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Abstract

We study numerical approximations of positive solutions of the porous medium
equation with a nonlinear source,







ut = (um)xx + up, (x, t) ∈ (−L, L)× (0, T ),
u(−L, t) = u(L, t) = 1, t ∈ [0, T ),
u(x, 0) = ϕ(x),≥ 1 x ∈ (−L, L),

where m > 1, p > 0 and L > 0 are parameters. We describe in terms of p, m, and
L when solutions of a semidiscretization in space exist globally in time and when
they blow up in a finite time. We also find the blow-up rates and the blow-up sets,
proving that there is no regional blow-up for the numerical scheme.
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1 Introduction.

In this paper we deal with numerical approximations of the following problem







ut = (um)xx + up, (x, t) ∈ (−L,L)× [0, T ),
u(−L, t) = u(L, t) = 1, t ∈ [0, T ),
u(x, 0) = ϕ(x) ≥ 1, x ∈ (−L,L),

(1.1)

where m > 1 and p > 0 are parameters. Problem (1.1) can be thought as a model for
nonlinear heat propagation. In this case u stands for the temperature and we are in
presence of reaction (giving by the power up).

We assume that ϕ is smooth and compatible with the boundary conditions in order to
obtain a regular solution. Also, for simplicity, we assume that ϕ is a bell shaped function,
that is, ϕ is symmetric, ϕ(x) = ϕ(−x) for x > 0, and decreasing in [0, L]. These symmetry
properties will be preserved by our numerical scheme and make computations easier.

For many differential equations or systems the solutions can become unbounded in
finite time, a phenomenon that is known as blow-up. Typical examples where this happens
are parabolic problems involving nonlinear reaction terms, like (1.1). The solution of (1.1)
only exists for a finite period of time (T <∞, in this case u becomes unbounded in finite
time and we say that it has blow-up) or it is defined for all positive t (T = ∞, in this
case we call it a global solution). These problems have been widely analyzed from a
mathematical point of view (see for example [SGKM], [P], [L] and the references therein)
but, only few results concerning the numerical approximation of them can be found in the
literature (we refer for example to [ALM1], [ALM2], [BB], [BK], [BHR], [DER], [FBR]).
Indeed, even for an elementary ordinary differential equation y ′ = f(y) having blow-up,
the usual analysis to obtain error estimates and adaptive step procedures do not apply
because they are based on regularity assumptions which are not satisfied in this case.

Here we analyze numerical approximations of blowing up solutions. By a semidis-
cretization in space we obtain a system of ordinary differential equations which is expected
to be an approximation of the original problem. Our objective is to analyze whether this
system has a similar behaviour than the original problem.

The nonlinear diffusion that we are considering here, (um−1ux)x, degenerates at level
u = 0, giving only weak solutions if we allow the initial data (or the boundary conditions)
to vanish. Since we are interested in blowing up solutions, we avoid this lack of regularity
imposing ϕ ≥ 1 and u(−L, t) = u(L, t) = 1. This gives us regular solutions (see [LSU]).

We want to remark that all our results are valid for regular solutions of problems of
the form ut = (φ(u))xx+f(u) if we impose that φ(u) ∼ um and f(u) ∼ up when u becomes
large. To simplify the exposition we state and prove our results for (1.1).

Let us resume what is known for continuos problem (1.1) (see [SGKM] and references
therein),
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(i) If p > m there exists blowing up solutions for initial data u0 large enough. The

blow-up rate is given by ‖u(·, t)‖∞ ∼ (T − t)−
1

p−1 and the blow-up set is a single point
x = 0 (this means that u remains bounded away from the origin).

(ii) If p = m the existence of blowing up solutions depends on the length of the
interval. Let λ1(L) = π/2L be the first eigenvalue of the Laplacian in [−L,L]. Then,
every solution blows up if and only if λ1(L) < 1. That is, if L > π/2 every positive

solution blows up and the blow-up rate is given by ‖u(·, t)‖∞ ∼ (T − t)−
1

m−1 . In this case
it is known that the blow-up set is given by

B(u) =

{

[−L,L] if π/2 < L ≤ mπ/(m− 1),
(−mπ/(m− 1),mπ/(m− 1)) if L > mπ/(m− 1).

Moreover, there exists a self-similar profile, z(x), that gives the asymptotic behaviour for
u near T in the form,

lim
t↗T

(T − t)
1

m−1u(x, t) = z(x).

Let us remark that if L > mπ/(m− 1) the support of z is the interval

(

−
mπ

(m− 1)
,

mπ

(m− 1)

)

.

Therefore we have regional blow-up for large values of L. On the other hand, if L ≤ π/2
every solution is global.

(iii) If p < m every solution is global.

Now we introduce the numerical scheme. We discretize using piecewise linear finite
elements with mass lumping in a uniform mesh for the space variable (it is well known
that this discretization in space coincides with the classic central finite difference second
order scheme), see [Ci]. Mass lumping is widely used in parabolic problems with blow-up,
see for example [ALM1], [ALM2], [Ch], [DER], [N], [NU].

