A Model for Random Growth with Memory

Averaging Principle and Shape Theorem

Pablo Groisman
with A. Dembo, R. Huang, V. Sidoravicius

University of Buenos Aires

Motivation: some self-interacting random walks

Reinforcement strength $a=2$ (left), $a=3$ (middle), $a=100$ (right) in a box of size 2000. Color proportional to $\sqrt{ } \cdot$ of vertex first visit time.

Origin-Excited RW

$$
\mathbb{E}\left[X_{t+1}-X_{t} \mid \mathcal{F}_{t}\right]=-\frac{\delta}{|v|} v \text { if } X_{t}=v \text { is first visit of } v \in \mathbb{Z}^{d}
$$

Back in the largest direction

Other models

Eden 61' - First Passage Percolation (Hammersley-Welsh 65')

Other models

Eden 61' - First Passage Percolation (Hammersley-Welsh 65')
IDLA (Meakin-Deutch 86'; Diaconis-Fulton 91'):
Shape Theorem \rightarrow Euclidean Ball. Lawler, Bramson, Griffeath, 1992.
Continuous time, $d=2$, Gravner-Quastel, 2000. General: Levine-Peres, 2010
Logarithmic fluctuations: Asselah-Gaudillière / Jerison-Levine-Sheffield.

Other models

Eden 61' - First Passage Percolation (Hammersley-Welsh 65')
IDLA (Meakin-Deutch 86'; Diaconis-Fulton 91'):
Shape Theorem \rightarrow Euclidean Ball. Lawler, Bramson, Griffeath, 1992.
Continuous time, $d=2$, Gravner-Quastel, 2000. General: Levine-Peres, 2010
Logarithmic fluctuations: Asselah-Gaudillière / Jerison-Levine-Sheffield.
uIDLA: Shape Theorem \rightarrow Euclidean Ball. Benjamini, Duminil-Copin, Kozma, Lucas, 2017.

Other models

Eden 61' - First Passage Percolation (Hammersley-Welsh 65')
IDLA (Meakin-Deutch 86'; Diaconis-Fulton 91'):
Shape Theorem \rightarrow Euclidean Ball. Lawler, Bramson, Griffeath, 1992.
Continuous time, $d=2$, Gravner-Quastel, 2000. General: Levine-Peres, 2010
Logarithmic fluctuations: Asselah-Gaudillière / Jerison-Levine-Sheffield.
uIDLA: Shape Theorem \rightarrow Euclidean Ball. Benjamini, Duminil-Copin, Kozma, Lucas, 2017.

OERW, ORRW: Shape Theorem \rightarrow Open problem.

Our Model

- Simplified model in continuous space to bypass some technical difficulties.

Our Model

- Simplified model in continuous space to bypass some technical difficulties.
- Familiy $\left(D_{t}^{\epsilon}\right)_{t \geq 0} \subset \mathbb{R}^{d}$ of star-shaped compact domains parametrized by scaling parameter $\epsilon>0$

Our Model

- Simplified model in continuous space to bypass some technical difficulties.
- Familiy $\left(D_{t}^{\epsilon}\right)_{t \geq 0} \subset \mathbb{R}^{d}$ of star-shaped compact domains parametrized by scaling parameter $\epsilon>0$
- The boundary of D_{t}^{ϵ} can be parametrized by a continuous function $R_{t}^{\epsilon}: \mathbb{S}^{d-1} \rightarrow \mathbb{R}^{d}$.

Our Model

- Simplified model in continuous space to bypass some technical difficulties.
- Familiy $\left(D_{t}^{\epsilon}\right)_{t \geq 0} \subset \mathbb{R}^{d}$ of star-shaped compact domains parametrized by scaling parameter $\epsilon>0$
- The boundary of D_{t}^{ϵ} can be parametrized by a continuous function $R_{t}^{\epsilon}: \mathbb{S}^{d-1} \rightarrow \mathbb{R}^{d}$.
- There is also a "particle" $x_{t}^{\epsilon} \in D_{t}^{\epsilon}$.

Our Model

- Simplified model in continuous space to bypass some technical difficulties.
- Familiy $\left(D_{t}^{\epsilon}\right)_{t \geq 0} \subset \mathbb{R}^{d}$ of star-shaped compact domains parametrized by scaling parameter $\epsilon>0$
- The boundary of D_{t}^{ϵ} can be parametrized by a continuous function $R_{t}^{\epsilon}: \mathbb{S}^{d-1} \rightarrow \mathbb{R}^{d}$.
- There is also a "particle" $x_{t}^{\epsilon} \in D_{t}^{\epsilon}$.
- Particle is fast and domain is slow.

