Near-critical percolation and minimal spanning tree in the plane

Christophe Garban ENS Lyon, CNRS

joint work with Gábor Pete and Oded Schramm

 37^{th} SPA, Buenos Aires, July 2014

Minimal Spanning Tree (MST)

Minimal Spanning Tree (MST)

MAIN QUESTION: scaling limit of the planar MST ?

Minimal Spanning Tree on \mathbb{Z}^2

Minimal Spanning Tree on \mathbb{Z}^2

Minimal Spanning Tree on \mathbb{Z}^2

MST on \mathbb{Z}^2 seen from further away ...

Scaling limit of percolation

Theorem (Smirnov, 2001)

Critical site percolation on $\eta \mathbb{T}$ is asymptotically (as $\eta \searrow 0$) conformally invariant.

Convergence to SLE_6

 $\omega_p, \ p = 0.16666$

 $\omega_{p}, \ p = 0.33333$

 $\omega_p, \ p = 0.50000$

 $\omega_p, p = 0.66666$

 $\omega_p, p = 0.83333$

Definition (Standard coupling) For all $e \in \mathbb{Z}^2$, sample $u_e \sim \mathcal{U}([0, 1])$. For any fixed $p \in [0, 1]$, let $\omega_p(e) := 1_{u_e \leq p}$ As such $\omega_p \sim \mathbb{P}_p$ for all p and $\omega_p \leq \omega_{p'}$ if $p \leq p'$

"Abrubt" phase transition

Seen from far away it looks as follows:

Sub-critical $(p < p_c)$

Critical (p_c)

Super-critical $(p > p_c)$

Theorem (Kesten, 1980)

$$p_c(\mathbb{Z}^2)=\frac{1}{2}$$
						Т																						Т	
					-	-			_									_		_								-	
		-	+	-	+	-			_									_	_	_		-	-	-			-	+	
		-	+	+	+	-	-		_	-					-	-	-	_	_	-		-	-	-			-	+	
		-	+	+	+	+	-		_	-					-	-	-	-	-	-		-	-	-		-	-	+	
		-	+	+	+	-	-		_	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-		_	-	-	
		-	-	+	+	-	-			_	-	-	-	-		_		_	_	_		_					-	-	-
		-	-	-	+	-	-	_			-	-	-	-		_						_	_	_			-	-	_
		_	-	-	-	-	-	_		_	<u> </u>	-	-	-	_	_	_			_	_	_	_	_	_	_	_	_	_
		_	_	_	_	_	_	_				_	_	_	_	_	_				_	_				_	_	_	_
		_	_	_	_	_							_			_						_					_	_	_
																													_
			Т	Т	Т	Т																						Т	
						Т																						Т	
					1	1																						-	
			-		-	-			_									_	_	_								-	
		-	+	+	+	-	-		_	-						-		-	-	-							-	+	
-	\vdash	-	+	+	+	+	-		_	-						-		-	-	-		-	-	-			-	-	
		-	-	+	+	-	-		_	-					-	-		-	-	-		-					-	-	-
	\vdash	-	-	+	+	-	-			-	-	-	-	-		_		-	-	-		_	-	-			-	-	_
																_													

 $\omega_p, \ p = 0.16666$

 $\omega_{p}, \ p = 0.33333$

 $\omega_{p},\ p=0.50000$

 $\omega_p, p = 0.66666$

 $\omega_{p}, \, p = 0.83333$

Minimal Spanning Tree in the plane

Theorem (Aizenman, Burchard, Newman, Wilson, 1999)

The Minimal Spanning Tree on $\eta \mathbb{Z}^2$ is **tight** as $\eta \to 0$ (for a metric on the space of planar spanning trees inspired by the Hausdorff distance)

- \blacktriangleright On the triangular lattice, we will prove the convergence as $\eta \rightarrow 0$
- This requires a detailed analysis of near-critical percolation:

- A) 2010, Pivotal, cluster and interface measures for critical planar percolation, G., Pete, Schramm, J.A.M.S. 2013.
- B) 2013, The scaling limits of near-critical and dynamical percolation, G., Pete, Schramm, arXiv:1305.5526
- C) 2013, The scaling limits of the Minimal Spanning Tree and Invasion Percolation in the plane, G., Pete, Schramm, Arxiv:1309.0269

Ising model near its critical point:

 $T = T_c$

Near-critical percolation (mean-field case)

► Erdos-Renyi random graphs G(n, p), p ∈ [0, 1] (p-percolation on the complete graph Δ_n).

