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Abstract. We consider a problem of nonparametric density estimation under shape

restrictions. The first relevant result in this direction was the case of monotone

(decreasing) densities considered by Grenander (1956). In spite of what happens

under no restrictions, in this context the maximum likelihood estimate turns out

to be a strongly consistent estimate. In our case, the shape restriction condition is

that the density belongs to a class of Lipschitz functions with a uniformly bounded

Lipschitz constant, a quite natural shape condition. Devroye (1987) considered these

classes of estimates as tailor-made estimates, in opposite in some way to universally

consistent estimates. In our framework the maximum likelihood estimate can be

easily characterized but it is not easy to compute. Some simpler approximations are

also considered.

1. Introduction.

It is well known that the maximum likelihood estimation method fails in the non–

parametric setting of density estimation. This is because we consider as the parameter

space the class of all density functions, which is too large. However, there are some

smaller classes of densities, that are still a non–parametric family, where this is not the

case. A relevant result in this direction is the case of monotone (decreasing) densities.

For this problem, Grenander (1956) introduced an estimate defined as the derivative of

the least concave majorant (concave envelope) of the empirical cumulative distribution

function of the data. It turns out, that this estimate is the maximum likelihood estimate

(MLE) restricted to the class of decreasing densities on R+ (for a proof see, for instance,

Grenander (1981) or Barlow, et al (1972)). The asymptotic behavior of Grenander’s

estimate has been studied by several authors, (see for instance Groeneboom (1985))
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and in particular, it provides a simple strongly consistent estimate of the unknown

decreasing density f .

An additional important property of this estimate is that in order to build it up, it

does not require of any additional parameter like a bandwidth h or a number of nearest

neighbors k. Of course the estimate will not be consistent if the true underlying density

f is not monotone. In this sense we can consider Grenander’s estimate as a tailor–

made estimate (an expression coined by Devroye (1987)), in opposite in some way to

universally consistent estimates. The extra information about the density function,

allows to do the search for the estimate in a smaller class of functions sharing the extra

properties we have assumed.

In what follows we will consider the case where the unknown density f is a Lipschitz

function on its support. This restriction is quite natural in some real problems. For

instance we often are dealing with situations in which we know that the speed at which

the density can grow is clearly bounded. The density f is allowed to be discontinuous

in the boundary of its support. In this context we will also obtain a “bandwidth free

estimate”, which turns out to be the maximum likelihood estimate. We also propose

another simple consistent approximation. The “bandwidth free estimate” property is

particularly important in high dimensions, since it is a way to avoid the well known

problem of the curse of dimensionality that universally consistent estimates shares

when we want to estimate a density function in high dimensions. However, it should

be pointed that we need to know a bound for the Lipschitz constant C, which might

be thought as a rough penalty parameter.

To be more precise, the problem will be to estimate a density function f on Rd,

from which we know in advance that has a bounded convex support S(f) (but we

do not know which the support is), and that is a Lipschitz function on its support

with Lipschitz constant C, from a sample of i.i.d. random vectors {Xi : i ≥ 1} in

Rd, with density f . We start in Section 2 with the case of the maximum likelihood

estimate in this setting, which we call the cone estimate. There we show existence,

uniqueness and strong consistency of the estimate. If the support of f , S(f), is known,

then we do not need to require the support to be convex (see Theorem 2.2 below).

For example, this will be the case if we are interested on uniform convergence over a

fixed compact set K. In this case, we estimate the conditional density given that the
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data are in K. Take into account that also outside a big compact set, the usual kernel

density estimates, just reproduce the kernel shape. In sub–section 2.1 we provide an

algorithm to calculate the estimate, and we give a few examples. In Section 3 we

introduce a simpler approximation to the MLE estimate, which also turns out to be

strongly consistent. We also include some examples that illustrate the behavior of the

estimates.

In what follows, for each n ≥ 1, L(g) will stand for the log–likelihood function

L(g) = Ln(g) =
1

n

n∑
j=1

log g(Xi).

