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Motivation: some self-interacting
random walks



Once Reinforced Random Walk Davis 90’

Reinforcement strength a = 2 (left), a = 3 (middle), a = 100 (right)
in a box of size 2000. Color proportional to /- of vertex first visit time.



Origin-Excited RW Kozma 06’

5
E[X;11 — X¢|F] = ol if X; = v is first visit of v € Z.




OERW Back in the largest direction




OERW Back one unit in both directions
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Eden 61" - First Passage Percolation (Hammersley-Welsh 65')

IDLA (Meakin-Deutch 86'; Diaconis-Fulton 91'):

Shape Theorem — Euclidean Ball. Lawler, Bramson, Griffeath, 1992.
Continuous time, d = 2, Gravner-Quastel, 2000. General: Levine-Peres,
2010

Logarithmic fluctuations: Asselah-Gaudilliere / Jerison-Levine-Sheffield.

ulDLA: Shape Theorem — Euclidean Ball. Benjamini, Duminil-Copin,
Kozma, Lucas, 2017.

OERW, ORRW: Shape Theorem — Open problem.
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e Simplified model in continuous space to bypass some technical
difficulties.

e Familiy (Df);>0 C R? of star-shaped compact domains parametrized
by scaling parameter € > 0

e The boundary of Df can be parametrized by a continuous function
R: ST71 — R4

e There is also a “particle” zf € Dy.

e Particle is fast and domain is s/ow.

e The process (R§,z§) is jointly Markov.

e The jump probabilities are determined by a hitting probabiliy density
F(r,z,-) on S*"! and transportation rule H(r,¢)

F:C(Sh xRY — L2(S771), H: O xR — RY,



The model (d = 2)

Fix € € (0,1]. (R§, &) is a Markov procsess on C(S', Rxq) x R? that
jumps at rate 1/e and has transitions given by

Ry = Ri_ +veg (i)

€
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The model (d = 2)

F(r,z,-) = density of harmonic measure of r from x H(r,&) = ar().
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H(r, &) =.99(¢)E, F = harmonic measure, ¢ = .02




F =harmonic measure, ¢ = 1076




Shapes process vs Origin-Excited Random Walk




Small bump on S%!

1=2) for some density ¢ € C([—1,1],Ry).

gn(s) =en " Vo(1

||f *gn— fll2 — 0 as n — 0 (% denotes spherical convolution)

Add €'/ 1g, ((€,-)) for a bump of height O(e!/™) & support
on the spherical cap of Euclidean radius 21 centered at angle £

L4

) to §%; 2 = (0,0,1).

at different 7. R: Adding g, ((z,

s

L: gn(s



Frozen domain dynamics

/\J

F(OXe, 3 (€,3)

(X)), X fass in fozen domain ©



Ergodicty Assumption (E)

For any r € C(S™~!) frozen domain the particle the process (x7);>¢ has
a unique invariant probability measure v,., such that

'rESj\lRa) ZHZ%E {Hi /t:UH[b(r,xi’T) — b(r)]ds”j < A(t,a) =0
as t — oo, for any fixed a € (0,1).
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Ergodicty Assumption (E)

For any r € C(S™~!) frozen domain the particle the process (x7);>¢ has
a unique invariant probability measure v,., such that

1 [tott B 2
sup sup E {H/ [b(r,zt™) — b(r)]ds” } < A(t,a) =0
reds(a) to>0 t St 2

as t — oo, for any fixed a € (0,1).

b)) = FEED b0 = [ ) dno),

Yrw
Ai(a) :=={rec(s""): igf{r(@)} >a,|rfa<a '}

inf {(P,)"(z,-)} > m() — ().

reA(a)
rzelmH

. o . 1,
Uniform minorization of jump kernel P,. of {z;



Averaging Principle




Heuristics

Simpler case: F' independent of x
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Heuristics

Simpler case: F' independent of x

BURI0) — B O1F) = Ve [ o Sy PR €) de

€ F(R_,0)
= (g P)() ~ IO
YRs_ YRs_
R — 7. ase— 0
d F(r,-
G0 = b0, bl =)
General case:
Rt — 7. ase— 0
45 0) = / b2, O)p(z) dz, b z,) = L)
dt R4 Yr.x



Problem: prove this for ' and H
as general as possible.
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Theorems




Lipschitz property Assumption (L)

|Gz, ) — P 2!, Yo < K (Ir = #lls + |z — '),
[H(r,z) - H(¥, )| < K(llr —'l|2 + |2 — '),
15(r) = 3" )2 < Kllr o

Also, F(r,z,-) € C(S"1) for every (r,z) € D(F).