► It is well-known that "everything happens" in the near-critical window

$$p = rac{1}{n} + \lambda rac{1}{n^{4/3}}$$

where λ is the near-critical parameter

C. Garban

A quotation and a Theorem

Alon and Spencer (2002):

"With $\lambda = -10^6$, say we have feudalism. Many components (castles) are each vying to be the largest. As λ increases the components increase in size and a few large components (nations) emerge. An already large France has much better chances of becoming larger than a smaller Andorra. The largest components tend to merge and by $\lambda = 10^6$ it is very likely that a giant component, the Roman Empire, has emerged. With high probability this component is nevermore challenged for supremacy but continues absorbing smaller components until full connectivity – One World – is achieved."

Theorem (Addario-Berry, Broutin, Goldschmidt, Miermont, 2013)

Let MST_n be the Minimal Spanning Tree on Δ_n

$$(\mathsf{MST}_n, \frac{1}{n^{1/3}} d_{graph}) \xrightarrow{law} \mathsf{MST}_{\infty}$$

where the convergence in law holds under the Gromov-Hausdorff topology.

Near-critical percolation in the plane

Site percolation on the triangular lattice $\ensuremath{\mathbb{T}}$:

$$p < 1/2$$
 $p = 1/2$ $p > 1/2$

Renormalise the lattice as follows: $\eta \mathbb{T}$ where η corresponds to the mesh of the rescaled lattice.

 $\eta
ightarrow$ 0 ??

looking for the right ZOOMING

We shall now zoom around p_c as follows:

$$p = p_c + \frac{\lambda}{r(\eta)}$$

looking for the right ZOOMING

We shall now zoom around p_c as follows:

looking for the right ZOOMING

We shall now zoom around p_c as follows:

$$p = p_c + \frac{\lambda}{\lambda} r(\eta)$$

Theorem (Kesten, 1987) The right zooming factor is given by

$$r(\eta) := \eta^2 \alpha_4(\eta, 1)^{-1}$$

 $= \eta^{3/4+o(1)}$

Heuristics behind these scalings

 $p_c + \lambda \eta^{3/4 + o(1)}$

Heuristics behind these scalings

Scaling limit ?

Definition

Define $\omega_{\eta}^{nc}(\lambda)$ to be the percolation configuration on $\eta \mathbb{T}$ of parameter

$$p = p_c + \lambda r(\eta)$$

For all $\eta > 0$, we define this way a monotone càdlàg process

$$\lambda \in \mathbb{R} \mapsto \omega_{\eta}^{\mathsf{nc}}(\lambda) \in \{0,1\}^{\eta \mathbb{T}}$$

Question

Does the process $\lambda \in \mathbb{R} \mapsto \omega_{\eta}^{\mathsf{nc}}(\lambda)$ converge (in law) as $\eta \searrow 0$ to a limiting process

 $\lambda \mapsto \omega_{\infty}^{\mathsf{nc}}(\lambda)$?

For which topology ?? Find an appropriate Polish space (E, d) whose points ω ∈ E are naturally identified to percolation configurations.

This configuration on $\eta \mathbb{T}$ may be coded by the distribution

$$X_{\eta} := \eta \sum_{x \in \eta \mathbb{T}} \sigma_x \, \delta_x$$

 $\{X_{\eta}\}_{\eta}$ is tight in $\mathcal{H}^{-1-\varepsilon}$ and converge to the Gaussian white noise on \mathbb{R}^2 .

This configuration on $\eta \mathbb{T}$ may be coded by the distribution

$$X_{\eta} := \eta \sum_{x \in \eta \mathbb{T}} \sigma_x \, \delta_x$$

 $\{X_{\eta}\}_{\eta}$ is tight in $\mathcal{H}^{-1-\varepsilon}$ and converge to the Gaussian white noise on \mathbb{R}^{2} .

Theorem (Benjamini, Kalai, Schramm, 1999)

This setup is **NOT** appropriate to handle percolation: natural observables for percolation are highly discontinuous under the topology induced by $\|\cdot\|_{\mathcal{H}^{-1-\varepsilon}}$ and in fact are not even measurable in the limit.

- 1 Aizenman 1998 and Aizenman, Burchard 1999.
- 2 Camia, Newman 2006.
- **3** The topological space $(\mathcal{H}, \mathcal{T})$ of Schramm-Smirnov, 2011

The Schramm-Smirnov space \mathscr{H}

- Let (Q, d_Q) be the space of all **quads**.
- On might consider the space $\{0,1\}^{\mathcal{Q}}$

The Schramm-Smirnov space \mathscr{H}

- Let (Q, d_Q) be the space of all **quads**.
- On might consider the space $\{0,1\}^{Q}$
- In fact, one considers instead ℋ ⊂ {0,1}^Q which preserves the partial order on Q : Q > Q'
- Schramm-Smirnov prove that ℋ can be endowed with a natural topology T (≈ Fell's topology) for which, (ℋ, T) is compact, Hausdorff and metrizable

Definition $(\lambda = 0)$

For each mesh $\eta > 0$, one may view $\omega_{\eta} \sim \mathbb{P}_{\eta}$ as a random point in the compact space $(\mathcal{H}, d_{\mathcal{H}})$.