Also, we denote by I(g) the integral of the function g over Rd with respect to the

Lebesgue measure:

I(g) =

∫

Rd

g dµ

2. The cone estimate

Let {Xi}i≥1 be independent and identically distributed random variables in Rd with

common density f , defined on a probability space (Ω,A, P ). Through out we will

assume that:

H1 The density f is supported in a convex compact set S(f), and f |S(f) is a Lipschitz

function with Lipschitz constant C (f ∈ L(C, S(f))).

Having this knowledge of f one can look for a maximum likelihood estimate in this

small class.

Let FC be the class of densities g : Rd → R with convex compact support that

verifies

|g(x)− g(y)| ≤ C‖x− y‖, x, y ∈ S(g).

That is, FC is the class of Lipschitz densities with prescribed Lipschitz constant C.

We allow g to be discontinuous in the boundary of its support.

Without loss of generality we will assume throughout that C = 1. Otherwise, we

consider the variables Yi =
√

CXi. These new variables have a density with Lipschitz

constant 1. We denote F = F1. If E is a closed subset of Rd, we denote by F(E) the

family of functions in F whose support is exactly E and F̄(E) the family of functions

that are Lipschitz (with Lipschitz constant 1) in E with support contained in E, but

possibly smaller.
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Figure 2.1. The maximizer in dimension one and two.

Although we are in a nonparametric setting, the following theorem proves that the

maximum likelihood estimate is well defined and shows how it looks.

Theorem 2.1. Under H1 we have that

(i) There exists a unique maximizer f̂n of L(g) in F . Moreover, f̂n is supported in

Cn, the convex hull of {X1, . . . , Xn}, and its value there is given by the maximum

of n “cone functions”, i.e.

(2.1) f̂n(x) = max
1≤i≤n

(
f̂n(Xi)− ‖x−Xi‖

)+

.

(ii) f̂n is consistent in the following sense: for every compact set K ⊂ S(f)◦ (the

interior of S(f)),

lim
n→∞

‖f̂n − f‖L∞(K) → 0 a.s.

Hence f̂n is determined by its values at the sample points and takes the form of a

cone around each of them. If d = 1, f̂ is piecewise linear, with slopes 1 or -1.

Proof. Existence, uniqueness and characterization of the maximizer.

First we show that for any g ∈ F there exists a function of the form (2.1) with at

least the same likelihood. So let g ∈ F and consider g(x) supported in Cn and given

by

g(x) = max
1≤i≤n

(
g(Xi)− ‖x−Xi‖

)+

for x ∈ Cn.
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Observe that L(g) = L(g) but, since g ∈ L(1, Cn), we have g(x) ≥ g(x). Then
∫

g ≤ 1

and hence we can augment g uniformly in order to achieve
∫

g = 1. The augmented

version of g belongs to F and verifies L(g) ≥ L(g).

Hence, the maximizer of L among functions of the form (2.1) (which exists since

these functions form a compact class) is a global maximizer.

Uniqueness follows from the fact that any maximizer must lie in L(1, Cn). This class

is convex and L is a concave functional.

Consistency. The proof of (ii) is based on Theorem 1 in Huber (1967). In this

direction it is desirable to look for the maximizer in a compact class (see Lemma 1 in

Huber (1967)). Unfortunately F is not compact and it is not clear that there exists

a compact set in which f̂n almost surely ultimately stays. Hence we introduce an

auxiliary statistic fn that lies in the compact class F̄(S(f)) for every n ≥ 1. Let

fn := An max
1≤i≤n

(
f̂n(Xi)− ‖x−Xi‖

)+

, for all x ∈ S(f).

The constant An is chosen to guarantee I(fn) = 1. Observe that the difference between

equation (2.1) and the above formula is that the latter holds for all x ∈ S(f), while

(2.1) gives the value of f̂n only for x ∈ Cn.

This statistic cannot actually be computed since S(f) in unknown, but we are going

to prove that is asymptotically equivalent to f̂n and consistent. This will prove the

consistency of f̂n.

