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Minimal Spanning Tree (MST)
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Minimal Spanning Tree (MST)
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MAIN QUESTION: scaling limit of the planar MST 7
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Minimal Spanning Tree on Z?2
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Minimal Spanning Tree on Z?2
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MST on Z? seen from further away ...
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Scaling limit of the uniform spanning Tree

@E‘ SLE, process

with kK = 8

Theorem by

% IT_‘:—'_'”F - Lawler Schramm
[ %%%:% ..o Werner (2003)
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Scaling limit of percolation

Theorem (Smirnov, 2001)

Critical site percolation on n'T is asymptotically (asn ™, 0) conformally
invariant.

Convergence to SLEg
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A “greedy” algorithm to compute the MST

Kruskal's algorithm:
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Kruskal's algorithm on Z?
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Percolation Model on Z?2

wp, p = 0.33333
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Percolation Model on Z?2
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Monotone coupling in percolation

0.88 0.12 0.55
0.21 .02 0.88 0.11
0.22 0.42 0.28
81 0.62 0.17 27
0.71 0.97 0.31
0.58 0.18 0.32 49
0.28 0.71 0.21
C. Garban

Definition (Standard coupling)

For all e € Z2, sample ue ~ U([0,1]).

For any fixed p € [0,1], let
wp(e) = lu.<p
As such wp ~ IP, for all p and

wp <wy fp<p

Near-critical percolation in the plane
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“Abrubt” phase transition

Seen from far away it looks as follows:

Sub-critical (p < pe) Critical (p.) Super-critical (p > p.)

4”"’\-’
Ye p¢

¢ 2 N
¢ ¢~ S
’.&

t"
072 € v & ®

Theorem (Kesten, 1980)

1
CZQZ*
pe(Z7) = 5
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Kruskal's algorithm on Z?
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Kruskal's algorithm on Z?

wp, p = 0.33333
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Kruskal's algorithm on Z?

wp, p = 0.50000
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Minimal Spanning Tree in the plane

Theorem (Aizenman, Burchard, Newman,
Wilson, 1999)

The Minimal Spanning Tree on nZ? is tight
asn — 0 (for a metric on the space of planar

spanning trees inspired by the Hausdorff
distance)

y

» On the triangular lattice, we will prove the convergence as 7 — 0

» This requires a detailed analysis of near-critical percolation:
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Near-critical geometry in general

Ising model near its critical point:
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Near-critical percolation (mean-field case)

» Erdos-Renyi random graphs G(n, p), p € [0, 1] (p-percolation on the
complete graph A,).

Oo;) 08000 Q O
OOQ

o%%ooo .
060
0%o
p<l/n p=1/n p>1/n
=< logn = n?/3 O(n)

» |t is well-known that “everything happens” in the near-critical window

1 1
P= T

where \ is the near-critical parameter

C. Garban Near-critical percolation in the plane 18 / 39



A quotation and a Theorem

Alon and Spencer (2002):

“ With A\ = —10°, say we have feudalism. Many components
(castles) are each vying to be the largest. As )\ increases the
components increase in size and a few large components (nations)
emerge. An already large France has much better chances of becoming
larger than a smaller Andorra. The largest components tend to merge
and by \ = 10° it is very likely that a giant component, the Roman
Empire, has emerged. With high probability this component is
nevermore challenged for supremacy but continues absorbing smaller
components until full connectivity — One World — is achieved. "

Theorem (Addario-Berry, Broutin, Goldschmidt, Miermont, 2013)

Let MST,, be the Minimal Spanning Tree on A,

(MST , — dgraph) % MST o

ni/3

where the convergence in law holds under the Gromov-Hausdorff topology.




