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Motivation: some self-interacting

random walks



Once Reinforced Random Walk Davis 90’

Reinforcement strength a = 2 (left), a = 3 (middle), a = 100 (right)

in a box of size 2000. Color proportional to
√
· of vertex first visit time.



Origin-Excited RW Kozma 06’

E[Xt+1 −Xt|Ft] = − δ

|v|
v if Xt = v is first visit of v ∈ Zd.



OERW Back in the largest direction



OERW Back one unit in both directions



Other models

Eden 61’ - First Passage Percolation (Hammersley-Welsh 65’)

IDLA (Meakin-Deutch 86’; Diaconis-Fulton 91’):

Shape Theorem → Euclidean Ball. Lawler, Bramson, Griffeath, 1992.

Continuous time, d = 2, Gravner-Quastel, 2000. General: Levine-Peres,

2010

Logarithmic fluctuations: Asselah-Gaudillière / Jerison-Levine-Sheffield.

uIDLA: Shape Theorem → Euclidean Ball. Benjamini, Duminil-Copin,

Kozma, Lucas, 2017.

OERW, ORRW: Shape Theorem → Open problem.
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Our Model

• Simplified model in continuous space to bypass some technical

difficulties.

• Familiy (Dε
t)t≥0 ⊂ Rd of star-shaped compact domains parametrized

by scaling parameter ε > 0

• The boundary of Dε
t can be parametrized by a continuous function

Rεt : Sd−1 → Rd.

• There is also a “particle” xεt ∈ Dε
t .

• Particle is fast and domain is slow.

• The process (Rεt , x
ε
t) is jointly Markov.

• The jump probabilities are determined by a hitting probabiliy density

F (r, x, ·) on Sd−1 and transportation rule H(r, ξ)

F : C(Sd−1)× Rd → L2(Sd−1), H : C(Sd−1)× Rd → Rd.
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The model (d = 2)

Fix ε ∈ (0, 1]. (Rεt , ξ
ε
t ) is a Markov procsess on C(S1,R≥0)× R2 that

jumps at rate 1/ε and has transitions given by

Rεt = Rεt− +
√
εg
( ·−ξεt√

ε/yRε
t−,x

ε
t−

)
xεt ∼ H(Rεt , ξ

ε
t , ·).

Where

• ξεt ∼ F (Rεt−, x
ε
t−, ·)

• g is a “bump” function.

• yr,x :=
∫
S1 r(θ)F (r, x, θ) dθ is a normalizing constant to guarantee

that the (expected) volume added is approx. ε.
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The model (d = 2)

F (r, x, ·) = density of harmonic measure of r from x H(r, ξ) = αr(ξ).



Examples

Point at the boundary F

• Harmonic measure from point (RW)

• (A function of) Distance to source

• Curvature

• i.i.d

Transportation rule H

• Origin (IDLA)

• Push back α-fraction (OERW).

• Push back one unit (OERW).

• Uniform in the domain (uIDLA).
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H(r, ξ) = .99r(ξ)ξ, F = harmonic measure, ε = .02



H(r, ξ) = (1− |ξ|∞
10|ξ|2 )r(ξ)ξ, F =harmonic measure, ε = 10−6



Shapes process vs Origin-Excited Random Walk



Small bump on Sd−1

gη(s) = cη−(n−1)φ
(
1− 1−s

η2

)
for some density φ ∈ C([−1, 1],R+).

||f ? gη − f ||2 → 0 as η → 0 (? denotes spherical convolution).

Add ε1/nηn−1gη(〈ξ, ·〉) for a bump of height O(ε1/n) & support

on the spherical cap of Euclidean radius 2η centered at angle ξ.

-1 -0.5 0 0.5 1

L: gη(s) at different η. R: Adding gη(〈z, ·〉) to S2; z = (0, 0, 1).



Frozen domain dynamics



Ergodicty Assumption (E)

For any r ∈ C(Sn−1) frozen domain the particle the process (xrt )t≥0 has

a unique invariant probability measure νr, such that

sup
r∈A1(a)

sup
t0≥0

E
[∥∥∥1

t

∫ t0+t

t0

[b(r, x1,rs )− b(r)]ds
∥∥∥2
2

]
≤ λ(t, a)→ 0

as t→∞, for any fixed a ∈ (0, 1).

b(r, x)(·) =
F (r, x, ·)
yr,x

, b̄(r)(·) =

∫
Rn
b(r, x)(·) dνr(x).

A1(a) :=
{
r ∈ C(Sn−1) : inf

θ
{r(θ)} ≥ a, ‖r‖2 ≤ a−1

}

Uniform minorization of jump kernel Pr of {x1,rTi }:

inf
r∈A(a)

x∈ImH

{(Pr)
n0(x, ·)} ≥ m(·) =⇒ (E) .
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Averaging Principle



Heuristics

Simpler case: F independent of x

E(Rεt(θ)−Rεt−(θ)|Ft) =
√
ε

∫
S1
g
( θ − ξ√

ε/yRεt−

)
F (Rεt−, ξ) dξ

=
ε

yRεt−
(gε ? F )(θ) ∼ ε

F (Rεt−, θ)

yRεt−

Rε· → r̄· as ε→ 0.

d

dt
r̄t(θ) = b(r̄t, θ), b(r, ·) =

F (r, ·)
yr

.

