generators has support
≤ 1

3n then the diameter is ≤ Cn8.

Helfgott-Seress-�uk: For random generators the diameter is
≤ Cn2. (the conjectured diameter in this case is ≈ n log n)
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Aside: Liebeck's theorem

The symmetric group is universal, any �nite group can be
embedded into it.

Liebeck's theorem (1983) states that these embedded
subgroups are usually quite small. Any subgroup of Sn
must either belong to a list of well understood examples
(e.g. Sk × Sn−k) or have size ≤ exp(C log2 n). It uses the
classi�cation of the �nite simple groups.

The classi�cation of the �nite simple groups takes it roots
in the Feit-Thompson theorem (1963). It was �rst
announced as completed by Daniel Gorenshtein (1983) and
again by Michael Ashbacher (2004). It is still being worked
on (closing minor gaps and simplifying). The proof spans
thousands of pages and the classi�cation itself is very
complicated with 16 in�nite families and 26 �sporadic�
groups. The Feit-Thomposon theorem was
computer-checked in 2012.
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Diaconis-Shahshahani (1981)

Let S be the set of all transpositions (a transposition is a
permutation that exchanges two elements and keeps the rest
�xed).

Let Pt be the measure on Sn given by performing t steps
of random walk on the Cayley graph of Sn with respect to S.
Let ε > 0. Then

limn→∞ d(P( 1
2
−ε)n logn, P∞) = 1.

limn→∞ d(P( 1
2

+ε)n logn, P∞) = 0.

where d(·, ·) is the total variation distance and where P∞ is the
uniform measure on Sn.

This pheomenon came to be called �sharp threshold� and has
attracted a lot of interest.

Generalizations for other conjugacy classes include Roichman
(1996), Larsen-Shalev (2008) and Berestycki-Schramm-Zeitouni
(2011).
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Representation theory

For any function f on Sn we can de�ne its �Fourier transform� f̂
and it still satis�es that f̂ ∗ g = f̂ · ĝ so the random walk
probabilities satisfy P̂t =

(
P̂
)t.

The catch is that P̂ are matrices
and the products and powers above are matrix products.

However, when f is a class function i.e. a function depending
only on the conjugacy class, then f̂ are all scalar matrices and
we are back to products of numbers, as in the commutative case.

This is behind the analysis of Diaconis and Shahshahani. The
actual values of f̂ go back to Frobenius (1901). More general
results were obtained by Murnaghan (1937) and Nakayama
(1940).
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Take home message

Representation theory is great if

your generating set is a class

function



Representation theory � some details

A representation of a group G is a homomorphism ρ : G→ U(V )
where V is some �nite dimensional complex vector space and U
is the group of unitary matrices over V .

It is irreducible if there
is no invariant subspace i.e. no V ′ ⊂ V such that ρ(g)V = V for
all g ∈ G. The Fourier transform is indexed by (isomorphism
classes of) irreducible representations and is de�ned by

f̂(ρ) :=
∑
g∈G

f(g)ρ(g) f : G→ C.

It has analogs of Parseval's formula and of the Fourier inversion
formula.
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The irreducible representations of Sn

Suppose σ1 ≥ σ2 ≥ · · ·σr and
∑
σi = n. We call σ a partition of

n and denote this by σ ` n. Partitions may be represented
graphically as Young diagrams.

[5, 1] = [3, 2, 1] = [2, 13] =

The irreducible representations of Sn are indexed by the
partitions of n. Unfortunately, the construction of the
irreducible representations is not so easy and we have no time to
discuss it in this lecture. Fortunately, one can go a long way
without ever seeing the de�nition.
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The stirring process

From now on we will only discuss Cayley graphs generated by
transpositions, with the set of transpositions not necessarily
complete.