We denote with U(t) = (u−N(t), ...., uN (t)) the values of the numerical approximation
at the nodes xi = ih (h = L/N) at time t. Then U(t) verifies the following equation:







MU ′(t) = −AUm(t) +MU p(t),
u−N(t) = uN(t) = 1,
U(0) = ϕI ,

(1.2)

where M is the mass matrix obtained with lumping, A is the stiffness matrix and ϕI is
the Lagrange interpolation of the initial datum, ϕ. Writing this equation explicitly we
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obtain the following ODE system,










































u−N(t) = 1,

u′k(t) =
1

h2
(um

k+1(t)− 2um
k (t) + um

k−1(t)) + up
k(t),

uN(t) = 1,

uk(0) = ϕ(xk), −N + 1 ≤ k ≤ N − 1.

(1.3)

First we state a convergence result that says that for any positive τ , the method
converges uniformly in sets of the form [−L,L] × [0, T − τ ]. Let us observe that, since
solutions are blowing up in L∞ norm, it is natural to consider uniform convergence. Since
the solution develops a singularity at time t = T we cannot expect that the convergence
result extends up to T .

Theorem 1.1 Let u(x, t) ∈ C4,1([−L,L] × [0, T − τ ]) be a positive solution of (1.1) and
U(t) the numerical approximation given by (1.3). Then, there exists a constant C, that
depends on the C4,1([−L,L] × [0, T − τ ]) norm of u, such that for every h small enough
it holds

max
t∈[0,T−τ ]

max
k
|u(xk, t)− uk(t)| ≤ Ch2.

Next we begin with the analysis of the asymptotic behaviour of solutions of (1.3).
Next theorem describes when (1.3) has solutions with blow-up. To do this, we introduce
λ1(L, h) that stands for the first discrete eigenvalue for the Laplacian, that is the first
eigenvalue of the problem

{

AΨ = λMΨ,
Ψ−N = ΨN = 0.

(1.4)

Let us recall that

λ1(L, h) =
( π

2L

)2

+O(h2),

see [FG].

Theorem 1.2 There exists blowing up solutions for (1.3) if and only if p > m or p = m
with λ1(L, h) < 1. Moreover, in case p = m with λ1(L, h) < 1 every nontrivial solution
blows up. In case p > m and ϕ an initial data such that the solution u of problem (1.1)
blows up then U also blows up for every h small enough.

This theorem shows that the numerical scheme reproduces the blow-up cases in a very
accurate way. Let us remark that λ1(L, h) → λ1(L) as h→ 0.

Numerical blow-up has been studied before. In [ALM1], [ALM2], [BK], [BHR], [Ch],
[N], [GR] the semilinear heat equation is considered. See also [LR] for a time discretization
of (1.1).
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As a consequence of our blow-up results we can get bounds on the time remaining to
achieve the numerical blow-up time in terms of U(t). This allows us to prove that the
numerical blow-up time Th converges to T when h goes to zero.

Corollary 1.1 Let ϕ be an initial datum for (1.1) such that u blows up, if we call T and
Th the blow-up times for u and uh respectively, we have

lim
h→0

Th = T.

Now we describe the blow-up rate for the numerical scheme.

Theorem 1.3 Let U(t) be a blowing up solution of (1.3) and Th its blow-up time, then
there exists two positive constants Ci = Ci(h) such that

C1(Th − t)−1/(p−1) ≤ ‖U‖∞(t) ≤ C2(Th − t)−1/(p−1).

Moreover, if p > m there holds,

lim
t↗Th

(Th − t)1/(p−1)‖U‖∞(t) = Cp =

(

1

p− 1

)1/(p−1)

.

We remark that this rate coincides with the blow-up rate of the continuous problem
(1.1).

With the blow-up rate we can characterize the numerical blow-up set, that is the set
of nodes xk such that uk(t) → +∞ when t↗ Th.

Theorem 1.4 Let U(t) be a blowing up solution of (1.3) which blows up at time Th, then

1. For p > m the blow-up set is given by a finite number of nodes, i.e.,

B(U) = [−Kh, Kh],

where K ≡ K(p,m) is the only integer that verifies the following expression,

∑K+1
i=0 mi

∑K
i=0m

i
< p ≤

∑K
i=0m

i

∑K−1
i=0 mi

, that is, K =

[

ln((p− 1)/(p−m))

ln(m)

]

.

2. For the case p = m we obtain global blow-up, i.e.,

B(U) = [−L,L].
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Numerical blow-up sets have been studied in [N], [Ch], where the semilinear heat
equation is treated. There, it is proved that the blow-up set can be larger than a single
point. In [GR] there is precise characterization of the numerical blow-up set. Up to our
knowledge this type of results were not available for the porous medium equation.

The explicit formula for the number of blow-up nodes shows that the non-linear dif-
fusion cames into play.

We observe that in the case p > m the blow-up set of the numerical solution can be
larger than a single point, nevertheless, since K does not depend on h, we have that

B(U) = [−Kh,Kh] → {0} = B(u), h↘ 0.

On the other hand, when p = m, B(U) = [−L,L] for every h. Therefore we find that
regional blow-up is not possible for a numerical scheme with a fixed mesh. However we
can recover regional blow-up by looking carefully at U(t) in suitable self-similar variables.
To do this we introduce the self-similar variables given by







yk(s) = (Th − t)
1

p−1uk(t),

(Th − t) = e−s.

(1.5)

In these new variables Y = (yk(s)), problem (1.3) reads,































y−N(s) = e−
1

p−1
s,

y′k(s) =
1

h2
e

m−p

p−1
s(ym

k+1(s)− 2ym
k (s) + ym

k−1(s))−
1

p− 1
yk(s) + yp

k,

yN(s) = e−
1

p−1
s.