Our Model

- Simplified model in continuous space to bypass some technical difficulties.
- Familiy $\left(D_{t}^{\epsilon}\right)_{t \geq 0} \subset \mathbb{R}^{d}$ of star-shaped compact domains parametrized by scaling parameter $\epsilon>0$
- The boundary of D_{t}^{ϵ} can be parametrized by a continuous function $R_{t}^{\epsilon}: \mathbb{S}^{d-1} \rightarrow \mathbb{R}^{d}$.
- There is also a "particle" $x_{t}^{\epsilon} \in D_{t}^{\epsilon}$.
- Particle is fast and domain is slow.
- The process $\left(R_{t}^{\epsilon}, x_{t}^{\epsilon}\right)$ is jointly Markov.

Our Model

- Simplified model in continuous space to bypass some technical difficulties.
- Familiy $\left(D_{t}^{\epsilon}\right)_{t \geq 0} \subset \mathbb{R}^{d}$ of star-shaped compact domains parametrized by scaling parameter $\epsilon>0$
- The boundary of D_{t}^{ϵ} can be parametrized by a continuous function $R_{t}^{\epsilon}: \mathbb{S}^{d-1} \rightarrow \mathbb{R}^{d}$.
- There is also a "particle" $x_{t}^{\epsilon} \in D_{t}^{\epsilon}$.
- Particle is fast and domain is slow.
- The process $\left(R_{t}^{\epsilon}, x_{t}^{\epsilon}\right)$ is jointly Markov.
- The jump probabilities are determined by a hitting probabiliy density $F(r, x, \cdot)$ on \mathbb{S}^{d-1} and transportation rule $H(r, \xi)$

$$
F: C\left(\mathbb{S}^{d-1}\right) \times \mathbb{R}^{d} \rightarrow L^{2}\left(\mathbb{S}^{d-1}\right), \quad H: C\left(\mathbb{S}^{d-1}\right) \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}
$$

The model $(d=2)$

Fix $\epsilon \in(0,1]$. $\left(R_{t}^{\epsilon}, \xi_{t}^{\epsilon}\right)$ is a Markov procsess on $C\left(\mathbb{S}^{1}, \mathbb{R}_{\geq 0}\right) \times \mathbb{R}^{2}$ that jumps at rate $1 / \epsilon$ and has transitions given by

$$
\begin{aligned}
& R_{t}^{\epsilon}=R_{t-}^{\epsilon}+\sqrt{\epsilon} g\left(\frac{-\xi_{t}^{\epsilon}}{\sqrt{\epsilon} / y_{R_{t-}^{\epsilon}, x_{t-}^{\epsilon}}}\right) \\
& x_{t}^{\epsilon} \sim H\left(R_{t}^{\epsilon}, \xi_{t}^{\epsilon}, \cdot\right) .
\end{aligned}
$$

The model $(d=2)$

Fix $\epsilon \in(0,1]$. $\left(R_{t}^{\epsilon}, \xi_{t}^{\epsilon}\right)$ is a Markov procsess on $C\left(\mathbb{S}^{1}, \mathbb{R}_{\geq 0}\right) \times \mathbb{R}^{2}$ that jumps at rate $1 / \epsilon$ and has transitions given by

$$
\begin{aligned}
& R_{t}^{\epsilon}=R_{t-}^{\epsilon}+\sqrt{\epsilon} g\left(\frac{-\xi_{t}^{\epsilon}}{\sqrt{\epsilon} / y_{R_{t--}, x_{t-}^{\epsilon}}}\right) \\
& x_{t}^{\epsilon} \sim H\left(R_{t}^{\epsilon}, \xi_{t}^{\epsilon}, \cdot\right) .
\end{aligned}
$$

Where

- $\xi_{t}^{\epsilon} \sim F\left(R_{t-}^{\epsilon}, x_{t-}^{\epsilon}, \cdot\right)$