Recall that, since the support of f̂n is the convex hull of the sample points {X1, . . . , Xn},
the Hausdorff distance distH(S(f̂n), S(f)) → 0 (see for instance Rényi and Sulanke

(1963, 1964) or Dumbgen and Walther (1996) for rates of convergence). This means,

on the one hand, that given any compact subset K ⊂ S(f)◦, K is contained in

S(f̂n) for n large enough a.s. On the other hand, we have that the Lebesgue mea-

sure µ(S(f) \ S(f̂n)) → 0 as n → ∞. From these two observations we have that

An → 1 and for large n

(2.2) ‖fn − f̂n‖L∞(K) ≤ |An − 1| ‖f̂n‖L∞(K) → 0,

since (‖f̂n‖L∞(K))n is bounded a.s.

Next we define Tn : Rn → F̄(S(f)) by

Tn(X1, . . . , Xn) = fn,

and we check that Tn is a sequence of maximum likelihood estimates in the more general

sense that,
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(2.3) −L(Tn) + inf
g∈F̄(S(f))

L(g) → 0, a.s.,

as defined in Huber (1967). Indeed

0 ≤ −L(Tn) + inf
g∈F̄(S(f))

L(g) ≤ −L(Tn) + inf
g∈F(Cn))

L(g) = −L(Tn) + L(f̂n),

which converges to zero a.s. since

−L(Tn) + L(f̂n) = − log An → 0.

It remains to proof assumptions (A-1), (A-2’), (A-3) and (A-4) of Huber (1967),

namely

(A-1) ρ(x, g) := − log(g(x)) is separable in the sense of Doob.

(A-2’) Consider a family of neighborhoods U of f that shrinks to {f}, then

inf
g∈U

− log(g(X)) → − log(f(X)), (U → {f}) a.s.

(A-3) E((− log(g(X)))−) < ∞ for every g ∈ F̄(S(f)) and

E((− log(g(X)))+) < ∞ for some g ∈ F̄(S(f))

(A-4) E(− log(g(X)) > E(− log(f(X)) for all g ∈ F(S(f)), g 6= f .

Assumption (A-1) holds since Θ := F̄(S(f)) is compact and separable. (A-2’) is

immediate.

Since E((− log(g(X)))−) = E((log(g(X)))+) and S(f) is compact, the first state-

ment of (A-3) holds. For the second, one can take any function g strictly positive in

S(f).

To prove (A-4) define Y = log(g(X)) − log(f(X)) and recall that if Y is not a

constant (a.s.) and E(|Y |) < ∞, we have by Jensen’s inequality

E(Y ) < log E(eY ).

Since in our case E(eY ) = I(g) = 1, we have

E(log(g(X))− E(log(f(X)) = E(Y ) < 0.

Details of this argument can be found in Wald (1949).

Therefore, we can apply Huber’s Theorem to conclude that fn is consistent in

L∞(S(f)) and hence it is also consistent in the topology of uniform convergence on

compact subsets of S(f). From (2.2) we get the consistency of f̂n. ¤
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We want to remark that (2.3) means that Tn is a maximum likelihood estimate in

the sense described by Huber (1967). These estimates are in a more general setup, and

allows that different estimates fall in this framework. In particular, some asymptoti-

cally equivalent estimates verify (2.3). This approach has been particularly fruitful in

the robust literature, where M-estimates can be considered as generalized maximum

likelihood estimates under non standard conditions (i.e. when the true underlying

distribution is not exactly that of the considered parametric model).

One of the strengths of the theorem is that the support S(f) of the density f is

unknown (in fact, the estimate f̂n involves an estimation of S(f)). This is the main

reason of the hypothesis of convexity imposed to S(f). If the support S(f) is known in

advance, we do not need the convexity assumption. In this case, we consider F(S(f)),

the set of densities with support S(f) that are Lipschitz (with constant 1) on S(f).