(1.6)

We have the following result.

Theorem 1.5 Let p = m and Y (s) given by (1.5), then as s goes to infinity we have that

Y (s) → Wh,

where Wh is a positive stationary solution of (1.6).
Moreover, this Wh converges to the continuous profile, z(x), as h goes to zero.

This result gives that Wh goes to zero outside the set B(u) and we recover the blow-up
set by looking at the behaviour of Y (s) for large s.

To end the introduction let us briefly comment on extensions to higher dimensions.
For example, if finite differences in a cube (−L,L)d ⊂ R

d are considered to discretize
ut = ∆um +up, similar results can be obtained applying similar ideas. The only exception
being Theorem 1.5 where we use essentially one dimensional arguments.
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Organization of the paper: first, in Section 2 we state and prove some auxiliary
results that will be used in the rest of the paper and also we prove our convergence result,
Theorem 1.1. For expository reasons we divide the proofs in two cases, p = m and p > m.
In Section 3 we deal with the case p = m and in Section 4 with p > m. Finally in Section
5 we present some numerical experiments. We leave for the Appendix some results about
existence and uniqueness of the continuous profile z(x).

2 Properties of the numerical scheme

In this section we collect some preliminary results for our numerical method. In particular
we prove convergence for regular solutions.

First, we state a symmetry property for the numerical problem (1.3). We call a vector
symmetric if verifies that u−k = uk.

Lemma 2.1 Let U(0) be a symmetric vector then U(t) is also symmetric for all t ∈
(0, Th).

Proof. The result follows from the uniqueness of problem (1.3). Indeed, let Û(t) be
defined as the vector such that

ûi(t) = u−i(t) i = −N, · · · , N.

This vector is also a solution of (1.3) and at time t = 0 it is equal to U(0). Therefore, by
uniqueness, U(t) = Û(t). 2

Remark 2.1 Since uk(0) = ϕ(xk) and ϕ is symmetric, then U(0) (and therefore U(t))
is symmetric. So we can restrict ourselves to the half interval [0, L] reducing the size of
the system of ODEs to be solved.

Now we want to prove a comparison Lemma. To do this we need the following defini-
tion,

Definition: We will call U a supersolution if it satisfies










































u−N(t) ≥ 1,

u′k(t) ≥
1

h2
(um

k+1(t)− 2um
k (t) + um

k−1(t)) + up
k(t),

uN(t) ≥ 1,

uk(0) ≥ ϕ(xk), −N ≤ k ≤ N.

(2.1)

Analogously, we say that U is a subsolution if it satisfies (2.1) with the reverse inequalities.
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Lemma 2.2 Let U and U be a superolution and a subsolution respectively, then

U(t) ≥ U(t) ≥ U(t).

Proof. By an approximation procedure we restrict ourselves to consider strict inequalities
in (2.1). Let us prove that U(t) > U(t). We argue by contradiction. Let us assume that
there exists a first time t0 and a node j such that uj(t0) = uj(t0) then −N+1 < j < N−1,

0 ≥ u′j(t0)− u′j(t0) >
1

h2
(um

j+1(t0)− um
j+1(t0) + um

j−1(t0)− um
j−1(t0)) ≥ 0,

a contradiction. This contradiction proves that U(t) > U(t).

The inequality U(t) ≥ U(t) can be handled in a similar way. 2

Now we study the monotonicity properties of our numerical scheme in [0, L].

Lemma 2.3 Let U be a solution of (1.3) with uk(0) > uk+1(0), k = 0, ...., N then

uk(t) > uk+1(t), 0 ≤ k ≤ N − 1.

Proof. We argue by contradiction, let us assume there exists a first time t0 and two
consecutive nodes where the conclusion of the Lemma fails, let us call them j, j + 1. So
we are assuming that uj+1(t0) = uj(t0). From the equations (1.3) we get

0 ≥ u′j(t0)− u′j+1(t0) =
1

h2
(um

j−1(t0)− um
j+2(t0)) ≥ 0.

We conclude that uj−1(t0) = uj+2(t0) = uj(t0). Using the same argument, we get that all
the nodes must be equal to uN(t0) = 1 at time t0 but this is impossible since the initial
data verifies U(0) ≥ 1 and hence the solution verifies ui(t) > 1 for all positive t. Indeed,
first we use the comparison Lemma to obtain that ui(t) ≥ 1 (ui ≡ 1 is a subsolution).
Next, if all the nodes attains its minimum 1 at the same time t0 then all of them have
derivative less or equal than zero, but at that time t0 we have u′j(t0) = up

j(t0) = 1 > 0,
and this is a contradiction. 2

Remark 2.2 This ensures that the maximum of U(t) is attained at the node x0 = 0, i.e.,

max
k
uk(t) = u0(t).

We will be use this fact in the following sections.

Now we prove our convergence result for regular solutions up to t = T − τ .

Proof of Theorem 1.1. In the course of this proof we will denote by Ci a constant
independent of h which can be different in different occurrences.
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If we rewrite the system (1.3) in terms of Z = Um we obtain











































z−N(t) = 1,

(z
1/m
k )′(t) =

1

h2
(zk+1(t)− 2zk(t) + zk−1(t)) + z

p/m
k (t),

zN(t) = 1,

zk(0) = ϕ1/m(xk) ≥ 1, −N + 1 ≤ k ≤ N − 1.

