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Gaussian processes on trees

Motivation

Spin glasses: What is the structure of ground states for (mean field)
spin glasses?

Extreme value theory: What are the extreme values and the
extremal process of dependent random processes?

Spatial branching processes: Describe the cloud of spatial
branching processes, in particular near their propagation front!

Reaction diffusion equations: Characterise convergence to
travelling wave solutions in certain non-linear pdes!

This is too hard in general, but we will look at a setting where these
questions have a chance to be answered. Branching Brownian motion is at
the heart of this setting.
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Gaussian processes on trees

Gaussian processes labelled by trees

A time-homogeneous tree. Label
individuals at time t as
i1(t), . . . , in(t)(t).

Canonical tree-distance:
d(i`(t), ik(t)) ≡ time of most recent
common ancestor of i`(t) and ik(t)
For fixed time horizon t, define Gaussian
process, (x tk(s), k ≤ n(t), s ≤ t), with
covariance

Ex tk(r)x t` (s) = tA(t−1d(ik(r), i`(s)))

for A : [0, 1]→ [0, 1], increasing.

Can be constructed as time change of branching Brownian motion
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Gaussian processes on trees

Examples

Binary tree, branching at integer times

A(x) = x : Branching random walk [Harris ’63]

A step function: Generalised Random Energy models (GREM)
[Gardner-Derrida ’82]

Special case A(x) = 0, x < 1, A(1) = 1: Random energy model
(REM), i.e. n(t) iid N (0, t) r.v.s

Continuous A: CREM [Gardner-Derrida ’82, B-Kurkova ’04]

Supercritical Galton-Watson tree

A(x) = x : Branching Brownian motion (BBM) [Moyal ’62]

General A: variable speed BBM [Derrida-Spohn ’88, Fang-Zeitouni ’12]
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Gaussian processes on trees

Extreme value theory

In the class of models we have described, we are interested in three main
questions:

How big is M(t)/t ≡ maxk≤n(t) xk(t)/t, as t ↑ ∞?

Is there a rescaling ut(x), such that

P (M(t) ≤ ut(x))→ F (x)?

Is there a limiting extremal process, P, such that∑
k≤n(t)

δu−1
t (xk (t)) → P?
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Gaussian processes on trees

Reference: The REMs

If xk(t) are just n(t) iid Gaussian rv’s with variance t:

M(t)/t →
√

2 limt↑∞ t−1 ln n(t) ≡
√

2r

With ut(x) = t
√

2r − ln(rt)

2
√

2r
+ x√

r
+ ln(n(t)/En(t))√

2r
, where n(t)/En(t)→ RV ,

a.s.

P (M(t) ≤ ut(x))→ exp
(
− 1

4π e
−
√

2x
)

∑
k≤n(t)

δu−1
t (xk (t)) → PPP( 1

4π e
−
√

2xdx)

where PPP(µ) denotes the Poisson Point Process with intensity µ.
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Gaussian processes on trees

Universality 1: the order of the maximum

In all models, it has been shown (or can be shown easily) that the order of
the maximum is only a function of the concave hull of the function A (and
on the growth rate of n(t)):

If Ā denotes the concave hull of A, then :

lim
t→∞

t−1M(t) =
√

2 lim
t→∞

t−1 ln n(t)

∫ 1

0

√
d

ds
Ā(s)ds

[B-Kurkova 01, for binary tree, Fang-Zeitouni 11, GW tree]

Note in particular that as long as A(s) ≤ s, for all s ≤ 1, then Ā(s) = s,
and the order of the maximum is the same as in the REM.
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Ā(s)ds

[B-Kurkova 01, for binary tree, Fang-Zeitouni 11, GW tree]

Note in particular that as long as A(s) ≤ s, for all s ≤ 1, then Ā(s) = s,
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Gaussian processes on trees

The GREM

The full picture is known (or easy to get) if A is a step function. In that
case:

If A(s) < s, for all s ∈ (0, 1), then all results are the same as in the
corresponding REM!

If A(s) ≤ s, with equality in a finite number of points, the REM
picture holds, but a prefactor appears in front of the e−x ’s.

If Ā(s) 6= s, then the leading order and the logarithmic correction are
changed and depend on Ā; the extremal process is a Poisson cascade
process.

This is all proven for the binary tree, but extension to general trees are
straightforward.

Note the special role of the linear function A(s) = s
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If Ā(s) 6= s, then the leading order and the logarithmic correction are
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Branching Brownian motion

Branching Brownian motion

(BBM) is a classical object in probability, combining the standard models
of random motion and random genealogies into one: Each particle of the
Galton-Watson process performs Brownian motion independently of any
other. This produces an immersion of the Galton-Watson process in space.

