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Occupation times of conservative systems

{
ηt(x); t ≥ 0, x ∈ Z

}
: conservative, one-dimensional stochastic

system

η0: stationary state of density ρ

Occupation-time problem: scaling limit of∫ t

0

(
ηs(0)− ρ

)
ds.
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Occupation times of conservative systems

Theorem (Gonçalves, J. ’13)

For diffusive systems,

lim
n→∞

√
n

∫ tn2

0

(
ηs(0)− ρ

)
ds = Zt ,

where {Zt ; t ≥ 0} is a fractional Brownian motion of Hurst index H = 3/4.

Remark: The result also holds for WASEP, but the limit process is a singular
functional of the solution of the KPZ equation
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Stochastic Heat Equation

(SHE) ∂tX (t, x) = D∆X (t, x) +
√

2χDẆ(t, x)

Solutions “look like” Brownian motion of variance χ

D is the mobility, χ is the static compressibility of the system

Duhamel formula → mild solutions
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Conservative version: Ornstein-Uhlenbeck equation

(OUE) Yt = ∂xXt ; ∂tYt = D∆Yt +
√

2χD∂xẆt

Solutions “look like” white noise of variance χ
→ Yt is distribution-valued
→ white noise is the unique invariant measure

Natural scaling of diffusive conservative systems
→ Edwards-Wilkinson universality class
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Occupation times and singular functionals of OUE

Formally, we have

Zt =

∫ t

0
Ys(0)ds,

but the latter is not well defined. How do we define it?

→ näıve way: ιε approximation of the identity,

Zt = lim
ε→0

∫ t

0
Ys(ιε)ds =: Zεt

How to get convergence? → Energy condition:

(EC) E
[(
Zεt −Zδt

)2] ≤ Ct min{ε, δ}
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Occupation times and singular functionals of OUE

Theorem (Gonçalves, J. ’13)

EC+ stationarity =⇒ Zt well defined

EC is very easy for OUE → correlation computation

EC is far from trivial for SBE → Hairer’s Taylor expansion or GJ
second-order Boltzmann-Gibbs principle.

Does not depend on the choice of ιε

(EC) holds uniformly for conservative systems =⇒ convergence of
occupation times
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Quadratic fluctuations of conservative systems

Theorem (Assing’07)

For the simple, symmetric exclusion process,

At(f ) = lim
n→∞

1

n2

∫ tn2

0

∑
x∈Z

(
ηs(x)− ρ

)(
ηs(x + 1)− ρ

)
f
(
x
n

)
ds

exists for any smooth function f and it is equal to∫ t

0
: Y2

s : (f )ds.
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Quadratic fluctuations of conservative systems

Theorem (Gonçalves, J.’14)

Assing’s Theorem holds for general conservative systems.

At a formal level,

At(f ) =

∫ t

0

∫
R
Ys(x)2f (x)dxds,

but again this quadratic functional is not well defined

→ näıve interpretation:

Yt(x)2 = lim
ε→0
Yt ∗ ιε(x)2 − C(D,χ)

ε
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→ näıve interpretation:

Yt(x)2 = lim
ε→0
Yt ∗ ιε(x)2 − C(D,χ)

ε

01/08/2014 9 / 13



Energy condition:

E
[( ∫ t

0

∫
R
Ys ∗ (ιε − ιδ)(x)2f (x)dxds

)2]
≤ Ct min{ε, δ}

∫
f (x)2dx .

This energy condition implies the existence of At

Easy to verify for OUE, harder for SBE

Holds for conservative systems =⇒ convergence of quadratic
functionals
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How to square a distribution-valued process

Start with Yt , solution of OUE

Define Qt(x , y) = Yt(x)⊗ Yt(y)

→ well defined, two-dimensional distribution-valued process

Qt solves
∂tQt = D∆Qt + Ṁt ,

where Ṁt is a noise satisfying

E
[( ∫ t

0

∫
R2

Fs(x , y)dMs

)2]
= 2Dχ

∫ t

0

∫
R2

‖∇Fs‖2dxdyds.
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How to square a distribution-valued process

For g : R2 → R regular enough, solve the Poisson equation

∆ψg = g

We have the energy estimate

E
[( ∫ t

0
Qs(g)ds

)2]
≤ C

(
‖ψg‖2 + t‖∇ψg‖2

)
This estimate is all we need to make sense of the diagonal process

At(f ) =

∫ t

0

∫
R
Qs(x , x)f ′(x)dxds.

for regular functions f : R→ R.
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How to square a distribution-valued process

Fine properties of At :

At small scales, it looks like fractional Brownian motion:

ε−3/4Aεt(f )
ε→0−−→ c‖f ′‖2Zt

At large scales, it looks like standard Brownian motion

n−1/2Ant(f )
n→∞−−−→ c〈f , (−∆)1/4f 〉Bt
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