Let vk(t) = um(xk, t) where u is the solution of the continuous problem (1.1). We define
the error function as

ek = zk − vk.

Let t0 = max{t ∈ [0, T − τ ] : |ek|(t) ≤ 1/2}. We perform the following calculations with
t ∈ [0, t0] and we will prove at the end that t0 = T − τ for every h small enough.

The error function satisfies that, for −N + 1 ≤ k ≤ N − 1,

1

m
z

(1−m)/m
k e′k =

1

h2
(ek+1 − 2ek + ek−1)−

1

m
(z

(1−m)/m
k − v

(1−m)/m
k ) v′k

+ z
p/m
k − v

p/m
k + C1h

2

≤
1

h2
(ek+1 − 2ek + ek−1) + C2ξ

(1−2m)/m)
k |ek|+ C3η

(p/m)−1
k |ek|+ C1h

2,

where ξk and ηk are intermediate values between zk and vk. Taking into account that
there exists a constant, C, such that 1 ≤ zk(t) ≤ C for every t ∈ [0, t0] we have

e′k ≤
C1

h2
(ek+1 − 2ek + ek−1) + C2|ek|+ C3h

2. (2.2)

The first and the last nodes verify

e−N = eN = 0. (2.3)

We remark that the system (2.2), (2.3), has a comparison principle, that can be proved
as in Lemma 2.2. Let us look for a supersolution of the form

wk(t) = g(t),

where g(t) is a solution of
{

g′(t) = C1g(t) + C2h
2,

g(0) = C3h
2.

That is
g(t) = h2

(

C1e
C2t + C3

)

.
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Therefore,
ek(t) ≤ wk(t) ≤ C1h

2eC2T .

Arguing in the same way with −ek we obtain

|ek(t)| ≤ wk(t) ≤ C1h
2eC2T .

From this inequality it is easy to see that t0 = T − τ for every h small enough and the
Theorem is proved. 2

3 Regional blow-up. The case p = m

3.1 Blow-up for the numerical scheme

Hereafter we will use 〈, 〉 for the usual inner product in the euclidean space and 1 to denote
the vector that has ones in all of its components. We consider the first eigenfunction Ψ
which is a solution of (1.4) with λ = λ1(L, h), in particular, we choose Ψ > 0 such that
〈M1,Ψ〉 = 1. Now, we multiply (1.3) by Ψ to obtain

d
dt
〈MU,Ψ〉 = −〈AUm,Ψ〉+ 〈MUm,Ψ〉

= −λ1(L, h)〈MUm,Ψ〉+ 〈MUm,Ψ〉
≥ (1− λ1(L, h))〈MU,Ψ〉m.

If λ1(L, h) < 1 the solution U blows up in finite time and if λ1(L, h) ≥ 1 we have that
〈MU,Ψ〉 is non-increasing, and therefore bounded, hence U is global. 2

Assume that λ1(L, h) < 1, so U has finite time blow-up Th. From the last inequality
we get

d
dt
〈MU,Ψ〉

〈MU,Ψ〉m
≥ (1− λ1(L, h)) ≥ C.

Integrating between t and Th,

∫ Th

t

d
dt
〈MU,Ψ〉

〈MU,Ψ〉m
≥ C(Th − t).

Changing variables we get
∫ +∞

〈MU,Ψ〉(t)

1

sm
≥ C(Th − t).

Therefore we obtain a bound for Th − t in terms of the size of U . In fact we have that

(Th − t) ≤ C(〈MU,Ψ〉(t))−(m−1).
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This allows us to prove the convergence of the blow-up times. Given ε > 0 let R be such
that CR−(m−1) ≤ ε/2. As blow-up for u is regional we can choose a time t0 such that

T − t0 ≤ ε/2 and

∫ L

−L

u(s, t0)ψ(s) ds ≥ 2R,

where ψ is the first eigenfunction of the laplacian in [−L,L]. By our uniform convergence
result up to t = t0 < T , we have

〈MU,Ψ〉(t0) →

∫ L

−L

u(s, t0)ψ(s) ds, h→ 0.

Therefore for every h small enough, we have that

〈MU,Ψ〉(t0) > R.

Hence
|T − Th| ≤ |T − t0|+ |Th − t0|

≤ ε/2 + C(〈MU,Ψ〉(t0))
−(m−1)

≤ ε/2 + CR−(m−1)

≤ ε,

for every h small enough. This proves that Th → T as h→ 0.

3.2 Blow-up rate

From our previous computations we have that

〈MU,Ψ〉(t) ≤ C(Th − t)−1/(m−1).

Now we observe that there exists a constant C = C(h) such that

max
k
uk(t) = u0(t) ≤ C〈MU,Ψ〉(t)

and we conclude that
u0(t) ≤ C(Th − t)−1/(m−1).

On the other hand, as for all t the solution is symmetric and decreasing in [0, L], we have
that

u′0(t) ≤ um
0 (t).

Therefore, integrating between t and Th, we get

u0(t) ≥ C(Th − t)−1/(m−1).