The set F(S(f)) is convex and, by the Arzela-Ascoli theorem, it is also compact. This

places us in a very good situation for both the maximization of L and the consistency

of the maximizer (the hypotheses of Huber’s theorem are easier to verify when there

is a fixed compact set containing all possible estimates). Therefore, the proof of the

previous theorem can be considerably simplified to obtain:

Theorem 2.2. Suppose S(f) is known (not necessarily convex). Then under H1 we

have that:

(i) There exists a unique maximizer f̂n of L(g) in F(S(f)), which verifies

f̂n(x) = max
1≤i≤n

(
f̂n(Xi)− ‖x−Xi‖

)+

.

(ii) f̂n is consistent

As pointed in the Introduction, there are many situations where is reasonable to

assume that the support is known. On the other hand, the case of non-convex and

unknown support can be also dealt with in practice. One should first estimate the

support of f by a set estimation method (see, for instance, Cuevas and Rodriguez-Casal

(2003) for a review on this field) and then define the cone estimate on the estimated

support. This will be the subject of a future work.

In what follows, we will deal with the situation of a convex and unknown support

S(f). However, most of the results can be adapted to handle the case of (non-convex)

known support. The proofs in the known-support setting are generally simpler (as it

happens with Theorems 2.1 and 2.2).
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2.1. How to compute it. Although the theorem above characterizes the estimator,

we do not have an explicit formula for it based in the sample points. By equation (2.1),

it remains to determine the value of f̂n(Xi) for each i = 1, . . . , n. But at this stage, we

have a finite dimensional optimization problem. So we define the following space

W = W(X1, . . . , Xn) =

{
g ∈ L(1, Cn) : g(x) = max

1≤i≤n

(
g(Xi)− ‖x−Xi‖

)+

1Cn(x)

}
.

In view of the observations that we made in the proof of Theorem 2.1, the unique

maximizer of L in F must belong to W . Hence f̂n solves the following optimization

problem:

(2.4) maximize
n∏

i=1

g(Xi) subject to g ∈ W and I(g) = 1.

Since this is a finite dimensional problem, we restate it as an optimization problem

in Rn. Let y = (y1, . . . , yn) ∈ Rn be such that |yi − yj| ≤ ‖Xi −Xj‖. We define gy as:

ĝy(x) = max
1≤i≤n

(
ŷi − ‖x−Xi‖

)+

(x ∈ Cn),

in other words, gy is the only function in W that takes the value yi at Xi. Therefore,

(2.4) can be stated as follows:

(2.5) maximize `(y) =
n∏

i=1

yi, y ∈ Ω

where Ω = {y ∈ Rn : yi > 0 and |yi − yj| ≤ ‖Xi −Xj‖ for i 6= j and I(gy) = 1}.

Numerical solutions to this problem can be obtained with most of the numerical

methods for optimization problems. We have used the fmincon routine provided by

MATLAB. Convergence to the optimum is guaranteed since ` is concave and Ω is a

convex subset of Rn. To show that Ω is a convex set, consider the mapping T : {g ∈
W : I(g) = 1} −→ Ω given by T (g) = (g(X1), . . . , g(Xn)). T is a bijective mapping

and verifies

T (αg1 + (1− α)g2) = αT (g1) + (1− α)T (g2) for 0 ≤ α ≤ 1.

Since {g ∈ W : I(g) = 1} is convex, so is Ω.

In the one dimensional case d = 1, given y ∈ Ω, the integral I(gy) can be eas-

ily computed. In fact, if X(1), . . . , X(n) stands for the order statistics of the vector

(X1, . . . , Xn), we have

I(gy) =
1

4

∑
−(X(i+1) −X(i))2 + 2(yi+1 + yi)(X

(i+1) −X(i)) + (yi+1 − yi)
2
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Figure 2.2. Two realizations of the cone estimator and the underlying

densities. Left: a sample from the density f(x) = x1[0,
√

2]. Right: a

sample from the sum of two uniform random variables. Sample sizes:

n=100.

Also, the Lipschitz condition is simply

−(X(i+1) −X(i)) ≤ yi+1 − yi ≤ X(i+1) −X(i), for i = 1, . . . , n− 1.