The model $(d=2)$

Fix $\epsilon \in(0,1]$. $\left(R_{t}^{\epsilon}, \xi_{t}^{\epsilon}\right)$ is a Markov procsess on $C\left(\mathbb{S}^{1}, \mathbb{R}_{\geq 0}\right) \times \mathbb{R}^{2}$ that jumps at rate $1 / \epsilon$ and has transitions given by

$$
\begin{aligned}
& R_{t}^{\epsilon}=R_{t-}^{\epsilon}+\sqrt{\epsilon} g\left(\frac{-\xi_{t}^{\epsilon}}{\sqrt{\epsilon} / y_{R_{t--}, x_{t-}^{\epsilon}}}\right) \\
& x_{t}^{\epsilon} \sim H\left(R_{t}^{\epsilon}, \xi_{t}^{\epsilon}, \cdot\right) .
\end{aligned}
$$

Where

- $\xi_{t}^{\epsilon} \sim F\left(R_{t-}^{\epsilon}, x_{t-}^{\epsilon}, \cdot\right)$
- g is a "bump" function.

The model $(d=2)$

Fix $\epsilon \in(0,1]$. $\left(R_{t}^{\epsilon}, \xi_{t}^{\epsilon}\right)$ is a Markov procsess on $C\left(\mathbb{S}^{1}, \mathbb{R}_{\geq 0}\right) \times \mathbb{R}^{2}$ that jumps at rate $1 / \epsilon$ and has transitions given by

$$
\begin{aligned}
& R_{t}^{\epsilon}=R_{t-}^{\epsilon}+\sqrt{\epsilon} g\left(\frac{-\xi_{t}^{\epsilon}}{\sqrt{\epsilon} / y_{R_{t-}^{\epsilon}, x_{t-}^{\epsilon}}}\right) \\
& x_{t}^{\epsilon} \sim H\left(R_{t}^{\epsilon}, \xi_{t}^{\epsilon}, \cdot\right) .
\end{aligned}
$$

Where

- $\xi_{t}^{\epsilon} \sim F\left(R_{t-}^{\epsilon}, x_{t-}^{\epsilon}, \cdot\right)$
- g is a "bump" function.
- $y_{r, x}:=\int_{\mathbb{S}^{1}} r(\theta) F(r, x, \theta) d \theta$ is a normalizing constant to guarantee that the (expected) volume added is approx. ϵ.

The model $(d=2)$

Fix $\epsilon \in(0,1]$. $\left(R_{t}^{\epsilon}, \xi_{t}^{\epsilon}\right)$ is a Markov procsess on $C\left(\mathbb{S}^{1}, \mathbb{R}_{\geq 0}\right) \times \mathbb{R}^{2}$ that jumps at rate $1 / \epsilon$ and has transitions given by

$$
\begin{aligned}
& R_{t}^{\epsilon}=R_{t-}^{\epsilon}+\sqrt{\epsilon} g\left(\frac{-\xi_{t}^{\epsilon}}{\sqrt{\epsilon} / y_{R_{t-}^{\epsilon}, x_{t-}^{\epsilon}}}\right) \\
& x_{t}^{\epsilon} \sim H\left(R_{t}^{\epsilon}, \xi_{t}^{\epsilon}, \cdot\right) .
\end{aligned}
$$

Where

- $\xi_{t}^{\epsilon} \sim F\left(R_{t-}^{\epsilon}, x_{t-}^{\epsilon}, \cdot\right)$
- g is a "bump" function.
- $y_{r, x}:=\int_{\mathbb{S}^{1}} r(\theta) F(r, x, \theta) d \theta$ is a normalizing constant to guarantee that the (expected) volume added is approx. ϵ.

The model $(d=2)$

$F(r, x, \cdot)=$ density of harmonic measure of r from $x \quad H(r, \xi)=\alpha r(\xi)$.

Examples

Point at the boundary F

Examples

Point at the boundary F

- Harmonic measure from point (RW)

Examples

Point at the boundary F

- Harmonic measure from point (RW)
- (A function of) Distance to source

Examples

Point at the boundary F

- Harmonic measure from point (RW)
- (A function of) Distance to source
- Curvature

Examples

Point at the boundary F

- Harmonic measure from point (RW)
- (A function of) Distance to source
- Curvature
- i.i.d

Examples

Point at the boundary F

- Harmonic measure from point (RW)
- (A function of) Distance to source
- Curvature
- i.i.d

Transportation rule H

Examples

Point at the boundary F

- Harmonic measure from point (RW)
- (A function of) Distance to source
- Curvature
- i.i.d

Transportation rule H

- Origin (IDLA)

Examples

Point at the boundary F

- Harmonic measure from point (RW)
- (A function of) Distance to source
- Curvature
- i.i.d

Transportation rule H

- Origin (IDLA)
- Push back α-fraction (OERW).