Near-critical percolation in the plane

Site percolation on the triangular lattice T :

“feudalism” “Roman empire”
p<1/2 p=1/2 p>1/2

Renormalise the lattice as follows: 1T where 1) corresponds to the mesh of
the rescaled lattice.



looking for the right ZOOMING

We shall now zoom around p. as follows:

p=pc+r(n)]
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looking for the right ZOOMING

We shall now zoom around p. as follows:

p=pc+r(n)]

Theorem (Kesten, 1987)

The right zooming factor is
A<0 A=0 N> 0 given by

0 r(n) = nlas(n,1)*
773/4+o(1)
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Heuristics behind these scalings

p=1/n+xn"*3 versus pe + An3/4+eld)

C
1 &)

O(n2/3) O(n2/3)
-~
0(77,4/3)
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Heuristics behind these scalings

p=1/n+xn"*3 versus pe + An3/4+eld)

C
1 &)

O(n2/3) O(n2/3)
v
O(n*?) = g 3/4+o(1)
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Scaling limit 7

Definition

Define wp©()) to be the percolation configuration on nT of parameter

|p=pc+\r(n)]

For all > 0, we define this way a monotone cadlag process

A ER— wpe(A) € {0,1}7"

Question

Does the process \ € R w)°(\) converge (in law) as n ™\, 0 to a limiting

process
A= wiS(N) ?

> For which topology 77 Find an appropriate Polish space (E, d) whose
points w € E are naturally identified to percolation configurations.



The first natural idea which comes to mind

This configuration on nT may be coded by
the distribution

Xy = Z Ox Ox

xenT

{X,} is tight in '~ and converge to the Gaussian white noise on
R,
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The first natural idea which comes to mind

This configuration on nT may be coded by
the distribution

Xy = Z Ox Ox

xenT

{X,} is tight in '~ and converge to the Gaussian white noise on
R,

Theorem (Benjamini, Kalai, Schramm, 1999)

This setup is NOT appropriate to handle percolation: natural observables
for percolation are highly discontinuous under the topology induced by
| - [[3y—1-= and in fact are not even measurable in the limit.
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Some other historical approaches

Aizenman 1998 and Aizenman, Burchard 1999.
Camia, Newman 2006.

The topological space (7, T) of Schramm-Smirnov, 2011
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The Schramm-Smirnov space 57

7

> Let (Q, dg) be the space of all quads.
» On might consider the space {0,1}<



The Schramm-Smirnov space 57

v

v

v

v

7

Let (Q, dg) be the space of all quads.
On might consider the space {0,1}<

In fact, one considers instead .77 C {0,1}< which preserves the partial

orderon Q: Q > Q'

Schramm-Smirnov prove that # can be endowed with a natural topology T
(= Fell's topology) for which, (2, T) is compact, Hausdorff and metrizable



The “critical slice” wy, ~ Py

Definition (A = 0)
For each mesh 7 > 0, one may view w, ~ P, as a random point in the
compact space (S, d ).

Theorem (Smirnov 2001, CN 2006, GPS 2013)

wy ~ P, converges in law in (¢, d ) to a continuum percolation

Weo ~ P

= this handles the case A\ =0
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Away from the “critical slice”

Recall:

Question
Let A > 0 be fixed.

p=pc+Ar(n)

Does wy©()) converge in law in 7 to a limiting object ?
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Main results

Theorem (G., Pete, Schramm 2013)
Fix A € R.
wre(n) 12 wre(n)

The convergence in law holds in the space (€, d ).

Theorem (G., Pete, Schramm 2013)

The cadlag process A — wy(A) converges in law to A — wiS(\) for the
Skorohod topology on 7.
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Main results

Theorem (G., Pete, Schramm 2013)

Fix A € R.
wre(n) 12 wre(n)

n 00

The convergence in law holds in the space (€, d ).

Theorem (G., Pete, Schramm 2013)

The cadlag process A — wy(A) converges in law to A — wiS(\) for the
Skorohod topology on 7.

Theorem (Nolin, Werner 2007)

Fix X # 0. All the subsequential scaling limits of wpZ()) ) Doo(A) are such

that their interfaces are singular w.r.t the SLEg curves !

v
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Two possible approaches

Recall the case A = 0 (critical case). One has w;, ~ I, and we wish to
prove a scaling limit result.

» tightness, v/
» uniqueness 77

» main ingredient for uniqueness: Cardy/Smirnov’s formula !
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Two possible approaches

Recall the case A = 0 (critical case). One has w;, ~ I, and we wish to
prove a scaling limit result.

» tightness, v/
» uniqueness 77

» main ingredient for uniqueness: Cardy/Smirnov’s formula !

