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INTRODUCTION

Basic question [Wigner]: What can be said about the statistical

properties of the eigenvalues of a large random matrix? Do some

universal patterns emerge?

H =


h11 h12 . . . h1N
h21 h22 . . . h2N

... ... ...
hN1 hN2 . . . hNN

 =⇒ (λ1, λ2, . . . , λN) eigenvalues?

N = size of the matrix, will go to infinity.

Analogy: Central limit theorem: 1√
N

(X1 +X2 + . . .+XN) ∼ N(0, σ2)
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Wigner Ensemble:

H = (hjk)1≤j,k≤N complex hermitian N ×N matrix

hjk = h̄kj (for j < k) are complex and hkk are real independent

random variables with normalization

Ehjk = 0, E|hjk|2 =
1

N
.

The eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λN are of order one: (on average)

E
1

N

∑
i

λ2
i = E

1

N
TrH2 =

1

N

∑
ij

E|hij|2 = 1

Complex hermitian can be replaced with real symmetric or quater-

nion self-dual.

If hij is Gaussian, then GUE, GOE, GSE.
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Wigner’s observations (holds for all symmetry classes)

i) Density of eigenvalues:

Wigner semicircle law

−2 2

ρ
2π

1
(x) =           4 − x 2

ii) Level repulsion: Wigner surmise (in the bulk and for GOE)

P
(
N(λi+1 − λi) = s+ ds

)
≈
πs

2
exp

(
−
π

4
s2
)

ds

Guessed by a 2x2 matrix calculation
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SINE KERNEL FOR CORRELATION FUNCTIONS

Probability density of the eigenvalues: p(x1, x2, . . . , xN)

The k-point correlation function is given by

p
(k)
N (x1, x2, . . . , xk) :=

∫
RN−k

p(x1, . . . xk, xk+1, . . . , xN)dxk+1 . . .dxN

Special case: k = 1 (density)

%N(x) := p
(1)
N (x) =

∫
RN−1

p(x, x2, . . . , xN)dx2 . . .dxN
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Rescaled correlation functions at energy E

p
(k)
E (x) :=

1

[%(E)]k
p

(k)
N

(
E +

x1

N%(E)
, E +

x2

N%(E)
, . . . , E +

xk
N%(E)

)

Rescales the gap λi+1 − λi to O(1).
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Local level correlation statistics for GUE [Gaudin, Dyson, Mehta]

k-point correlation functions are given by k × k determinants:

lim
N→∞

p
(k)
E (x) = det

{
S(xi − xj)

}k
i,j=1

, S(x) :=
sinπx

πx

The limit is independent of E as long as |E| < 2 (bulk spectrum)

Gap distribution can be obtained from correlation functions by the

exclusion-inclusion formula. Wigner surmise is quite precise.

Main question: going beyond Gaussian towards universality!
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Wigner-Dyson-Mehta conjecture: Local statistics is universal in the
bulk spectrum for any Wigner matrix; only symmetry type matters.
Solved recently for any symmetry class:

[E-Schlein-Peche-Ramirez-Yau, 2009] – Hermitian case, fixed E

[E-Schlein-Yau-Yin, 2010] – averaged E

[E-Yau, 2012] – fixed gap label

[Bourgade-E-Yau-Yin, 2014] – fixed E

Related results:
[Johansson, 2000] Hermitian case with large Gaussian components

[Tao-Vu, 2009] Hermitian case via moment matching.

(Similar development for the edge and for β-log gases).

Three-step strategy:
1. Local (entry-wise) semicircle law down to scales � 1/N .

2. Use local equilibration of Dyson Brownian motion to prove uni-
versality for matrices with a tiny Gaussian component

3. Use perturbation theory to remove the tiny Gaussian component.
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All these results were obtained under the condition that the matrix

elements hij are independent, centered and∑
j

sij = 1, sij := E|hij|2

Today’s talk is about Wigner matrices without this red condition

We’ll call them Wigner-type matrices.

Red was used at many places in the previous analysis:

• Limiting density is explicit.

• Homogeneity: Gii ≈ Gjj for the resolvent matrix elements.

• DBM: Initial data is already close to global equilibrium.
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Variance profile and limiting density of states (DOS)

∑
j

sij = 1 ⇐⇒

General variance profile sij = E|hij|2: not the semicircle any more.