Examples

Point at the boundary F

- Harmonic measure from point (RW)
- (A function of) Distance to source
- Curvature
- i.i.d

Transportation rule H

- Origin (IDLA)
- Push back α-fraction (OERW).
- Push back one unit (OERW).

Examples

Point at the boundary F

- Harmonic measure from point (RW)
- (A function of) Distance to source
- Curvature
- i.i.d

Transportation rule H

- Origin (IDLA)
- Push back α-fraction (OERW).
- Push back one unit (OERW).
- Uniform in the domain (uIDLA).

Examples

Point at the boundary F

- Harmonic measure from point (RW)
- (A function of) Distance to source
- Curvature
- i.i.d

Transportation rule H

- Origin (IDLA)
- Push back α-fraction (OERW).
- Push back one unit (OERW).
- Uniform in the domain (uIDLA).

$H(r, \xi)=.99 r(\xi) \xi, \quad F=$ harmonic measure,$\quad \epsilon=.02$

Shapes process vs Origin-Excited Random Walk

Small bump on \mathbb{S}^{d-1}

$g_{\eta}(s)=c \eta^{-(n-1)} \phi\left(1-\frac{1-s}{\eta^{2}}\right)$ for some density $\phi \in C\left([-1,1], \mathbb{R}_{+}\right)$.
$\left\|f \star g_{\eta}-f\right\|_{2} \rightarrow 0$ as $\eta \rightarrow 0$ (\star denotes spherical convolution).

Add $\epsilon^{1 / n} \eta^{n-1} g_{\eta}(\langle\xi, \cdot\rangle)$ for a bump of height $O\left(\epsilon^{1 / n}\right)$ \& support on the spherical cap of Euclidean radius 2η centered at angle ξ.

$\mathrm{L}: g_{\eta}(s)$ at different η. R: Adding $g_{\eta}(\langle z, \cdot\rangle)$ to $\mathbb{S}^{2} ; z=(0,0,1)$.

Frozen domain dynamics

$\left(x_{t}^{r}\right)_{t \geqslant 0}$ particle process in frozen domain r

For any $r \in C\left(S^{n-1}\right)$ frozen domain the particle the process $\left(x_{t}^{r}\right)_{t \geq 0}$ has a unique invariant probability measure ν_{r}, such that

$$
\sup _{r \in \mathcal{A}_{1}(a)} \sup _{t_{0} \geq 0} \mathbb{E}\left[\left\|\frac{1}{t} \int_{t_{0}}^{t_{0}+t}\left[b\left(r, x_{s}^{1, r}\right)-\bar{b}(r)\right] d s\right\|_{2}^{2}\right] \leq \lambda(t, a) \rightarrow 0
$$

as $t \rightarrow \infty$, for any fixed $a \in(0,1)$.

$$
\begin{aligned}
& b(r, x)(\cdot)=\frac{F(r, x, \cdot)}{y_{r, x}}, \quad \bar{b}(r)(\cdot)=\int_{\mathbb{R}^{n}} b(r, x)(\cdot) d \nu_{r}(x) \\
& \mathcal{A}_{1}(a):=\left\{r \in C\left(S^{n-1}\right): \inf _{\theta}\{r(\theta)\} \geq a,\|r\|_{2} \leq a^{-1}\right\}
\end{aligned}
$$

For any $r \in C\left(S^{n-1}\right)$ frozen domain the particle the process $\left(x_{t}^{r}\right)_{t \geq 0}$ has a unique invariant probability measure ν_{r}, such that

$$
\sup _{r \in \mathcal{A}_{1}(a)} \sup _{t_{0} \geq 0} \mathbb{E}\left[\left\|\frac{1}{t} \int_{t_{0}}^{t_{0}+t}\left[b\left(r, x_{s}^{1, r}\right)-\bar{b}(r)\right] d s\right\|_{2}^{2}\right] \leq \lambda(t, a) \rightarrow 0
$$

as $t \rightarrow \infty$, for any fixed $a \in(0,1)$.

$$
\begin{aligned}
& b(r, x)(\cdot)=\frac{F(r, x, \cdot)}{y_{r, x}}, \quad \bar{b}(r)(\cdot)=\int_{\mathbb{R}^{n}} b(r, x)(\cdot) d \nu_{r}(x) \\
& \mathcal{A}_{1}(a):=\left\{r \in C\left(S^{n-1}\right): \inf _{\theta}\{r(\theta)\} \geq a,\|r\|_{2} \leq a^{-1}\right\}
\end{aligned}
$$