Figure 2.2 shows the realization of the cone estimator for two different distributions.

In higher dimensions (d > 1), it is not so simple to obtain a formula for
∫

gy. How-

ever, Monte-Carlo methods can be employed to compute this integral. It is important

to note that in high dimensions, more effort will be needed to compute the integral, but

that the number of restrictions does not depend on d, it only depends on the number

of sample points. For d ≥ 2, the number of restrictions can be roughly bounded by

n(n − 1)/2, the number of pairs of sample points which should verify the Lipschitz

condition. In the next section, an alternative estimator is presented, that simplifies the

computation of the integral and decreases the number of restrictions.

3. An alternative Maximum likelihood-type estimate

As we observed in the previous section, many different estimators can be viewed as

maximum likelihood-type estimates. In this section we consider an alternative estima-

tor to the one described above.

This new estimator is smoother and cheaper (in terms of amount of computations)

than the one described in the previous section, f̂n. It can be viewed basically as a

modification of it.

This new estimator will lead us to a simpler optimization problem: the integral I(g)

will be easier to compute and the number of restrictions will be substantially lower for

d ≥ 2. For the sake of simplicity we first analyze the one dimensional case.
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3.1. Dimension one: Piecewise linear maximum likelihood. We observed that

the MLE described in the previous section on the one hand has too many peaks and on

the other hand a nonlinear problem has to be solved in order to compute it. In order

to avoid these two problems we propose to look for a maximum likelihood estimate

just in the class of piecewise linear densities with knots at the sample points. Let

X(1), . . . , X(n) stand for the order statistics of the vector (X1, . . . , Xn). Now consider

V = V(X1, . . . , Xn) = {g ∈ F : g|[X(i),X(i+1)] is linear },
and let f̃n be the maximum of L over V(X1, . . . , Xn). We will call this estimator the

PLMLE. Existence and uniqueness of this estimator is guaranteed since V is a finite

dimensional compact and convex subset of F .

Although f̃n has lower likelihood than f̂n, it has some nice properties that f̂n does

not posses. For example, in order to compute f̃n we only need to solve a linear problem,

which means faster algorithms and lower errors. In addition, this estimator presents

less oscilations. We will also show that f̃n is a maximum likelihood-type estimator

too in the sense of (2.3). If we define V (g) as the linear interpolant of the points

(X(i), g(X(i))), we have

L

(
f̂n

I(V (f̂n))

)
≤ L(f̃n) ≤ L(f̂n).

The first inequality holds since

L

(
f̂n

I(V (f̂n))

)
= L

(
V

(
f̂n

I(V (f̂n))

))
,

V (f̂n/I(V (f̂n)) belongs to V and therefore has lower likelihood than f̃n.

We observe that for any g ∈ W ,

(3.1) I(g) +
n−1∑
i=1

(
X(i+1) −X(i)

)2 ≥ I(V (g)) ≥ 1.

Note that
n−1∑
i=1

(
X(i+1) −X(i)

)2 ≤ µ(S(g)) max
1≤i≤n−1

(
X(i+1) −X(i)

)
.

Since the maximal spacing converges almost surely to 0 – see for instance Devroye

(1981), Deheuvels (1983) – so does
∑n−1

i=1

(
X(i+1) −X(i)

)2
. Then, I(V (f̂n))

a.s.−→ 1 and

L

(
f̂n

I(V (f̂n))

)
− L(f̂n) = −L(I(V (f̂n)))

a.s.−→ 0.
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In consequence,

0 ≥ L(f̃n)−max
g∈F

L(g) ≥ L

(
f̂n

I(V (f̂n))

)
− L(f̂n) → 0

holds almost surely. So f̃n verifies equation (1) and therefore is in the context of Huber’s

Theorem.

In order to compute the linear estimator f̃n we observe that if the sample takes the

values (x1, . . . , xn) (assume that they are sorted), then we have to solve the following

optimization problem

maximize
n∏

i=1

yi ; subject to

−a ≤ Ay ≤ a, By = 1.