General case:

Rε· → r̄· as ε→ 0.

d

dt
r̄t(θ) =

∫
Rd
b(r̄t, x, θ)νr(x) dx, b(r, x, ·) =

F (r, x, ·)
yr,x

.
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Problem: prove this for F and H

as general as possible.



Consequence: Shape theorem



Shape theorem

Assume F and H are invariant under scaling

F (cr, cx, ·) = F (r, x, ·), H(cr, x) = cH(r, x)

Then

Time-Space scaling

Rεt
L
= ε1/dR1

t
ε

Take fixed t > 0 and τ = t/ε we get

1√
τ
R1
τ =

ε1/d√
t
R1
t
ε

=
1√
t
R
t/τ
t → r̄t√

t
as τ →∞

With

r̄0 = “ε1/dR1
0”
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Theorems



Lipschitz property Assumption (L)

‖F (r, x, ·)− F (r′, x′, ·)‖2 ≤ K
(
‖r − r′‖2 + |x− x′|

)
,

|H(r, z)−H(r′, z′)| ≤ K
(
‖r − r′‖2 + |z − z′|

)
,

‖b(r)− b(r′)‖2 ≤ K‖r − r′‖2 .

Also, F (r, x, ·) ∈ C(Sn−1) for every (r, x) ∈ D(F ).



Generator Approximation Assumption (C)

For any fixed t ≥ 0 and a > 0

lim
ε→0
‖(b ? gη)(Rεt∧τε , x

ε
t∧τε)− b(Rεt∧τε , xεt∧τε)‖2 = 0, in probability ,

(5.1)

where τ ε := inf{t > 0 : ‖Rεt‖2 ≥ a−1}.



Averaging Principle and Shape Theorem

Theorem

Under Assumptions (E) and (L) and (C), the solution to the (infinite

dimensional) ODE, ˙̄rt = b̄(r̄t) exists and is unique for every

r̄0 ∈ C(Sd−1). Moreover, if Rε0 → r̄0 in L2(Sd−1), then

lim
ε→0

P
(

sup
0≤t≤T

‖Rεt − r̄t‖2 > δ

)
= 0

Theorem

If also (I) holds, then for every δ > 0 and t > 0

lim
τ→∞

P
(∣∣∣∣∣∣ R1

τ

τ1/d
− r̄t

∣∣∣∣∣∣
2
> δ
∣∣∣R1

0 = r̄0(τ/t)1/d
)

= 0

Moreover, r̄1 is an Euclidean ball if and only if
∫
F (r, z, ·)dνr(z) is

rotationally invariant.
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Applications



Applications and Remarks

• Harmonic measure is not Lipschitz.

• We can get the Lipschitz property if we work in smoothed domains.

• Scaling invariance when drift size is proportional to size.

• We expect the shape theorem to hold even without the scaling

invariance property.

• F (r, x, θ) = Z−1r(θ) =⇒ infinitely many invariant shapes.

• Other rules:

• F = Distance to reference point,

• F = Mean curvature (Richardson’s model ?)

• F independent of R
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• F independent of R
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Smoothed Harmonic measure

• g a (fixed) smoothing kernel, r̃ = r ? g.

• 0 ≤ α(`, z) < `

Consider

F (r, x, ·) = Harmonic measure on r̃ from x, H(r, z) = α(r̃(z), z)z

Theorem

(a) The Averaging Principle holds for this model.

(b) In case α(`, z) = α(z)`, the Shape Theorem also holds. In particular,

for α(`, z) = γ` with γ ∈ [0, 1) fixed, the centered Euclidean ball is an

invariant shape; and when γ = 0, it is uniquely attractive.



Some proofs: auxiliary process

• Take ∆(ε) = ε log1/3(1/ε)

• In ∆ time, the fast variable achieves equilibrium and the slow one

does not evolve macroscopically

• In each interval of length ∆ approximate (Rεt , x
ε
t) by a process

(R̂εt , x̂
ε
t) in which x̂εt evolves in frozen domain and R̂εt according to

the ODE given by
d

dt
R̂εt = b(Rεtk , x̂

ε
t)

• In each interval we can use the ergodic assumption.

• E|xεt − x̂εt|2 ≤ Cε, E|Rεt − R̂εt |2 → 0, E|Rεt − r̄t|2 → 0.
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A coupling inequality (to bound E|xεt − x̂εt|2)

Lemma

Let M be a connected Riemannian manifold without boundary compactly

embedded in Rd. Let µ, ν be probability distributions on M having

densities p, q respectively. Assume p(x) ≥ c > 0 for all x ∈M . Then,

there exists C = C(M, c) <∞ such that the Wasserstein 2-distance

verifes

W2(µ, ν) ≤ C‖p− q‖2.



Thanks.
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