Uniform minorization of jump kernel P_{r} of $\left\{x_{T_{i}}^{1, r}\right\}$:

$$
\inf _{\substack{r \in \mathcal{A}(a) \\ x \in \operatorname{Im} H}}\left\{\left(\mathrm{P}_{r}\right)^{n_{0}}(x, \cdot)\right\} \geq m(\cdot) \quad \Longrightarrow \quad(\mathrm{E})
$$

Averaging Principle

Heuristics

Simpler case: F independent of x

$$
\begin{aligned}
\mathbb{E}\left(R_{t}^{\epsilon}(\theta)-R_{t-}^{\epsilon}(\theta) \mid \mathcal{F}_{t}\right) & =\sqrt{\epsilon} \int_{\mathbb{S}^{1}} g\left(\frac{\theta-\xi}{\sqrt{\epsilon} / y_{R_{t-}^{\epsilon}}}\right) F\left(R_{t-}^{\epsilon}, \xi\right) d \xi \\
& =\frac{\epsilon}{y_{R_{t-}^{\epsilon}}}\left(g_{\epsilon} \star F\right)(\theta) \sim \epsilon \frac{F\left(R_{t-}^{\epsilon}, \theta\right)}{y_{R_{t-}^{\epsilon}}}
\end{aligned}
$$

Heuristics

Simpler case: F independent of x

$$
\begin{aligned}
& \mathbb{E}\left(R_{t}^{\epsilon}(\theta)-R_{t-}^{\epsilon}(\theta) \mid \mathcal{F}_{t}\right)=\sqrt{\epsilon} \int_{\mathbb{S}^{1}} g\left(\frac{\theta-\xi}{\sqrt{\epsilon} / y_{R_{t-}^{\epsilon}}}\right) F\left(R_{t-}^{\epsilon}, \xi\right) d \xi \\
&=\frac{\epsilon}{y_{R_{t-}^{\epsilon}}}\left(g_{\epsilon} \star F\right)(\theta) \sim \epsilon \frac{F\left(R_{t-}^{\epsilon}, \theta\right)}{y_{R_{t-}^{\epsilon}}} \\
& R_{t}^{\epsilon} \rightarrow \bar{r} . \quad \text { as } \epsilon \rightarrow 0 . \\
& \frac{d}{d t} \bar{r}_{t}(\theta)=b\left(\bar{r}_{t}, \theta\right), \quad b(r, \cdot)=\frac{F(r, \cdot)}{y_{r}} .
\end{aligned}
$$

Heuristics

Simpler case: F independent of x

$$
\begin{aligned}
& \mathbb{E}\left(R_{t}^{\epsilon}(\theta)-R_{t-}^{\epsilon}(\theta) \mid \mathcal{F}_{t}\right)=\sqrt{\epsilon} \int_{\mathbb{S}^{1}} g\left(\frac{\theta-\xi}{\sqrt{\epsilon} / y_{R_{t-}^{\epsilon}}}\right) F\left(R_{t-}^{\epsilon}, \xi\right) d \xi \\
&=\frac{\epsilon}{y_{R_{t-}^{\epsilon}}}\left(g_{\epsilon} \star F\right)(\theta) \sim \epsilon \frac{F\left(R_{t-}^{\epsilon}, \theta\right)}{y_{R_{t-}^{\epsilon}}} \\
& R_{t}^{\epsilon} \rightarrow \bar{r} . \quad \text { as } \epsilon \rightarrow 0 . \\
& \frac{d}{d t} \bar{r}_{t}(\theta)=b\left(\bar{r}_{t}, \theta\right), \quad b(r, \cdot)=\frac{F(r, \cdot)}{y_{r}} .
\end{aligned}
$$

General case:

$$
\begin{gathered}
R_{\cdot}^{\epsilon} \rightarrow \bar{r} . \quad \text { as } \epsilon \rightarrow 0 . \\
\frac{d}{d t} \bar{r}_{t}(\theta)=\int_{\mathbb{R}^{d}} b\left(\bar{r}_{t}, x, \theta\right) \nu_{r}(x) d x, \quad b(r, x, \cdot)=\frac{F(r, x, \cdot)}{y_{r, x}} .
\end{gathered}
$$

Problem: prove this for F and H as general as possible.