The matrices A, a and B read as

A =




−1 1 0 · · · 0

0 −1 1
...

. . . . . .
...

−1 1 0

0 · · · 0 −1 1




, a =




x2 − x1

...

xi+1 − xi

...

xn − xn−1




,

B =
1

2
(x2 − x1, x3 − x1, . . . , xi+1 − xi−1, . . . , xn − xn−2, xn − xn−1)

The equation−a ≤ Ay ≤ a guarantees the Lipschitz condition and By = 1 represents

the restriction I(f̃) = 1.

Figure 3.1 shows the PLMLE in dimension one for two samples: the first was obtained

from the sum of two uniform random variables and the second from the maximum of

two uniform random variables. The estimated densities are plotted together with the

real densities and the estimation is compared to the kernel estimation of the same

samples. Opposite to the kernel estimation, the PLMLE estimator does not assume

any particular behavior of the density near the boundary of its support. This is more

apparent in the case when the density is not zero in the boundary.

Remark Observe that we take V to be a piecewise linear function space, but is also

possible to take V as a space of spline functions of higher order. In this case we loss

the linear essence of the optimization problem but we gain in regularity.
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Figure 3.1. The PLMLE and the underlying density (left) compared

with the kernel estimation (right) for the same sample of size 100.

We also observe that this method gives another spline approach to nonparametric

estimation that, in general, do not coincide with the well known penalized maximum

likelihood estimate.

3.2. Higher dimensions. Now we introduce the d−dimensional version of the esti-

mator described above. We get back to the case f : Rd → R with Lipschitz constant 1

when restricted to its support. Let {Xi}i≥1 be independent and identically distributed

random vectors with common density f .

We consider the Delaunay tessellation T of the points X1, . . . , Xn. This tessellation

consists of a set of simplices {τ1, . . . , τN} such that none of the data points is contained

in any circumspheres of the simplices. The construction of the Delaunay tessellation

is based on Voronoi diagrams (see for example the book by George and Borouchaki

(1998)).

These tessellations have many desirable properties among which we want to stress

the following:
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For any i 6= j, τi ∩ τj is either a point, a (d − 1)−dimensional face, or

the empty set.

If we consider now the class

V = V(X1, . . . , Xn) = {g ∈ F : g|τi
is linear},

we can define as in the previous section, the PLMLE f̃n as the argument that maximizes

L over V(X1, . . . , Xn).

As a consequence of the above property, functions of V are univocally determined by

their value at the sample points. In fact, V is a compact subset of the finite dimensional

linear space Ṽ of continuous functions g defined on ∪kτk which are linear in each τk. A

basis of Ṽ is given by the functions ϕi, 1 ≤ i ≤ n defined by

ϕi(Xj) = δi,j.

A function g ∈ Ṽ has the representation

g(x) =
∑

i

yiϕi(x),

where yi = g(Xi). These spaces and bases are frequently used when applying the

well known finite element method for the numerical treatment of partial differential

equations (see for example Ciarlet (1978)).

To prove consistency of the estimator we proceed as in the one-dimensional case, the

only modification being in equation (3.1), replacing

n−1∑
i=1

(
X(i+1) −X(i)

)2

by
N−1∑
i=1

|τi|diam(τi).

The result that ensures that maximal spacing

max
1≤i≤n−1

(
X(i+1) −X(i)

) → 0 a.s.

must be replaced by a similar result for a notion of multivariate spacings. This will

be done using the notion of multivariate spacings introduced by Deheuvels (1983) (see

also Deheuvels et al (1988) for a more general setting). The maximal k-spacing Mk,n

with respect to a family of regular subsets C (which in our case will be the Euclidean

balls) is defined in Deheuvels et al (1988) as

Mk,n = sup{µ(C) : C ∈ C and nPn(C) < k},
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where Pn(.) stands for the empirical measure associated with X1, . . . , Xn and µ is

the Lebesgue measure on Rd . We use the results in Deheuvels et al (1988), on the

asymptotic behaviour of the second spacing M2,n for the class C of Euclidean balls

(Theorem 1) to obtain

N−1∑
i=1

|τi|diam(τi) ≤ µ(S(g)) max
1≤i≤N

diam(τi) ≤ µ(S(g))M2,n
a.s.−→ 0.