Summing up, we have proved that the blow-up rate is given by

C1(Th − t)−1/(m−1) ≤ max
k
uk(t) = u0(t) ≤ C2(Th − t)−1/(m−1).
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3.3 Blow-up set

Theorem 3.1 If p = m every node is a blow-up point. Moreover in the self-similar
variables,

Y (s) → W, as s→∞,

where W = (w−N , ..., wN ) is a positive solution of the limit problem of (1.6). Hence the
asymptotic behaviour of uk(t) is given by

uk(t) ∼ (Th − t)−
1

p−1wk.

Proof. In this case, if we write the numerical problem (1.6) in a form similar to (1.2),
we have a Lyapunov functional. In fact,

Φ(Y ) =
1

2
〈A1/2Y m, A1/2Y m〉+

1

2m
〈MY m, Y m〉 −

1

m2 − 1
〈MY m, Y 〉

satisfies
d

ds
Φ(Y )(s) = −〈MY ′, Y m−1Y ′〉(s) ≤ 0.

Hence, the orbit Y (s) goes to a stationary state, see [H]. Therefore we study the limit
problem of (1.6). By Remark 2.1 we can restrict ourselves to [0, L] arriving to



































0 =
2

h2
(wm

1 − wm
0 )−

1

m− 1
w0 + wm

0 ,

0 =
1

h2
(wm

k+1 − 2wm
k + wm

k−1)−
1

m− 1
wk + wm

k , 0 ≤ k ≤ N − 1,

0 = wN .

(3.1)

Moreover, as we begin with a decreasing data U(0) then for a fixed s the vector
Y (s) is positive and decreasing, hence we have to look to nonnegative and nondecreasing
stationary solutions.

On the other hand, from the blow-up rate we know that y0(s) ≥ C(h) > 0, then W is
not the trivial solution. We claim that wk must be positive for all 0 < k < N . To prove
this claim just suppose that there exists some j with wj = 0. Since W is non-negative
and non-increasing we have that for k ≥ j, wk = 0 and therefore wk = 0 for all k, but
w0 > 0. This contradiction proves the claim. 2

Now our goal is to recover regional blow-up by looking carefully at the behaviour of
the stationary solution as the parameter h goes to zero.

When h goes to zero we expect that Z = Wm converges to a solution of the following
problem







zxx −
1

m−1
z

1

m + z = 0, x ∈ (0, L),

zx(0) = 0,
z(L) = 0.

(3.2)

12



This is the content of our next Lemma. We remark that since m > 1 a non Lipschitz
function appears in (3.2).

Lemma 3.1 Let W be the solution of (3.1) and let z(x) be the unique solution of (3.2).
Then

Z = Wm → z(x), as h→ 0.

Proof. Multiplying the equation satisfied by Z by

(zk+1 − zk) + (zk − zk−1)

2

and summing we get

0 =
(zN − zN−1)

2

2h2
−

(z1 − z0)
2

2h2
+

N
∑

l=1

(

zl −
1

m− 1
z

1

m

l

)

(zl+1 − zl−1)

2
.

Hence

0 =
(zN − zN−1)

2

2h2
−

(z1 − z0)
2

2h2

+

(

z2
N

2
−

m

m2 − 1
z

(1+m)/m
N

)

−

(

z2
0

2
−

m

m2 − 1
z

(1+m)/m
0

)

+O(h).

Using the first and the last equations of (3.1) we get that zN−1 and z0 must verify the
following polynomial,

0 =
z2

N−1

2h2
−

m

m2 − 1
z

1+m
m

0 +
z2
0

2
+O(h). (3.3)

On the other hand, we know that z0 is bounded. Therefore, zN−1/h must be bounded.
Then we can take a subsequence of h such that zN−1/h→ Γ ≥ 0.

If Γ > 0 we consider the auxiliary initial value problem







z′′ = 1
m−1

z1/m − z, x ∈ [0, L],

z(L) = 0,
z′(L) = −Γ.

(3.4)

For this problem we define the energy as

Ez(x) =
(z′(x))2

2
−

m

m2 − 1
z(x)(m+1)/m +

z(x)2

2
.

Multiplying equation (3.4) by z ′ and integrating we obtain that it is conservative, i.e.
Ez(x) = Ez(L) = −Γ/2.

13



Problem (3.4) has a unique solution and by classical theory (see [JR]) in the interval
where z(x) is positive

Z = Wm → z(x), as h→ 0.

Notice that z(x) is positive in [L − δ, L). Since the vector Z is decreasing, we have that
z(x) is non-increasing in all interval [0, L]. Therefore z(x) is positive in [0, L). So, for all
x ∈ [0, L), Z → z(x).

Then, as the problem is conservative and (3.3) holds, we get that z(0) is the only
positive root of

Γ2

2
−

m

m2 − 1
z(0)(m+1)/m +

z(0)2

2
= 0,

and
z′(0) = 0.

So, the constant Γ must be the only constant such that z is a solution of















z′′ = 1
m−1

z1/m − z, x ∈ [0, L],

z′(0) = 0,
z(L) = 0,
z(x) > 0, x ∈ [0, L).

This problem has a solution if and only if π
2
< L ≤ mπ

m−1
, see the Appendix for the details.

So, if L > mπ
m−1

the parameter Γ must be zero.

Now, we assume that Γ = 0. Then Ez(L) = 0 and by (3.3) we obtain that z0 → A,
where A is the only positive root of

0 =
1

2
A2 −

m

m2 − 1
A

1+m
m

and that
z′(0) = 0.

