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The density estimation problem

I X a random variable on Rd with density f .

I The density f is unknown.

I We have an i.i.d. sample X1, . . . ,Xn drawn from f .

We look for an estimate of f based in the sample. That is, a
mapping fn : Rd × (Rd)n → R

The density f is assumed to belong to a certain class F .
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Maximum likelihood estimates

For every density function g

E(log g(X )) ≤ E(log f (X ))

The Maximum Likelihood Estimate (MLE) is defined as the
maximizer of the empirical mean (log-likelihood function)

Ln(g) :=
1

n

n∑
i=1

log g(Xi ) = log

(
n∏

i=1

g(Xi )

)1/n

over the class F

This problem is not always well posed (depending on the class F)
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The parametric case
The class F can be parameterized (by a finite number of parameters)

Example: X ∼ N(µ, σ2)

F = {f(µ,σ2), µ ∈ R, σ2 > 0}

fµ,σ2(x) =
1√
2πσ

e−
(x−µ)2

2σ2

The maximizer fn is the density of a gaussian random variable with
parameters

µn =
1

n

n∑
i=1

Xi , σ2
n =

1

n

n∑
i=1

(Xi − µn)
2.



The parametric case

Under some (fairly weak) conditions, in the parametric case, the
MLE are known to be

1. Strongly consistent, i.e. fn → f a.s.

2. Asymptotically minimum variance unbiased estimators

3. Asymptotically gaussian.



The MLE make use of the knowledge we have on f since depends
strongly on the class F where we look for the maximizer



The nonparametric case
The class F has infinite dimension

Example: F = {g ∈ L1(Rd), g ≥ 0, ‖g‖L1 = 1}, the class of all
densities.

The MLE method fails since Ln(g) is unbounded

Approximations of the identity belong to F
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Alternatives
Kernel density estimates (Parzen and Rosenblatt, 1956)

fn(x) =
1

nhd

n∑
i=1

K

(
x − Xi

h

)

K ≥ 0,
∫

K = 1, h > 0

Very popular. Very flexible.

The kernel K and the bandwidth h must be chosen
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Alternatives
The kernel density estimate

The kernel density estimate for different choices of K and h
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Alternatives
The kernel density estimate

The kernel density estimate is a “Universal” estimate. It works for
all densities f . Does not make use of further knowledge on f .



Alternatives
Maximum penalized likelihood estimates, Good and Gaskins (1971)

Idea: Penalize the lack of smoothness

Instead of looking for a maximizer of Ln(g), we look for a
maximizer of

1

n

(
n∑

i=1

log g(Xi )− h

∫
g ′′2

)
.



Alternatives
Tailor-designed Maximum Likelihood Estimates

If we have some knowledge on f then F is not the class of all
densities and, may be, we can apply MLE techniques



Tailor-designed Maximum Likelihood Estimates
Grenander’s estimate

I Grenander (1956) considered F to be the class of decreasing
densities in R+

I In this case it turns out that the MLE is well defined and is
the derivative of the least concave majorant of the empirical
distribution function

I It is consistent and minimax optimal in this class.

I Robertson (1967), Wegman (1969, 1970), Sager (1982) and
Polonik (1998) generalized Grenander’s estimate to other
kinds of “shape restrictions”
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MLE for Lipschitz densities

We consider F to be the class of densities g with compact support
S(g) that verify

|g(x)− g(y)| ≤ κ‖x − y‖, x , y ∈ S(g).

That is, F is the class of Lipschitz densities with prescribed
Lipschitz constant κ. We allow g to be discontinuous at the
boundary of its support.

The support of the density f can be unknown
(In this case we ask S(f ) to be convex)
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Theorem

(i) There exists a unique maximizer fn of Ln(g) in F . Moreover,
fn is supported in Cn, the convex hull of {X1, . . . ,Xn}, and its
value there is given by the maximum of n “cone functions”,
i.e.

fn(x) = max
1≤i≤n

(fn(Xi )− κ‖x − Xi‖)+ . (1)

(ii) fn is consistent in the following sense: for every compact set
K ⊂ S(f )◦,

lim
n→∞

‖fn − f ‖L∞(K) → 0 a.s.

(iii) Hence
lim

n→∞
‖fn − f ‖L1(Rd ) → 0 a.s.



The MLE in dimension d = 1

x
i
 



The MLE in dimension d = 2



Proof.