The set of (i, j) such that the transposition of i and
j is in the generating set S can be thought of as edges of a
graph. We denote this graph by G.
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From now on we will only discuss Cayley graphs generated by
transpositions, with the set of transpositions not necessarily
complete. The set of (i, j) such that the transposition of i and
j is in the generating set S can be thought of as edges of a
graph. We denote this graph by G.

To relate the random walk on G to the random walk on the
Cayley graph Sn we pass to continuous time. De�ne the
(positive) laplacian ∆(g) = |S|(1− P ) (here ∆, P and 1 are
n!× n! matrices). The probability to move from σ to τ at time t
is now given by e−t∆(σ, τ) (here this is matrix exponentiation).

In continuous time X(i) is a continuous-time random walk on G
for all i (dependent, of course).
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Tóth's conjecture

Conjecture (Tóth, 1993)

The stirring process on the in�nite graph Z3 exhibits a phase

transition in time.

There exists some tc such that for any t < tc
there are only �nite cycles, while for any t > tc there exists

in�nite cycles.

The conjecture has its roots in the quantum Heisenberg
ferromagnet. Unfortunately we have no time to describe the
model or the relation between it and the stirring process.

What is known?

The fact that all cycles are �nite for t su�ciently small is
easy.

The existence of in�nite cycles in any t is open.

When the graph Z3 is replaced by a tree there are results of
Angel (2003) and Hammond (2013, preprint).
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Tóth's conjecture II

Conjecture (Tóth, 1993)

The stirring process on the in�nite graph Z3 exhibits a phase

transition in time. There exists some tc such that for any t < tc
there are only �nite cycles, while for any t > tc there exists

in�nite cycles.

The conjecture has a natural analog for �nite graphs. Take an
r × r × r cube (possibly identifying the sides cyclically) and
examine the cycle structure of the stirring process at time t.

At small time the largest cycle should be logarithmic.

At large time the largest cycle should be linear in the
volume n = r3.

The �nite version was investigated with the cube replaced with
the complete graph by Berestycki-Durrett (2006), Schramm
(2005), Berestycki-K and Alon-K.



Tóth's conjecture II

Conjecture (Tóth, 1993)

The stirring process on the in�nite graph Z3 exhibits a phase

transition in time. There exists some tc such that for any t < tc
there are only �nite cycles, while for any t > tc there exists

in�nite cycles.

The conjecture has a natural analog for �nite graphs. Take an
r × r × r cube (possibly identifying the sides cyclically) and
examine the cycle structure of the stirring process at time t.

At small time the largest cycle should be logarithmic.

At large time the largest cycle should be linear in the
volume n = r3.

The �nite version was investigated with the cube replaced with
the complete graph by Berestycki-Durrett (2006), Schramm
(2005), Berestycki-K and Alon-K.



Tóth's conjecture II

Conjecture (Tóth, 1993)

The stirring process on the in�nite graph Z3 exhibits a phase

transition in time. There exists some tc such that for any t < tc
there are only �nite cycles, while for any t > tc there exists

in�nite cycles.

The conjecture has a natural analog for �nite graphs. Take an
r × r × r cube (possibly identifying the sides cyclically) and
examine the cycle structure of the stirring process at time t.

At small time the largest cycle should be logarithmic.

At large time the largest cycle should be linear in the
volume n = r3.

The �nite version was investigated with the cube replaced with
the complete graph by Berestycki-Durrett (2006), Schramm
(2005), Berestycki-K and Alon-K.



Tóth's conjecture II

Conjecture (Tóth, 1993)

The stirring process on the in�nite graph Z3 exhibits a phase

transition in time. There exists some tc such that for any t < tc
there are only �nite cycles, while for any t > tc there exists

in�nite cycles.

The conjecture has a natural analog for �nite graphs. Take an
r × r × r cube (possibly identifying the sides cyclically) and
examine the cycle structure of the stirring process at time t.

At small time the largest cycle should be logarithmic.

At large time the largest cycle should be linear in the
volume n = r3.