This suggests the following approach to handle the case A # 0: for all
p # pc(T) = 1/2, find a massive harmonic observable F:

AFy(x) ~ m(p)Fy(x)

The “mass’ m(p) should then scale as |p — pc[8/3.
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Two possible approaches

Recall the case A = 0 (critical case). One has w;, ~ I, and we wish to
prove a scaling limit result.

» tightness, v/
» uniqueness 77

» main ingredient for uniqueness: Cardy/Smirnov’s formula !

This suggests the following approach to handle the case A # 0: for all
p # pc(T) = 1/2, find a massive harmonic observable F:

AFy(x) ~ m(p)Fy(x)

The “mass’ m(p) should then scale as |p — pc[8/3.

A “perturbative” approach.
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Naive Strategy to build A — w2S(\)

R |
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Difficulty 1: “too many" pivotal points

The mass measure p is highly degenerate (oc0)

@
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a mass measure on the pivotal points P¢.

3
= introduce a cut-off ¢ > 0 and try to define u°, @




Difficulty 1: “too many" pivotal points

The mass measure p is highly degenerate (oc0)

a mass measure on the pivotal points P¢.

> &
= introduce a cut-off ¢ > 0 and try to define u°, @

Theorem (GPS 2013)

There is a measurable map p¢ from Q,
A to the space of locally finite
measures such that

(@i £5(n)) "2 (oo, 15 (wo0))

asn ™\, 0




Difficulty 2: Stability question as & — 0

A+ wp“(A) = STABILITY problem as e \, 0 ?

1’7)\1\\\

!
,
\
\
\
.
\\
r\
"y, A2
.
.

Theorem (GPS 2013)

There is a function v : [0,1] — [0, 1], with 1(0) = 0 so that unif. in
0<n<e,

E[dsi(wn(-), wi(-))] < ¥(e)
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Scaling invariance of our limiting object

Theorem

Near-critical percolation behaves as follows under the scaling z — « - z:

(A= a-w) & (A~ wisa4N)

X23/4

>~y

C. Garban
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Some other properties

Conformal covariance
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Some other properties

Conformal covariance
Obtain scaling limits of

(i) Invasion percolation
(ii) Gradient percolation
(iii) Dynamical percolation
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Some other properties

Conformal covariance
Obtain scaling limits of

(i) Invasion percolation
(ii) Gradient percolation
(iii) Dynamical percolation

Two natural Markov processes on 7

Theorem
> t— weolt) is a reversible Markov process for the measure P.

> X\ — wiS(N) is a non-reversible time-homogeneous Markov process.
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Some other properties

Conformal covariance
Obtain scaling limits of

(i) Invasion percolation
(ii) Gradient percolation
(iii) Dynamical percolation

Two natural Markov processes on 7

Theorem
> t— weolt) is a reversible Markov process for the measure P.
> X\ — wiS(N) is a non-reversible time-homogeneous Markov process.

» !l These are NOT Feller processes.
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Main theorem for the scaling limit of the MST

Theorem (GPS 2013)

On the rescaled triangular lattice nT, MST,, converges in law to
MST (under the topology used in ABNW 1999)

The UNIVERSALITY of this limit only requires the universality of the
critical slice of percolation

v
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Very rough idea of proof

Take A ~ —oc0
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Very rough idea of proof

Take A =~ —oc0
Take € small
Take N ~ oo small

‘M—ZL/B
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Very rough idea of proof

Take A =~ —oc0
Take € small
Take N ~ oo small




A.s. properties of MST

Theorem (GPS 2013)

Rotational invariance

The Hausdorff dimension
of the branches a.s. lies
in(1+¢e,7/4—c¢)

There are no points of
degree > 5

There are no pinching
points
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Some open questions

» Show that MST, is not conformally-invariant
» Find the Hausdorff dimension d of branches (d 77)
» Show that MST ., # SLEg !!!
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Some open questions

» Show that MST, is not conformally-invariant
» Find the Hausdorff dimension d of branches (d 77)
» Show that MST ., # SLEg !!!
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Back to the MST in the plane
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Back to the MST in the plane

u(e) = uy Ay
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