Consequence: Shape theorem

Shape theorem

Assume F and H are invariant under scaling

$$
F(c r, c x, \cdot)=F(r, x, \cdot), \quad H(c r, x)=c H(r, x)
$$

Then
Time-Space scaling

$$
R_{t}^{\epsilon} \stackrel{\mathcal{L}}{=} \epsilon^{1 / d} R_{\frac{t}{\epsilon}}^{1}
$$

Shape theorem

Assume F and H are invariant under scaling

$$
F(c r, c x, \cdot)=F(r, x, \cdot), \quad H(c r, x)=c H(r, x)
$$

Then

Time-Space scaling

$$
R_{t}^{\epsilon} \stackrel{\mathcal{L}}{=} \epsilon^{1 / d} R_{\frac{t}{\epsilon}}^{1}
$$

Take fixed $t>0$ and $\tau=t / \epsilon$ we get

$$
\frac{1}{\sqrt{\tau}} R_{\tau}^{1}=\frac{\epsilon^{1 / d}}{\sqrt{t}} R_{\frac{t}{\epsilon}}^{1}=\frac{1}{\sqrt{t}} R_{t}^{t / \tau} \quad \rightarrow \frac{\bar{r}_{t}}{\sqrt{t}} \quad \text { as } \tau \rightarrow \infty
$$

With

$$
\bar{r}_{0}=" \epsilon^{1 / d} R_{0}^{1 "}
$$

Shape theorem

Assume F and H are invariant under scaling

$$
F(c r, c x, \cdot)=F(r, x, \cdot), \quad H(c r, x)=c H(r, x)
$$

Then

Time-Space scaling

$$
R_{t}^{\epsilon} \stackrel{\mathcal{L}}{=} \epsilon^{1 / d} R_{\frac{t}{\epsilon}}^{1}
$$

Take fixed $t>0$ and $\tau=t / \epsilon$ we get

$$
\frac{1}{\sqrt{\tau}} R_{\tau}^{1}=\frac{\epsilon^{1 / d}}{\sqrt{t}} R_{\frac{t}{\epsilon}}^{1}=\frac{1}{\sqrt{t}} R_{t}^{t / \tau} \quad \rightarrow \frac{\bar{r}_{t}}{\sqrt{t}} \quad \text { as } \tau \rightarrow \infty
$$

With

$$
\bar{r}_{0}=" \epsilon^{1 / d} R_{0}^{1 "}
$$

Theorems

Lipschitz property

Assumption (L)

$$
\begin{aligned}
\left\|F(r, x, \cdot)-F\left(r^{\prime}, x^{\prime}, \cdot\right)\right\|_{2} & \leq K\left(\left\|r-r^{\prime}\right\|_{2}+\left|x-x^{\prime}\right|\right) \\
\left|H(r, z)-H\left(r^{\prime}, z^{\prime}\right)\right| & \leq K\left(\left\|r-r^{\prime}\right\|_{2}+\left|z-z^{\prime}\right|\right) \\
\left\|\bar{b}(r)-\bar{b}\left(r^{\prime}\right)\right\|_{2} & \leq K\left\|r-r^{\prime}\right\|_{2}
\end{aligned}
$$

Also, $F(r, x, \cdot) \in C\left(S^{n-1}\right)$ for every $(r, x) \in \mathcal{D}(F)$.

Generator Approximation

For any fixed $t \geq 0$ and $a>0$

$$
\lim _{\epsilon \rightarrow 0}\left\|\left(b \star g_{\eta}\right)\left(R_{t \wedge \tau^{\epsilon}}^{\epsilon}, x_{t \wedge \tau^{\epsilon}}^{\epsilon}\right)-b\left(R_{t \wedge \tau^{\epsilon}}^{\epsilon}, x_{t \wedge \tau^{\epsilon}}^{\epsilon}\right)\right\|_{2}=0, \quad \text { in probability }
$$

(5.1)
where $\tau^{\epsilon}:=\inf \left\{t>0:\left\|R_{t}^{\epsilon}\right\|_{2} \geq a^{-1}\right\}$.