Theorem (Smirnov 2001, CN 2006, GPS 2013)

 $\omega_\eta \sim \mathbb{P}_\eta$ converges in law in $(\mathscr{H}, d_{\mathscr{H}})$ to a continuum percolation

 $\omega_{\infty} \sim \mathbb{P}_{\infty}$

 \Rightarrow this handles the case $\lambda = 0$

Recall:

Question

Let $\lambda > 0$ be fixed.

$$p = p_c + \frac{\lambda}{\lambda} r(\eta)$$

Does $\omega_{\eta}^{nc}(\lambda)$ converge in law in \mathscr{H} to a limiting object ?

Main results

Theorem (G., Pete, Schramm 2013) Fix $\lambda \in \mathbb{R}$.

$$\omega_{\eta}^{\mathsf{nc}}(\lambda) \xrightarrow{(d)} \omega_{\infty}^{\mathsf{nc}}(\lambda)$$

The convergence in law holds in the space $(\mathcal{H}, d_{\mathcal{H}})$.

Theorem (G., Pete, Schramm 2013)

The càdlàg process $\lambda \mapsto \omega_{\eta}^{nc}(\lambda)$ converges in law to $\lambda \mapsto \omega_{\infty}^{nc}(\lambda)$ for the **Skorohod topology** on \mathcal{H} .

Main results

Theorem (G., Pete, Schramm 2013) Fix $\lambda \in \mathbb{R}$.

$$\omega_{\eta}^{\mathsf{nc}}(\lambda) \xrightarrow{(d)} \omega_{\infty}^{\mathsf{nc}}(\lambda)$$

The convergence in law holds in the space $(\mathcal{H}, d_{\mathcal{H}})$.

Theorem (G., Pete, Schramm 2013)

The càdlàg process $\lambda \mapsto \omega_{\eta}^{nc}(\lambda)$ converges in law to $\lambda \mapsto \omega_{\infty}^{nc}(\lambda)$ for the **Skorohod topology** on \mathcal{H} .

Theorem (Nolin, Werner 2007)

Fix $\lambda \neq 0$. All the subsequential scaling limits of $\omega_{\eta_k}^{nc}(\lambda) \xrightarrow{(d)} \tilde{\omega}_{\infty}(\lambda)$ are such that their interfaces are singular w.r.t the SLE₆ curves !

Two possible approaches

Recall the case $\lambda = 0$ (critical case). One has $\omega_{\eta} \sim \mathbb{P}_{\eta}$ and we wish to prove a scaling limit result.

- 🕨 tightness, 🗸
- uniqueness ??
- main ingredient for uniqueness: Cardy/Smirnov's formula !

Two possible approaches

Recall the case $\lambda = 0$ (critical case). One has $\omega_{\eta} \sim \mathbb{P}_{\eta}$ and we wish to prove a scaling limit result.

- 🕨 tightness, 🗸
- uniqueness ??
- main ingredient for uniqueness: Cardy/Smirnov's formula !
- **1** This suggests the following approach to handle the case $\lambda \neq 0$: for all $p \neq p_c(\mathbb{T}) = 1/2$, find a massive harmonic observable F_p :

 $\Delta F_p(x) \approx m(p)F_p(x)$

The "mass" m(p) should then scale as $|p - p_c|^{8/3}$.

Two possible approaches

Recall the case $\lambda = 0$ (critical case). One has $\omega_{\eta} \sim \mathbb{P}_{\eta}$ and we wish to prove a scaling limit result.

- ▶ tightness, 🗸
- uniqueness ??
- main ingredient for uniqueness: Cardy/Smirnov's formula !
- **1** This suggests the following approach to handle the case $\lambda \neq 0$: for all $p \neq p_c(\mathbb{T}) = 1/2$, find a massive harmonic observable F_p :

 $\Delta F_p(x) \approx m(p)F_p(x)$

The "mass" m(p) should then scale as $|p - p_c|^{8/3}$.

2 A "perturbative" approach.

Naïve Strategy to build $\lambda \mapsto \omega_{\infty}^{nc}(\lambda)$

Naïve Strategy to build $\lambda \mapsto \omega_{\infty}^{nc}(\lambda)$

Naïve Strategy to build $\lambda \mapsto \omega_{\infty}^{nc}(\lambda)$

Naïve Strategy to build $\lambda \mapsto \omega_{\infty}^{nc}(\lambda)$

Naïve Strategy to build $\lambda \mapsto \omega_{\infty}^{nc}(\lambda)$

Difficulty 1: "too many" pivotal points

The mass measure μ is highly degenerate (∞)

 $\Rightarrow \text{ introduce a cut-off } \varepsilon > 0 \text{ and try to define } \mu^{\varepsilon}, \\ \text{a mass measure on the pivotal points } \mathcal{P}^{\varepsilon}.$

Difficulty 1: "too many" pivotal points

The mass measure μ is highly degenerate (∞)

 \Rightarrow introduce a cut-off $\varepsilon > 0$ and try to define μ^{ε} , a mass measure on the pivotal points $\mathcal{P}^{\varepsilon}$.