Hence, we consider the problem















z′′ = 1
m−1

z1/m − z x ∈ [0, L],

z(0) = A,
z′(0) = 0,
z′(x) ≤ 0 x ∈ [0, L].

This problem has a unique explicit solution given by

z(x) =

{

[

2m
m2−1

cos2
(

(m−1)x
2m

)]
m

m−1

x < mπ/(m− 1),

0 x ≥ mπ/(m− 1).

Then if L < mπ
m−1

the parameter Γ must be positive.

14



On the other hand, by classical theory we have that in the interval where z(x) is
positive, [0,mπ/(m− 1)),

Z = Wm → z(x), as h→ 0.

Since Z is decreasing, we have that for h small enough,

zk ≤ z

(

mπ

m− 1
− δ

)

≤ ε, ∀xk >
mπ

m− 1
− δ.

Then, Z = Wm → z(x) in all the interval [0, L]. 2

Remark 3.2 As a consequence of Lemma 3.1 if L > mπ
m−1

we have that

W → 0, in

[

mπ

m− 1
, L

]

,

and we recover the regional blow-up in the sense that the constants that appear in the
blow-up rate for the nodes that lie in [ mπ

m−1
, L] go to zero as h goes to zero, i.e.,

uk(t) ∼ (Th − t)−
1

p−1wk

with wk → 0 as h→ 0 for every k such that xk ∈ [ mπ
m−1

, L].

4 Single point blow-up. Case p > m.

4.1 Blow-up for the numerical scheme.

In this section we follow ideas from [GR]. We recall that we are considering a symmetric
and decreasing in [0, L] initial data ϕ. By Lemmas 2.1 and 2.3 U(t) is a symmetric vector
and it is decreasing in [0, L]. Then, its maximum will be u0(t).

For the continuous problem (1.1) there exists an energy functional given by

Φ(u)(t) =
1

2

∫ L

−L

(um)2
x −

m

p+m

∫ L

−L

|u|p+m,

which is nonincreasing along the orbits. So let us define the discrete analogous of Φ, let
Φh(U) be the following functional

Φh(U)(t) =
1

2
〈A1/2Um, A1/2Um〉 −

m

p+m
〈MUp, Um〉,

which is also nonincreasing along the orbits.
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Lemma 4.1 Let U be a solution such that Φh(U)(t0) < 0 for some t0, then U(t) is
unbounded.

Proof. Let us assume that U is bounded, as Φh is a Lyapunov functional U(t) must
converge to a steady state, W , as t goes to infinity. As Φh(U)(t0) < 0 and Φh is nonin-
creasing, we get that Φh(W ) < 0. But, multiplying the equation satisfied by W by Wm

we get

0 = −〈A1/2Wm, A1/2Wm〉+ 〈MW p,Wm〉 = −2Φh(W ) +
p+ 3m

p+m
〈MW p,Wm〉.

Hence Φh(W ) ≥ 0, a contradiction. 2

Next, we prove that every solution with Φh(U)(t0) < 0 blows up.

Lemma 4.2 Let U be a solution such that Φh(U)(t0) < 0 for some t0 then U(t) blows up
in finite time Th. Moreover, there exists a constant C independent of h such that

(Th − t0) ≤
C

(−Φh(U(t0)))
p−1

p+m

. (4.1)

Proof. From Lemma 4.1 we can assume that u0(t) = maxj uj(t) becomes unbounded.
Therefore, using that p > m, we get

u′0(t) =
1

h2
(um

1 (t)− 2um
0 (t) + um

−1(t)) + up
0(t) ≥ δup

0(t),

for every t large enough. As p > m > 1 we obtain that u0 (and then U) blows up in finite
time.

On the other hand, we have that

d
dt
〈MU(t), Um(t)〉 = −(m+ 1)〈A1/2Um, A1/2Um〉(t) + (m+ 1)〈MU p, Um〉(t)

= −2(m+ 1)Φh(U(t)) +
(m+ 1)(p−m)

(m+ p)
〈MUp, Um〉(t)

≥ 2(m+ 1)|Φh(U(t))|+
(m+ 1)(p−m)

(m+ p)
〈MU,Um〉(m+p)/(m+1)(t)

≥ C (|Φh(U(t))|+ C〈MU,Um〉(t))(m+p)/(m+1) .

Now, integrating between t0 and Th and taking into account that Φh is non-increasing,
we obtain the desired result. 2

We are ready to prove the following proposition, which completes the proof of Theo-
rem 1.2.
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Proposition 4.1 Let ϕ be such that u blows up in finite time then U , the solution of
(1.3), also blows up for every h small enough.

First we observe that if u blows up in finite time T then

lim
t→T

Φ(u)(t) = −∞,

see [CDE].
From our convergence result, it is easy to check that Φh(uh(·, t0)) → Φ(u(·, t0)) as

h → 0 and therefore we conclude that if u blows up in finite time then Φh(uh(·, t0)) < 0
for some t0 and every h small enough, and hence uh blows up in finite time, Th.

To prove the convergence of the blow-up times we are going to use (4.1). We have
that, given ε > 0, we can choose R large enough to ensure that

(

C

R
p−1

p+m

)

≤
ε

2
.

As u blows up at time T we can choose t0 such that

T − t0 ≤ ε/2 and |Φ(u(·, t0))| ≥ 2R.