Picture by Matt Roberts, Bath

BBM is the canonical model of a spatial branching process.
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BBM and F-KPP

The F-KPP

One of the simplest reaction-diffusion equations is the
Fisher-Kolmogorov-Petrovsky-Piscounov (F-KPP) equation:

∂tv(x , t) =
1

2
∂2
xv(x , t) + v − v2

Fischer used this equation to model the evolution of biological
populations. It accounts for:

birth: v ,

death: −v2,

diffusive migration: ∂2
xv .
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BBM and F-KPP

F-KPP equation and BBM

Lemma (McKeane ’75, Ikeda, Nagasawa, Watanabe ’69)

Let f : R→ [0, 1] and {xk(t) : k ≤ n(t)} BBM.

u(t, x) = E

n(t)∏
k=1

f (x − xk(t))


Then v ≡ 1− u is the solution of the F-KPP equation with initial
condition v(0, x) = 1− f (x).
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BBM and F-KPP

Travelling waves

Theorem (Bramson ’78)

The equation
1

2
ω′′ +

√
2ω′ − ω2 + ω = 0.

has a unique solution satisfying 0 < ω(x) < 1, ω(x)→ 0, as x → +∞,
and ω(x)→ 1, as x → −∞, up to translation, i.e. if ω, ω′ are two
solutions, then there exists a ∈ R s.t. ω′(x) = ω(x + a).
For suitable initial conditions,

u(t, x + m(t))→ ω(x),

where m(t) =
√

2t − 3
2
√

2
ln t, where ω is one of the stationary solutions.
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BBM and F-KPP

Examples

Choosing suitable initial conditions, this theorem applies to

u(t, x) = P(maxk≤n(t) xk(t) ≤ x), and

the Laplace functional u(t, x) = E exp(−
∑

k≤n(t) φ(xk(t)))
Needs a bit extra work...

In particular, it gives Bramson’s celebrated result

lim
t→∞

P( max
k≤n(t)

xk(t)−m(t) ≤ x) = ω(x)
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The Lalley-Sellke representation

The derivative martingale

Lalley-Sellke, 1987: ω(x) is random shift of Gumbel-distribution

ω(x) = E
[
e−CZe−

√
2x
]
, (∗)

Z
(d)
= limt→∞ Z (t), where Z (t) is the derivative martingale,

Z (t) =
∑

k≤n(t)

{
√

2t − xk(t)}e−
√

2{
√

2t−xk (t)}

The form (∗) seems universal, but Z is particular.
For the REM on the GW tree (∗) holds with Z a standard exponential.
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The Lalley-Sellke representation

Description of the extremal process

Poisson Point Process: PZ =
∑

i∈N δpi ≡ PPP
(
CZe−

√
2xdx

)
Cluster process:

∆(t) ≡
∑
k

δxk (t)−maxj≤n(t) xj (t).

conditioned on the event
{

maxj≤n(t) xj(t) >
√

2t
}

converges in law to point process, ∆.
[Chauvin, Rouault ’90]

E ≡
∑
i ,j∈N

δ
pi+∆

(i)
j

, ∆(i) iid copies of ∆

A. Bovier (IAM Bonn) Extremal Processes of Branching Brownian Motions 37th SPA, Buenos Aires 2014



The Lalley-Sellke representation

Description of the extremal process

Poisson Point Process: PZ =
∑

i∈N δpi ≡ PPP
(
CZe−

√
2xdx

)

Cluster process:

∆(t) ≡
∑
k

δxk (t)−maxj≤n(t) xj (t).

conditioned on the event
{

maxj≤n(t) xj(t) >
√

2t
}

converges in law to point process, ∆.
[Chauvin, Rouault ’90]

E ≡
∑
i ,j∈N

δ
pi+∆

(i)
j

, ∆(i) iid copies of ∆

A. Bovier (IAM Bonn) Extremal Processes of Branching Brownian Motions 37th SPA, Buenos Aires 2014



The Lalley-Sellke representation

Description of the extremal process

Poisson Point Process: PZ =
∑

i∈N δpi ≡ PPP
(
CZe−

√
2xdx

)
Cluster process:

∆(t) ≡
∑
k

δxk (t)−maxj≤n(t) xj (t).

conditioned on the event
{

maxj≤n(t) xj(t) >
√

2t
}

converges in law to point process, ∆.
[Chauvin, Rouault ’90]

E ≡
∑
i ,j∈N

δ
pi+∆

(i)
j

, ∆(i) iid copies of ∆

A. Bovier (IAM Bonn) Extremal Processes of Branching Brownian Motions 37th SPA, Buenos Aires 2014



The Lalley-Sellke representation

The extremal process

Theorem (Arguin-B-Kistler ’11, Aidékon, Brunet, Berestycki, Shi ’11)

The point process Et ≡
∑n(t)

i=1 δxi (t)−m(t) → E .

Interpretation:
pi : positions of maxima of clusters with recent common ancestors.

∆(i): positions of members of clusters seen from their maximal one
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The Lalley-Sellke representation

The extremal process

Technically, proven by showing convergence of Laplace functionals:

E
[

exp

(
−
∫
φ(y)Et(dy)

)]
→ E [exp (−C (φ)Z )]

for any φ ∈ Cc(R) non-negative, where

C (φ) = lim
t→∞

√
2

π

∫ ∞
0

(
1− u(t, y +

√
2t)
)
ye
√

2ydy

u(t, y): solution of F-KPP with initial condition u(0, y) = e−φ(y).