Averaging Principle and Shape Theorem

Theorem

Under Assumptions (E) and (L) and (C), the solution to the (infinite dimensional) ODE, $\dot{\vec{r}}_{t}=\bar{b}\left(\bar{r}_{t}\right)$ exists and is unique for every $\bar{r}_{0} \in C\left(\mathbb{S}^{d-1}\right)$. Moreover, if $R_{0}^{\epsilon} \rightarrow \bar{r}_{0}$ in $L^{2}\left(\mathbb{S}^{d-1}\right)$, then

$$
\lim _{\epsilon \rightarrow 0} \mathbb{P}\left(\sup _{0 \leq t \leq T}\left\|R_{t}^{\epsilon}-\bar{r}_{t}\right\|_{2}>\delta\right)=0
$$

Averaging Principle and Shape Theorem

Theorem

Under Assumptions (E) and (L) and (C), the solution to the (infinite dimensional) ODE, $\dot{\bar{r}}_{t}=\bar{b}\left(\bar{r}_{t}\right)$ exists and is unique for every $\bar{r}_{0} \in C\left(\mathbb{S}^{d-1)}\right.$. Moreover, if $R_{0}^{\epsilon} \rightarrow \bar{r}_{0}$ in $L^{2}\left(\mathbb{S}^{d-1}\right)$, then

Theorem

$$
\lim _{\epsilon \rightarrow 0} \mathbb{P}\left(\sup _{0 \leq t \leq T}\left\|R_{t}^{\epsilon}-\bar{r}_{t}\right\|_{2}>\delta\right)=0
$$

If also (I) holds, then for every $\delta>0$ and $t>0$

$$
\lim _{\tau \rightarrow \infty} \mathbb{P}\left(\left.\left\|\frac{R_{\tau}^{1}}{\tau^{1 / d}}-\bar{r}_{t}\right\|_{2}>\delta \right\rvert\, R_{0}^{1}=\bar{r}_{0}(\tau / t)^{1 / d}\right)=0
$$

Moreover, \bar{r}_{1} is an Euclidean ball if and only if $\int F(r, z, \cdot) d \nu_{r}(z)$ is rotationally invariant.

Applications

Applications and Remarks

Applications and Remarks

- Harmonic measure is not Lipschitz.

Applications and Remarks

- Harmonic measure is not Lipschitz.
- We can get the Lipschitz property if we work in smoothed domains.

Applications and Remarks

- Harmonic measure is not Lipschitz.
- We can get the Lipschitz property if we work in smoothed domains.
- Scaling invariance when drift size is proportional to size.

Applications and Remarks

- Harmonic measure is not Lipschitz.
- We can get the Lipschitz property if we work in smoothed domains.
- Scaling invariance when drift size is proportional to size.
- We expect the shape theorem to hold even without the scaling invariance property.

Applications and Remarks

- Harmonic measure is not Lipschitz.
- We can get the Lipschitz property if we work in smoothed domains.
- Scaling invariance when drift size is proportional to size.
- We expect the shape theorem to hold even without the scaling invariance property.
- $F(r, x, \theta)=Z^{-1} r(\theta) \Longrightarrow$ infinitely many invariant shapes.

Applications and Remarks

- Harmonic measure is not Lipschitz.
- We can get the Lipschitz property if we work in smoothed domains.
- Scaling invariance when drift size is proportional to size.
- We expect the shape theorem to hold even without the scaling invariance property.
- $F(r, x, \theta)=Z^{-1} r(\theta) \Longrightarrow$ infinitely many invariant shapes.
- Other rules:
- $F=$ Distance to reference point,

Applications and Remarks

- Harmonic measure is not Lipschitz.
- We can get the Lipschitz property if we work in smoothed domains.
- Scaling invariance when drift size is proportional to size.
- We expect the shape theorem to hold even without the scaling invariance property.
- $F(r, x, \theta)=Z^{-1} r(\theta) \Longrightarrow$ infinitely many invariant shapes.
- Other rules:
- $F=$ Distance to reference point,
- $F=$ Mean curvature (Richardson's model ?)

Applications and Remarks

- Harmonic measure is not Lipschitz.
- We can get the Lipschitz property if we work in smoothed domains.
- Scaling invariance when drift size is proportional to size.
- We expect the shape theorem to hold even without the scaling invariance property.
- $F(r, x, \theta)=Z^{-1} r(\theta) \Longrightarrow$ infinitely many invariant shapes.
- Other rules:
- $F=$ Distance to reference point,
- $F=$ Mean curvature (Richardson's model ?)
- F independent of R

Smoothed Harmonic measure

- g a (fixed) smoothing kernel, $\tilde{r}=r \star g$.
- $0 \leq \alpha(\ell, z)<\ell$

Consider
$F(r, x, \cdot)=$ Harmonic measure on \tilde{r} from $x, \quad H(r, z)=\alpha(\tilde{r}(z), z) z$

Theorem

(a) The Averaging Principle holds for this model.
(b) In case $\alpha(\ell, z)=\alpha(z) \ell$, the Shape Theorem also holds. In particular, for $\alpha(\ell, z)=\gamma \ell$ with $\gamma \in[0,1)$ fixed, the centered Euclidean ball is an invariant shape; and when $\gamma=0$, it is uniquely attractive.