Generator Approximation Assumption (C)

For any fixed t > 0 and a > 0

2 =0, in probability,
(5.1)

lg% H (b * gﬁ)(RE/\T‘ ) x;/\TF ) - b(le/\T‘ ’ x:/\‘r‘)

where 7€ :=inf{t > 0: ||R{||2 > a1}



Averaging Principle and Shape Theorem

Theorem

Under Assumptions (E) and (L) and (C), the solution to the (infinite
dimensional) ODE, 7, = b(F;) exists and is unique for every
7o € C(S*Y). Moreover, if R§ — 7o in L*(S?~'), then

lim P ( sup ||Rf — 7]z > 5) =0
e—0 0<t<T



Averaging Principle and Shape Theorem

Theorem

Under Assumptions (E) and (L) and (C), the solution to the (infinite
dimensional) ODE, 7, = b(F;) exists and is unique for every
7o € C(S*Y). Moreover, if R§ — 7o in L*(S?~'), then

tig P (s, 175 il > 0) =0
Theorem 0st=T

If also (1) holds, then for every 6 > 0 and t > 0
- Ry 1_ o 1/d
I e

Moreover, 71 is an Euclidean ball if and only if [ F(r,z,-)dv,(z) is
rotationally invariant.



Applications




Applications and Remarks



Applications and Remarks

e Harmonic measure is not Lipschitz.



Applications and Remarks

e Harmonic measure is not Lipschitz.

e We can get the Lipschitz property if we work in smoothed domains.



Applications and Remarks

e Harmonic measure is not Lipschitz.
e We can get the Lipschitz property if we work in smoothed domains.

e Scaling invariance when drift size is proportional to size.



Applications and Remarks

e Harmonic measure is not Lipschitz.

e We can get the Lipschitz property if we work in smoothed domains.

Scaling invariance when drift size is proportional to size.

We expect the shape theorem to hold even without the scaling

invariance property.



Applications and Remarks

e Harmonic measure is not Lipschitz.

e We can get the Lipschitz property if we work in smoothed domains.

Scaling invariance when drift size is proportional to size.

We expect the shape theorem to hold even without the scaling

invariance property.

F(r,x,0) = Z~'r(6) = infinitely many invariant shapes.



Applications and Remarks

e Harmonic measure is not Lipschitz.
e We can get the Lipschitz property if we work in smoothed domains.
e Scaling invariance when drift size is proportional to size.

e We expect the shape theorem to hold even without the scaling
invariance property.

e F(r,z,0) = Z~'r(f) = infinitely many invariant shapes.

e Other rules:

e [ = Distance to reference point,



Applications and Remarks

e Harmonic measure is not Lipschitz.
e We can get the Lipschitz property if we work in smoothed domains.
e Scaling invariance when drift size is proportional to size.

e We expect the shape theorem to hold even without the scaling
invariance property.

e F(r,z,0) = Z~'r(f) = infinitely many invariant shapes.

e Other rules:

e [ = Distance to reference point,
e F' = Mean curvature (Richardson’s model ?7)



Applications and Remarks

e Harmonic measure is not Lipschitz.

e We can get the Lipschitz property if we work in smoothed domains.

e Scaling invariance when drift size is proportional to size.

e We expect the shape theorem to hold even without the scaling
invariance property.

e F(r,z,0) = Z~'r(f) = infinitely many invariant shapes.

e Other rules:

e [ = Distance to reference point,
e F' = Mean curvature (Richardson’s model ?7)
e [ independent of R



Smoothed Harmonic measure

e g a (fixed) smoothing kernel, 7 = 7 x g.
e 0<a(l,z) <t

Consider

F(r,x,-) = Harmonic measure on 7 from x, H(r,z) = a(f(2),2)z

Theorem

(a) The Averaging Principle holds for this model.

(b) In case a (¢, z) = a(2)l, the Shape Theorem also holds. In particular,
for a(l, z) = ¢ with v € [0, 1) fixed, the centered Euclidean ball is an
invariant shape; and when v = 0, it is uniquely attractive.
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Some proofs: auxiliary process

Take Ale) = ¢ ]()g1 301 /€)

In A time, the fast variable achieves equilibrium and the slow one
does not evolve macroscopically

In each interval of length A approximate (RS, z§) by a process
(R¢, &) in which Z¢ evolves in frozen domain and R according to
the ODE given by

d e € €
= b(R;, , %y)

In each interval we can use the ergodic assumption.

ElzS — 22 < Ce, E|RS — RS2 =0, E|RS — 72> — 0.



A coupling inequality (to bound E|x{ — Z§|

Lemma

Let M be a connected Riemannian manifold without boundary compactly
embedded in R%. Let ji, v be probability distributions on M having
densities p, q respectively. Assume p(x) > ¢ > 0 for all x € M. Then,
there exists C' = C'(M, c¢) < oo such that the Wasserstein 2-distance
verifes

Wa(p,v) < Cllp = ql|2-



Thanks.
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