Then show that the limit is the Laplace functional of the process E
described above.
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Variable speed BBM

Variable speed BBM.....below the straight line...

Theorem (B-Hartung ’13,’14)

Assume that A(x) < x ,∀x ∈ (0, 1), A′(0) = a2 < 1, A′(1) = b2 > 1.
Then ∃ C (b) and a r.v. Ya such that

P (M(t)− m̃(t) ≤ x)→ Ee−C(b)Yae−
√

2x

∑
k≤n(t) δxk (t)−m̃(t) → Ea,b =

∑
i ,j δpi+b∆

(i)
j

m̃(t) ≡
√

2t − 1
2
√

2
ln t.

pi : e the atoms of a PPP(C (b)Yae
−
√

2xdx),
∆: are as in BBM but with the conditioning on
the event {maxk xk(t) ≥

√
2bt}.
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Variable speed BBM

Elements of the proof:

1) Explicit construction for the case of two speeds:

A(s) =

{
sσ2

1 0 ≤ s < b
bσ2

1 + (s − b)σ2
2 b ≤ s ≤ 1

, 0 < b ≤ 1.

There are three major steps needed beyond those in standard BBM:

Localisation of the particles reaching extreme levels at the time bt of
the speed change in a narrow (

√
t) gate around

√
2btσ2

1 = tA(b).

Proof of uniform integrability of the McKean martingale

Ys ≡
∑n(s)

i=1 e−s(1+σ2
1)+
√

2xi (s)

Asymptotics of solutions of the FKPP equation at very large values
ahead of the travelling wave.
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Variable speed BBM

Elements of the proof:

2) Gaussian comparison for general A:

Use comparison for Laplace function-
als with two-speed process; only good
approximation of covariance near 0
and 1 needed.
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Variable speed BBM

Above the straight line

When the concave hull of A is above the straight line, everything changes.

If A is piecewise linear, it is quite easy to get the full picture:
Cascade of BBM processes.

If A is strictly concave, Fang and Zeitouni ’12 and Maillard and
Zeitouni ’13 have shown that the correct rescaling is

m(t) = Cσt − Dσt
1/3 − σ2(1) ln t

(with explicit constants Cσ and Dσ) but there are no explicit limit
laws or limit processes available.

A. Bovier (IAM Bonn) Extremal Processes of Branching Brownian Motions 37th SPA, Buenos Aires 2014



Variable speed BBM

Above the straight line

When the concave hull of A is above the straight line, everything changes.

If A is piecewise linear, it is quite easy to get the full picture:
Cascade of BBM processes.

If A is strictly concave, Fang and Zeitouni ’12 and Maillard and
Zeitouni ’13 have shown that the correct rescaling is

m(t) = Cσt − Dσt
1/3 − σ2(1) ln t

(with explicit constants Cσ and Dσ) but there are no explicit limit
laws or limit processes available.

A. Bovier (IAM Bonn) Extremal Processes of Branching Brownian Motions 37th SPA, Buenos Aires 2014



Variable speed BBM

Above the straight line

When the concave hull of A is above the straight line, everything changes.

If A is piecewise linear, it is quite easy to get the full picture:
Cascade of BBM processes.

If A is strictly concave, Fang and Zeitouni ’12 and Maillard and
Zeitouni ’13 have shown that the correct rescaling is

m(t) = Cσt − Dσt
1/3 − σ2(1) ln t

(with explicit constants Cσ and Dσ) but there are no explicit limit
laws or limit processes available.

A. Bovier (IAM Bonn) Extremal Processes of Branching Brownian Motions 37th SPA, Buenos Aires 2014



Variable speed BBM

Above the straight line

When the concave hull of A is above the straight line, everything changes.

If A is piecewise linear, it is quite easy to get the full picture:
Cascade of BBM processes.

If A is strictly concave, Fang and Zeitouni ’12 and Maillard and
Zeitouni ’13 have shown that the correct rescaling is

m(t) = Cσt − Dσt
1/3 − σ2(1) ln t

(with explicit constants Cσ and Dσ) but there are no explicit limit
laws or limit processes available.

A. Bovier (IAM Bonn) Extremal Processes of Branching Brownian Motions 37th SPA, Buenos Aires 2014



Universality

Universality

The new extremal processes should not be limited to BBM:

Branching random walk [Bramson ’78, Addario-Berry, Áıdékon ’13 (law of max),

Madaule ’13 (full extremal process),...]

Gaussian free field in d = 2 [Bolthausen, Deuschel, Giacomin ’01,

Bramson-Ding-Zeitouni ’13, Biskup-Louidor ’13 [Poisson cluster extremes] ....]

Cover times of random walks [Lawler ’9,3 Dembo-Peres-Rosen-Zeitouni ’06,

Belius-Kistler ’14 ....]

Spin glasses with log-correlated potentials [Fyodorov, Bouchaud ’08,Arguin,

Zindy ’12..]

Statistics of zeros of Riemann zeta-function [Fyodorov, Keating ’12]
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Thank you for your attention!
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