If h is small enough, by the convergence of Φh(uh(·, t0)) to Φ(u(·, t0)) we have,

|Φh(uh(·, t0))| ≥ R,

and hence, by (4.1),

Th − t0 ≤

(

C

(−Φh(U(t0)))
p−1

p+m

)

≤

(

C

R
p−1

p+m

)

≤
ε

2
.

Therefore,

|Th−T | ≤ |Th−t0|+|T−t0| < ε. 2

4.2 Blow-up rate

Now we find the blow-up rate. Let us consider a blowing up solution U . Let us remark
that by our symmetry assumptions u0(t) = maxj uj(t). Hence

up
0(t) ≥ u′0(t) ≥ up

0

(

1−
2

h2

um
0

up
0

)

(t).

Integrating we obtain

(Th − t) ≥

∫ Th

t

u′0
up

0

(s) ds ≥

∫ Th

t

(

1−
2

h2

um
0

up
0

)

(s) ds.
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Therefore,

(Th − t) ≥
1

(p− 1)up−1
0 (t)

≥

∫ Th

t

(

1−
2

h2

um
0

up
0

)

(s) ds.

As u0(t) is blowing up and p > m we have that

lim
t↗Th

um
0

up
0

(t) = 0.

Hence we can conclude that,

lim
t↗Th

(Th − t)1/(p−1)u0(t) = Cp =

(

1

p− 1

)
1

p−1

.

This implies that the blow-up rate is given by

C1

(Th − t)1/(p−1)
≤ ‖U(t)‖∞ ≤

C2

(Th − t)1/(p−1)
.

Note that in this case the blow-up rate is independent of the parameter m.

4.3 Blow-up sets

Now we turn our interest to the blow-up set of the numerical solution. For a fixed h we
want to look at the set of nodes, xk, such that uk(t) → +∞ as t ↗ Th. As before, we
introduce the self-similar variables given by







yk(s) = (Th − t)
1

p−1uk(t),

(Th − t) = e−s.

In these new variables Y = (yk(s)), problem (1.3) reads as (1.6). We observe that, from
the blow-up rates proved in Theorem 1.3, the vector Y is bounded and

lim
s→∞

y0(s) = Cp > 0.

Theorem 4.1 If p > m, then U blows up at exactly K nodes near x = 0, i.e.

B(U) = [−Kh,Kh], K =

[

ln((p− 1)/(p−m))

ln(m)

]

Moreover, the asymptotic behaviour of the blowing up nodes is given by

u−j(t) = uj(t) ∼ (Th − t)γj , γj = −
mj

p− 1
+

j−1
∑

l=0

ml,
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if
ln((p− 1)/(p−m))

ln(m)
/∈ N or j 6= K, and by

u−K(t) = uK(t) ∼ − ln(Th − t), if
ln((p− 1)/(p−m))

ln(m)
∈ N.

Proof. First we want to prove that yj(s) → 0 for every j 6= 0, that is, the only node
that behaves like Cp(Th − t)−1/(p−1) is x = 0. We argue by contradiction. Assume that
u1(t)(Th − t)1/(p−1) → Cp. Using that U is symmetric and decreasing in [0, L] we have
that

(u0 − u1)
′(t) ≥

1

h2
(3um

1 − 3um
0 )(t) + (up

0 − up
1)(t)

=

[

−
3

h2

(

um
0 − um

1

u0 − u1

)

+
up

0 − up
1

u0 − u1

]

(u0 − u1)(t)

=

[

−
3

h2
mξm−1 + pηp−1

]

(u0 − u1)(t),

where ξ and η lie between u1 and u0. As we have assumed that both u0 and u1 behave
like Cp(Th − t)−1/(p−1) we can conclude that

ξ(Th − t)1/(p−1) → Cp and η(Th − t)1/(p−1) → Cp.

As p > m we conclude that, for t near T ,

d

dt
ln(u0 − u1)(t) ≥

[

−
3

h2
mξm−1 + pηp−1

]

≥
p(Cp−1

p − ε)

(Th − t)
.

Integrating we get
(u0 − u1)(t) ≥ C(Th − t)−

p

p−1
+pε.

Using this fact we have,

0 = lim
t→Th

(Th − t)
1

p−1 (u0 − u1)(t) ≥ C lim
t→Th

(Th − t)
1

p−1 (Th − t)−
p

p−1
+pε = +∞,

a contradiction that proves that (Th − t)
1

p−1u1(t) → 0.

Now we return to the variable Y . From the blow-up rate for u0 we have that

lim
s→∞

y0(s) = Cp.

Now we observe that y1(s) verifies

y′1 = e
m−p

p−1
s 1

h2
(ym

0 − 2ym
1 + ym

2 )−
1

p− 1
y1 + yp

1 ∼ Ce
m−p

p−1
s −

1

p− 1
y1
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and by integration we get

0 ≤ y1(s) ∼











C e−
p−m

p−1
s p < m+ 1,

C s e−
1

p−1
s p = m+ 1,

C e−
1

p−1
s p > m+ 1.

Notice that in all cases y1(s) → 0. In the U variables, this translates into,

u1(t) ∼







C(Th − t)
p−1−m

p−1 p < m+ 1,
−C ln(Th − t) p = m+ 1,
C p > m+ 1.

Therefore, if p ≤ 1 + m the node u1(t) blows up with a different rate than u0, and for
p > m+ 1 it is bounded.