∑
j sij 6= const =⇒ Density of states
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Main theorem (informally)

Theorem [Ajanki-E-Krüger] Let H = H∗ be a Wigner-type matrix

h̄ji = hij independent, centered

E|hij|2 = sij =
1

N
S(

i

N
,
j

N
)

with a limiting profile function S : [0,1]2 → R+. Then for the matrix
elements of the resolvent G = (H − z)−1, we have

Gij(z) ≈ δijm i
N

(z)

where mx(z) solves the self-consistent equation

−
1

mx(z)
= z +

∫ 1

0
S(x, y)my(z)dy (∗)

Limiting DOS %(E) :=
1

π

∫ 1

0
Immx(E+i0)dx

Note: The nonlinear vector equation (*) replaces the usual self
consistent scalar eq m−1 = −(z +m) of the semicircle density.
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Constantness of row sums,
∑
j sij = 1, implies semicircle

G(z) := (H − z)−1, z = E + iη, η > 0

Schur formula with the resolvent of the i-th minor
1

Gii
= hii − z −

∑
ab

hiaG
(i)
ab hbi

≈ − z − E(i)∑
ab

hiaG
(i)
ab hbi

≈ − z −
∑
a
siaGaa

Fact: The self-consistent equation

1

mi
= −z −

∑
a
siama, Im ma > 0,

has a unique solution.
It is constant, ma = m, iff the row sums are constant and then

1

m
= −z −m =⇒ Stieltjes transform of the semicircle
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Quadratic vector equation (QVE)

Suppose sij is given by a limiting profile function S : [0,1]2 → R+:

sij =
1

N
S(

i

N
,
j

N
),

Continuum limit of the self-consistent equation for Gii(z) ≈ m i
N

(z)

−
1

m(z)
= z + Sm(z), (Sf)x =

∫ 1

0
S(x, y)fydy (QV E)

For any z ∈ H (complex upper half plane), we consider solutions

under the constraint Im m > 0,

Fact: Solution exists and is unique.

Fact: The solution is not constant in general. Semicircle is the

“easiest” case.
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Two main steps for the proof of the main theorem:

1) Analyse the solution of the continuum QVE, including its stability

(no matrix, no N)

2) Prove: the resolvent of the RM is close to the solution of QVE.

(Schur, fluctuation averaging, dichotomy becomes trichotomy)

Note: If
∑
j sij = 1, Step 1 is trivial, since the solution mx(z) = m(z)

is given explicitly by a quadratic scalar equation −m−1 = z +m. So

all previous efforts to prove local semicircle law was in Step 2.

If
∑
j sij 6= const, Step 1 is nontrivial and gives rise to a complex

pattern.

Despite its natural form, QVE has not been studied quantitatively.
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Features of the DOS for Wigner-type matrices

1) Support splits via cusps:

(Matrices in the pictures represent the variance matrix)

2) Smoothing of the S-profile avoids splitting (⇒ single interval)

0.1

1

1

0.1 DOS of the same matrix as

above but discontinuities in

S are regularized
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Relation between mx and m := Avxmx

0.1

1

1

0.1

x=i/N

0 0.25 10.1 0.5

x = i
N contin-

uum coordinates

Red: some inter-

polation

Immx 6≈ % = Imm. It may even behave very differently for some x:

Sections of Immx(E) at various x’s indicated by the green lines.
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Natural questions

1) How many intervals are there and what determines them?

2) Blow-up features and instability mechanisms

3) Universality of the singularity patterns?
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Number of intervals in the support of the DOS

Consider the set of row vectors of S

A := {si : i = 1,2, . . . , N} ⊂ RN , (si)j := sij

Partition

A = A1 ∪A2 ∪ . . . ∪An, s.t dist(Ak, A`) ≥ δ

R
N

A

A

A

1

2

3

= s i

R
N

A

A

A

1

2

3

= s i

Key object:

n=Number of lumps

Conjecture: # spectral intervals ≤ 2n− 1. We proved for n = 1

E.g. sij = 1
NS( iN ,

j
N ) with S(x, y) smooth ⇒ n = 1
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Theorem [Ajanki-E-Krüger] If all lumps are macroscopic in the sense

inf
x

∫ 1

0

1

‖sx − sy‖2
dy ≥ C > 0

then the solution mx(z) of

−
1

m
= z + Sm, (QV E)

is bounded; mx(z) is the Stieltjes transform of an a.c. measure

mx(z) =
∫
R

vx(s)

s− z
ds.

If S is irreducible, then the components are comparable, vx(E)
vy(E) ∼ 1 for

all E. The density, % =
∫
vxdx, is compactly supported, bounded, and

it has a universal shape near the points when it (almost) vanishes.

In particular, blowup can occur only if there is a small lump.

(Discontinuity in S is OK, but isolated row is not)
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Universality of the singularities in the DOS

Edge,
√
E singularity Cusp, |E|1/3 singularity

Small-gap Smoothed cusp

(2+τ)τ

1+(1+τ+
√

(2+τ)τ)2/3+(1+τ−
√

(2+τ)τ)2/3

√
1+τ 2

(
√

1+τ 2+τ)2/3+(
√

1+τ 2−τ)2/3−1
− 1

τ := |E|
gap, τ := |E|

(minimum )1/3

20



Why cubic?