So, f̃n verifies (2.3) and hence we are ready to prove the following

Theorem 3.1. Assume H1, then for every compact set K ⊂ S(f) we have

‖f̃n − f‖L∞(K) → 0 a.s.

Proof. It is immediate once we have proved (2.3). The only point to be careful is in

the fact that, as in Theorem 2.1, f̃n is not Lipschitz in the whole S(f). To avoid this

problem, we proceed as in the proof of that theorem by considering an auxiliary statistic

asymptotically equivalent to f̃n. This statistic can be constructed extending f̃n from Cn

to the hole S(f) by any function that preserves the Lipchitzianity (and the norm) and

the positivity of f̃n. The fact that this auxiliary statistic is asymptotically equivalent

to f̃n can be proved exactly as in Theorem 2.1. Likewise, (2.3) and assumptions (A-1),

(A-2’), (A-3), (A-4) hold. Therefore, it is consistent and so is f̃n. ¤

3.3. Computation. To compute this estimator we observe that if the density g : Rd →
R is regular, the Lipschitz condition

|g(x)− g(y)| ≤ ‖x− y‖
is equivalent to

sup
x
‖∇g(x)‖∗ ≤ 1,

where

‖∇g(x)‖∗ = sup
y

|∇g(x)y|
‖y‖

is the norm induced by the norm considered in Rd. It is well known that, for 1 ≤ p ≤ ∞
we have ‖ · ‖∗p = ‖ · ‖q, where 1

p
+ 1

q
= 1.

In order to have the regularity required in the above paragraph, it is enough, for

example, to have a tessellation T = {τ1, . . . , τN} such that g|τk
is differentiable and

g|∪τk
is continuous.

If g ∈ Ṽ , then ∇g|τk
≡ ∇kg is constant for all k and hence g ∈ V if and only if

‖∇kg‖∗ ≤ 1, for all 1 ≤ k ≤ N
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and

I(g) = 1.

Note that, if the sample takes the values (x1, . . . , xn), then

I(g) = I

(
n∑

i=1

g(xi)ϕi

)
= By,

where B = (I(ϕ1), . . . , I(ϕn)) and y = (g(x1), . . . , g(xn)). We also have

∇kg =
∑

i

yi∇kϕi = Aky,

where Ak is the matrix whose i−th column is the gradient of the i−th basis function

ϕi restricted to the simplex τk (the gradients are constant on each τk). That is:

Ak = (∇t
kϕ1| . . . |∇t

kϕn).

Hence, our optimization problem reads as follows.

maximize
n∏

i=1

yi ; subject to

‖Aky‖∗ ≤ 1, 1 ≤ k ≤ N, By = 1.

Observe that if ‖ · ‖∗ = ‖ · ‖∞, the above problem has linear restrictions. That is the

case when ‖ · ‖1 is considered in Rd.

Remark. Observe that all the optimization problems treated above have the form:

minimize α(x); subject to

h1(x) ≤ 0

h2(x) = 0.

where α is concave and h1 and h2 are convex functions. Hence, standard algorithms for

convex programming problems can be applied to compute the estimator. The concav-

ity/convexity ensures convergence in all of our situations. We have used the fmincon

routine provided by MATLAB. For a description of the algorithm and further refer-

ences see

http://www.mathworks.com/access/helpdesk/help/toolbox/optim/fmincon.html

Figure 3.3 shows the bidimensional PLMLE (left) from a sample of size 250 together

with the underlying density (right). Finally, Figure 3.3 shows the estimation of a

uniform random variable with just 200 observations. Observe that these are rather

small samples for two-dimensional problems.
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Figure 3.2. The PLMLE (left) for a sample of size 250 and the under-

lying desnsity (right).

Figure 3.3. The PLMLE for a sample of size 200 of a uniform variable

over the unit square and the sample points.
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