Theorem (GPS 2013)

There is a measurable map μ^{ε} from \mathscr{H} to the space of locally finite measures such that

$$(\omega_{\eta}, \mu^{\varepsilon}(\omega_{\eta})) \xrightarrow{(d)} (\omega_{\infty}, \mu^{\varepsilon}(\omega_{\infty}))$$

as $\eta \searrow 0$

Difficulty 2: Stability question as $\varepsilon \to 0$

 $\lambda \mapsto \omega_{\eta}^{\mathsf{nc},\varepsilon}(\lambda) \Rightarrow \mathsf{STABILITY} \text{ problem as } \varepsilon \searrow 0 ?$

Theorem (GPS 2013)

There is a function $\psi : [0,1] \to [0,1]$, with $\psi(0) = 0$ so that unif. in $0 < \eta < \varepsilon$,

 $\mathbb{E}\big[d_{\mathsf{Sk}}(\omega_{\eta}(\cdot),\omega_{\eta}^{\varepsilon}(\cdot))\big] \leq \psi(\varepsilon)$

Scaling invariance of our limiting object

Theorem

Near-critical percolation behaves as follows under the scaling $z \mapsto \alpha \cdot z$:

$$\left(\lambda\mapsto {\color{black}{lpha}}\cdot\omega_\infty^{\sf nc}(\lambda)
ight)\stackrel{(d)}{=}\left(\lambda\mapsto \omega_\infty^{\sf nc}({\color{black}{lpha}}^{-3/4}\lambda)
ight)$$

1 Conformal covariance

Some other properties

- 1 Conformal covariance
- 2 Obtain scaling limits of
 - (i) Invasion percolation
 - (ii) Gradient percolation
 - (iii) Dynamical percolation

Some other properties

- 1 Conformal covariance
- 2 Obtain scaling limits of
 - (i) Invasion percolation
 - (ii) Gradient percolation
 - (iii) Dynamical percolation
- 3 Two natural Markov processes on ${\mathscr H}$

Theorem

- $t \mapsto \omega_{\infty}(t)$ is a reversible Markov process for the measure \mathbb{P}_{∞} .
- $\lambda \mapsto \omega_{\infty}^{nc}(\lambda)$ is a non-reversible time-homogeneous Markov process.

- 1 Conformal covariance
- 2 Obtain scaling limits of
 - (i) Invasion percolation
 - (ii) Gradient percolation
 - (iii) Dynamical percolation
- 3 Two natural Markov processes on ${\mathscr H}$

Theorem

- $t \mapsto \omega_{\infty}(t)$ is a reversible Markov process for the measure \mathbb{P}_{∞} .
- $\lambda \mapsto \omega_{\infty}^{\mathsf{nc}}(\lambda)$ is a non-reversible time-homogeneous Markov process.
- ▶ !! These are NOT Feller processes.

Main theorem for the scaling limit of the MST

Theorem (GPS 2013)

- 1 On the rescaled triangular lattice $\eta \mathbb{T}$, MST_{η} converges in law to MST_{∞} (under the topology used in ABNW 1999)
- **2** The UNIVERSALITY of this limit only requires the universality of the critical slice of percolation

Very rough idea of proof

Take
$$\lambda \approx -\infty$$

Very rough idea of proof

Take $\lambda \approx -\infty$ Take ϵ small

Very rough idea of proof

Take $\lambda \approx -\infty$ Take ϵ small

Take $\lambda \approx -\infty$ Take ϵ small Take $\lambda' \approx \infty$ small $|\lambda|^{-4/3}$

Theorem (GPS 2013)

- **1** Rotational invariance
- **2** The Hausdorff dimension of the branches a.s. lies in $(1 + \varepsilon, 7/4 \varepsilon)$
- 3 There are no points of degree ≥ 5
- 4 There are no pinching points

Some open questions

- \blacktriangleright Show that MST_∞ is not conformally-invariant
- ► Find the Hausdorff dimension *d* of branches (*d* ??)
- Show that $MST_{\infty} \neq SLE_8$!!!

Some open questions

- \blacktriangleright Show that MST_∞ is not conformally-invariant
- ► Find the Hausdorff dimension *d* of branches (*d* ??)
- Show that $MST_{\infty} \neq SLE_8$!!!