Stability of QVE: (used for both QVE analysis and RM)

−
1

m
= z + Sm, −

1

m(ε)
= z + Sm(ε) + ε, ‖ε‖ � 1

Decompose along the evector (1− |m|2S)f = 0 (f > 0)

m(ε) −m = Θf + v, ‖v‖ ≤ Θ2 +O(ε)

Decompose the third order perturbation expansion along f and f⊥.

τ3Θ3 + τ2Θ2 + τ1Θ ∼ O(ε)

Facts

|τ3|+ |τ2| 6= 0 =⇒ not more than cubic

τ2 = 〈(sgnRem), f3〉

If τ2 = 0 then cubic (atypical). For the semicircle case, Rem = const

and f = 1, so τ2 6= 0, thus quadratic (typical).
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Precision, rigidity

We prove optimal entry-wise local law∣∣∣∣Gjk(z)− δjkmj(z)
∣∣∣∣ ≺

√
%(E)

Nη
+

1

Nη
, z = E + iη

(also for the density and for the ”isotropic” version). At the cusps

the (current) estimate is slightly weaker than optimal.

In terms of rigidity, i.e. comparing eigenvalues λi with the corre-

sponding quantiles γi of the limiting density, we have

|λi − γi| ≺ N−1 bulk

|λi − γi| ≺ N−2/3 edges (also internal)

|λi − γi| ≺ N−3/5 cusps

Optimal scale at the cusps should be N−3/4.
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Application: correlated Gaussian matrices

Consider a hermitian matrix with correlated Gaussian entries:

Ehjk = 0, Ehjkhj′k′ =
1

N

(
Rj−j′,k−k′ +Qj−k′,k−j′

)
where R, Q have a decay∑

j,k

[
|Rjk|+ |Qjk|

]
(|j|+ |k|) <∞

For example, such ensemble can be obtained by filtering

H = K ?X + c.c. Kjk kernel with
∑
jk

|Kjk| ∼ 1

and X has i.i.d. centred Gaussian entries (no symmetry)

E|Xjk|2 =
1

N
, EX2

jk =
γ

N

Then R = (K ? τK̄) + c.c. with (τK)jk = K−j,−k.
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Good news: In Fourier space, Ĥ has almost independent entries:

ĥpq ⊥ ĥp′q′ unless (p′, q′) ∈
{

(p, q), (q, p), (−p,−q), (−q,−p)
}

p

q

-q

-p

0

Wigner matrix with four-fold symmetry

(hermitian + reflection)

Analysis goes through with this extra

symmetry.

Solve the QVE in Fourier space

−
1

mp(z)
= z +

∫ 1

0
R̂pqmq(z)dq

(only R matters, Q is irrelevant)

Apply the previous theorem for S = R̂, get optimal asymptotics for

(Ĥ − z)−1, then Fourier transform back (using the isotropic law).
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Theorem [Ajanki-E-Krüger]: Under a nondegeneracy condition,

infp supq |R̂pq| > 0, (holds for generic convolution kernels), we have

max
jk

∣∣∣Gjk(z)− gj−k(z)
∣∣∣ ≺

√
%(E)

Nη

for the resolvent G = (H−z)−1 of the correlated Gaussian RM. Here

gk(z) =
∫ 1

0
e−2πikpmp(z)dp

is the Fourier transform of the solution of the QVE. It inherits the

decay of R. Note that Gjk is not concentrated to j = k.

Similar optimal result for the DOS.

Previous results:

[Schenker, Schulz-Baldes, 2005], [Götze, Naumov, Tikhomirov, 2013] Weak de-

pendence, DOS=sc

[Anderson-Zeitouni, 2008] DOS on macro scale with moment method in case

finite range correlation.

[Pastur-Shcherbina,2011] DOS on macro scale with resolvents.
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Local spectral universality

Theorem [Ajanki-E-Krüger-Schnelli] In all models above, bulk local

spectral universality holds (in the sense of fixed label or averaged

energy).

There is a more general theorem behind which extends previous

analysis of the local equilibration of the DBM flow to arbitrary matrix

initial condition.

Previous results applied to:

i) initial matrix follows semicircle [E-Schlein-Yin-Yau]

ii) deformed Wigner matrices with DOS with a single interval support

[Lee-Schnelli-Stetler-Yau]
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Summary

• Local laws for Wigner-like matrices (independent entries, arbi-

trary variance matrix).

• Complete analysis of a NL equation Sm+ z = − 1
m.

• Singularities of the DOS are universal.

• Optimal local laws for the translation invariant correlated Gaus-

sian ensemble.

• Bulk universality in all these models
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