Some proofs: auxiliary process

- Take $\Delta(\epsilon)=\epsilon \log ^{1 / 3}(1 / \epsilon)$

Some proofs: auxiliary process

- Take $\Delta(\epsilon)=\epsilon \log ^{1 / 3}(1 / \epsilon)$
- In Δ time, the fast variable achieves equilibrium and the slow one does not evolve macroscopically

Some proofs: auxiliary process

- Take $\Delta(\epsilon)=\epsilon \log ^{1 / 3}(1 / \epsilon)$
- In Δ time, the fast variable achieves equilibrium and the slow one does not evolve macroscopically
- In each interval of length Δ approximate $\left(R_{t}^{\epsilon}, x_{t}^{\epsilon}\right)$ by a process $\left(\hat{R}_{t}^{\epsilon}, \hat{x}_{t}^{\epsilon}\right)$ in which \hat{x}_{t}^{ϵ} evolves in frozen domain and \hat{R}_{t}^{ϵ} according to the ODE given by

$$
\frac{d}{d t} \hat{R}_{t}^{\epsilon}=b\left(R_{t_{k}}^{\epsilon}, \hat{x}_{t}^{\epsilon}\right)
$$

Some proofs: auxiliary process

- Take $\Delta(\epsilon)=\epsilon \log ^{1 / 3}(1 / \epsilon)$
- In Δ time, the fast variable achieves equilibrium and the slow one does not evolve macroscopically
- In each interval of length Δ approximate $\left(R_{t}^{\epsilon}, x_{t}^{\epsilon}\right)$ by a process $\left(\hat{R}_{t}^{\epsilon}, \hat{x}_{t}^{\epsilon}\right)$ in which \hat{x}_{t}^{ϵ} evolves in frozen domain and \hat{R}_{t}^{ϵ} according to the ODE given by

$$
\frac{d}{d t} \hat{R}_{t}^{\epsilon}=b\left(R_{t_{k}}^{\epsilon}, \hat{x}_{t}^{\epsilon}\right)
$$

- In each interval we can use the ergodic assumption.

Some proofs: auxiliary process

- Take $\Delta(\epsilon)=\epsilon \log ^{1 / 3}(1 / \epsilon)$
- In Δ time, the fast variable achieves equilibrium and the slow one does not evolve macroscopically
- In each interval of length Δ approximate $\left(R_{t}^{\epsilon}, x_{t}^{\epsilon}\right)$ by a process $\left(\hat{R}_{t}^{\epsilon}, \hat{x}_{t}^{\epsilon}\right)$ in which \hat{x}_{t}^{ϵ} evolves in frozen domain and \hat{R}_{t}^{ϵ} according to the ODE given by

$$
\frac{d}{d t} \hat{R}_{t}^{\epsilon}=b\left(R_{t_{k}}^{\epsilon}, \hat{x}_{t}^{\epsilon}\right)
$$

- In each interval we can use the ergodic assumption.
- $\mathbb{E}\left|x_{t}^{\epsilon}-\hat{x}_{t}^{\epsilon}\right|^{2} \leq C \epsilon, \quad \mathbb{E}\left|R_{t}^{\epsilon}-\hat{R}_{t}^{\epsilon}\right|^{2} \rightarrow 0, \quad \mathbb{E}\left|R_{t}^{\epsilon}-\bar{r}_{t}\right|^{2} \rightarrow 0$.

A coupling inequality

(to bound $\mathbb{E}\left|x_{t}^{\epsilon}-\hat{x}_{t}^{\epsilon}\right|^{2}$)

Lemma

Let M be a connected Riemannian manifold without boundary compactly embedded in \mathbb{R}^{d}. Let μ, ν be probability distributions on M having densities p, q respectively. Assume $p(x) \geq c>0$ for all $x \in M$. Then, there exists $C=C(M, c)<\infty$ such that the Wasserstein 2-distance verifes

$$
W_{2}(\mu, \nu) \leq C\|p-q\|_{2} .
$$

Thanks.