The �nite version was investigated with the cube replaced with
the complete graph by Berestycki-Durrett (2006), Schramm
(2005), Berestycki-K and Alon-K.



An algebraically attackable version

Since we are interested in the probability that X(t) (the stirring
process at time t) has a large cycle, let us start with the
probability that it is one cycle of length n.

It turns out that this
has an exact formula.

Theorem (with Gil Alon, 2013)

Let G be any graph and let λ1, . . . , λn−1 be the non-zero

eigenvalues of the laplacian of continuous-time random walk on

G. Let qt be the probability that X(t) is a cycle of length n.
Then

qt =
1

n

n−1∏
i=1

(1− e−tλi)

(as t→∞, the right-hand side converges to 1
n , as it should. As

t→ 0 one gets a new proof of the matrix-tree theorem).
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Proof skeleton

Theorem

qt =
1

n

n−1∏
i=1

(1− e−tλi)

Denote by Q the set of permutations which are on cycle of
length n and write

qt = 〈Pt,1Q〉 = 〈P̂ t, 1̂Q〉

Using Parseval's identity.

Since 1Q is a class function, its
Fourier transform consists of scalar matrices. It is possible to
calculate it explicitly and it is non-zero only on the hook-shaped

diagrams [n− k, 1k] = . The hook-shaped diagrams are

very special: the dimension of the representation [n− k, 1k] is(
n−1
k

)
and ∆̂([n− k, 1k]) may be diagonalized exactly and the

eigenvalues are all sums of k-tuples of λi (Bacher, 1992).
Combining this with the calculation of 1̂Q gives the theorem.
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Tóth conjecture III

Theorem

qt =
1

n

n−1∏
i=1

(1− e−tλi)

The formula allows to �nd exactly the time where qt undergoes
a phase transition (from being very close to zero, to its eventual
value of 1

n).

For G being the r3 cube, it is not at constant time,
as one might assume naively from Tóth's conjecture, but at
t ≈ r2. In fact the event of having a big cycle is not typical,
because it imposes restrictions on all vertices. Thus we need to
�nd analogs for other cycle lengths.
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Failure of the purely algebraic approach

Theorem

qt =
1

n

n−1∏
i=1

(1− e−tλi)

Consider the event Q′ that the permutation is a cycle of length
n− 1 and one �xed point. Then 1̂Q′ may still be calculated, but
it is no longer supported on hook-shaped diagrams, but rather
on diagrams with two rows and one column.

Even a single box
outside the �rst hook changes the behaviour completely: the
relevant eigenvalues are no longer a function of the eigenvalues
of G. An example may be found even at n = 4, i.e. two
isospectral graphs with di�erent ∆̂( ) and hence with di�erent
probabilities for Q′.

Can we estimate ∆̂(ρ) analytically? At least for the relevant ρ
i.e. with two rows and one column?
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Comparison of eigenvalues

Theorem (Caputo-Liggett-Richthammer, 2010)

If ρ 6= [n] then λ1(ρ) ≥ λ1([n− 1, 1]).

(λ1(ρ) stands for the smallest eigenvalue of ∆̂(ρ)). In other
words, the smallest non-zero eigenvalue of ∆ is in the
representation [n− 1, 1].

This was known previous as Aldous'
conjecture and had many partial results (Bacher,
Handjani-Jungrais, Cesi, Dieker, and others).

Theorem (with Gil Alon, 2013)

If ρ has ≤ 1
3

√
n squares below the �rst row and σ has ≤ 1

3

√
n to

the right of the leftmost column then λ1(ρ) ≤ λ1(σ).

We also have unpublished results estimating λ1 for the speci�c
case that G is a cube and ρ has two rows and one column, with
Propp, Angel and Amir. All these results use a combination of
algebra and analysis.
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Take home message (speculative)

Representation theory is useful even

when the generating set is not a

class function, in combination with

analytic methods.



Thank you