Repeating the argument for the other nodes we obtain that yk(s) → 0, for all k 6= 0.
Moreover, the same calculations used before show how to obtain the asymptotic behaviour
of each node using the behaviour of the previous one and the result follows. 2

5 Numerical experiments

In this Section we present some numerical experiments that illustrate our results. For the
numerical experiments we use the adaptive ODE solvers provided by MATLAB. In all
cases we take L = 15 and the initial data ϕ(x) = L2 − x2 + 1.

First we deal with p = m = 1.5 and we find that the numerical blow-up time is given
by Th = 0.1382. Our numerical results are shown in figures 1 and 2. Figure 1 shows
the evolution of the numerical solution. Figure 2 shows the profile of the solution in
self-similar variables near Th, we also put in the same picture the continuous self-similar
profile z(x). From this last picture one can appreciate that the numerical calculations
show that the blow-up set is (−9.4248, 9.4248) ≈ (−3π, 3π).

Finally, we consider the case p = 2, m = 1.5. In this case, Th = 0.004432. In Figure
3 one can see the evolution of the solution. In order to obtain the numerical blow-up
rates, in Figure 4 we display ln(ui) versus − ln(Th − t) for i = 0, 1, 2. We can appreciate
that the first curve (corresponding to max uk = u0) has slope 1, the second (for u1) has
slope 1/2 (it becomes parallel to the dotted line which has slope 1/2) and the last one
(for u2) is flat. These behaviours correspond to the expected rates u0(t) ∼ (Th − t)−1,
u1(t) ∼ (Th − t)−1/2 and u2 bounded.
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6 Appendix

In this appendix we search for nonnegative monotone solutions of the following boundary
value problem

{

(fm)′′ = 1
m−1

f − fm, x ∈ [0, L],

f ′(0) = 0, f(L) = 0,
(6.1)

We note that if f(x) is a solution of this problem then

u(x, t) = (T − t)−1/(m−1)f(x)

is a solution of














ut = (um)xx + um, (x, t) ∈ (0, L)× [0, T ),
(um)x(0, t) = 0, t ∈ [0, T ),
u(L, t) = 0, t ∈ [0, T ),
u(0, t) = T−1/(m−1)f(x).

This problem has been studied in [SGKM] and we know that for all positive initial data
(i) u(x, t) blows up if and only if L > π/2.
(ii) The blow rate is given by ‖u(x, t)‖∞ ∼ (T − t)−1/(m−1).
On the other hand, following a standard technique we introduce the self similar vari-

ables
v(x, τ) = (T − t)

1

m−1u(x, t), τ = − ln(T − t).

This function v(x, τ) satisfies the following problem,















vτ = (vm)xx −
1

m−1
v + vm, (x, τ) ∈ (0, L)× (0,+∞),

(vm)x(0, τ) = 0, τ ∈ (0,+∞),
v(L, τ) = 0, τ ∈ (0,+∞),

v(x, 0) = T
1

m−1u(x, 0), x ∈ (0, L).

(6.2)

We remark that the stationary solutions of (6.2) are solutions of (6.1).

Now, we prove that v(x, τ) converges (in terms of ω-limits) to a stationary state. For
this we multiply the equation by (vm)τ and integrate with respect to x to obtain

∫ L

0

(vm)τvτ = −
d

dt
F (v),

where

F (v) =

∫ L

0

(vm)2
x

2
(s, τ) ds+

m

m2 − 1

∫ L

0

vm+1(s, τ) ds−
1

2

∫ L

0

v2m(s, τ) ds.

Hence F (v) is a Lyapunov functional for problem (6.2) and we can conclude that the
ω−limit set of v(x, τ) consists of nontrivial stationary solutions of (6.2).
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Lemma 6.1 Let f(x) be a solution of (6.1). Then,
(i) if L ≤ π/2 no solution exists,
(ii) if π/2 < L < (mπ)/(m− 1) there exists a unique positive solution and
(iii) if L ≥ (mπ)/(m− 1) the unique monotone solution is given by

f(x) =







[

2m
m2−1

cos2
(

(m−1)x
2m

)]
1

m−1

x < mπ/(m− 1),

0 x ≥ mπ/(m− 1).

Proof. From the previous argument we have that problem (6.1) has a solution if and
only if L > π/2.

In order to prove the uniqueness we consider two different solutions of (6.1), f1(x)
and f2(x) . These profiles must have some intersections. If this is not the case, they are
ordered and hence the corresponding solutions in variables (x, t) do not have the same
blow-up time. Since the energy

Ef (x) =
(f ′(x))2

2
−

m

m2 − 1
f(x)(m+1)/m +

f(x)2

2

is a nonnegative constant function, we obtain that two different profiles have only one
intersection point. Moreover, f ′1(L) < f ′2(L) ≤ 0 if and only if f1(0) > f2(0), which is a
contradiction with the fact that they have only one intersection point. Finally we remark
that, as the energy must be nonnegative, we have

f(0) ≥ A =

(

2m

m2 − 1

)
1

m−1

,

and for each f(0) ≥ A there exists a unique L ∈ (π/2, (mπ)/(m − 1)] such that f(x)
is a positive solution of (6.1). For L > (mπ)/(m − 1) we extend by zero for all x ∈
[(mπ)/(m− 1), L]. 2
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