(i) Existence → Picture. Uniqueness → We are looking for a
maximum of a concave function in a convex set.

(ii) Is a consequence of Huber’s Theorem (1967).

Idea:
Use Huber’s Theorem we need a sequence f̂n of (almost)
maximizers of Ln belonging to a (fixed) compact class.
We construct them us follows

f̂n := An max
1≤i≤n

(fn(Xi )− κ‖x − Xi‖)+ , for all x ∈ S(f ).

The constant An is chosen to guarantee
∫

fn = 1.

And f̂n ∈ Lip(κ, S(f )), which is compact

‖fn − f̂n‖L∞(K) ≤ |An − 1| ‖fn‖L∞(K) → 0, (2)

since An → 1 and (‖fn‖L∞(K))n is bounded a.s.
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(iii) Since
I Cn ⊂ S(f )
I |S(f )| < ∞
I |fn(x)| ≤ κdiam(S(f )) + 1

|Cn|

we can find K ⊂ S(f ) such that∫
Rd

|fn(x)− f (x)| dx ≤∫
K
|fn(x)− f (x)| dx +

∫
S(f )\K

|fn(x)− f (x)| dx → ε



Computing the estimator
We have proved that the estimator lives in a certain
finite-dimensional space and that is determined by its value at the
sample points.
For y ∈ Rn we define

gy (x) = max
1≤i≤n

(
yi − |x − Xi |

)+
, x ∈ Cn.

Our problem read us
Find

argmaxy∈P

n∏
i=1

yi .

P = {y ∈ Rn, yi > 0, |yi − yj | ≤ κ|Xi − Xj |(i 6= j),

∫
gy = 1}.

P is convex and
∏

yi is concave
To have an efficient method to solve this problem we need to
decide (efficiently) if a point y ∈ P
Easy in d = 1. Not so easy if d > 1



Computing the estimator
Dimension d = 1

Let (X (1), . . . ,X (n)) the order statistics. The Lipschitz conditions
reads us

−κ(X (i+1)−X (i)) ≤ yi+1−yi ≤ κ(X (i+1)−X (i)), i = 1, . . . , n−1.

And

∫
gy (x) dx =

=
1

4

n−1∑
i=1

(yi+1−yi )
2 +2(yi+1 +yi )(X

(i+1)−X (i))−(X (i+1)−X (i))2.



Computing the estimator
Dimension d=1 - Sample size: n=100.
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Computing the estimator
Dimension d > 1

I We can not order the sample points

I We have not an explicit formula for the integral
∫

gy (x) dx



Some problems...

I Too many peaks

I An optimization nonlinear problem has to be solved.
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An alternative ML type estimator
Dimension one - PLMLE

V = V(X1, . . . ,Xn) ={
g ∈ Lip(κ, [X (1),X (n)]) : g |[X (i),X (i+1)] is linear

∫
g = 1

}
,

Definition
The PLMLE is the maximizer f̃n of Ln over V(X1, . . . ,Xn).

Existence and uniqueness of this estimator is guaranteed since V is
a finite dimensional compact and convex subset of F .

It has lower likelihood than fn but is asymptotically the same
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Computation of PLMLE

maximize
n∏

i=1

yi ; subject to

−a ≤ Ay ≤ a, By = 1.

A =


−1 1 0 · · · 0
0 −1 1
...

. . .
. . .

...
−1 1 0

0 · · · 0 −1 1

 , a = κ


x2 − x1

...
xi+1 − xi

...
xn − xn−1

 ,

B =
1

2
(x2 − x1, x3 − x1, . . . , xi+1 − xi−1, . . . , xn − xn−2, xn − xn−1)

The equation −a ≤ Ay ≤ a guarantees the Lipschitz condition and
By = 1 represents the restriction

∫
f̃n = 1.



PLMLE demonstration
PLMLE vs. Kernels. Sample size: n=100
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Some facts on Delaunay Triangulations

I For sample points of absolutely continuous probabilities is well
defined with probability one.

I Maximizes the mimimum angle of the triangles among all
possible triangulations of the points.

I Useful for the numerical treatment of Partial Differential
Equations by the Finite Element Method.

I Useful to compute the Euclidean Minimum Spanning Tree of
a set of points (Is a subgraph of the Delaunay triangulation).

I Very used in Computational Geometry.
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T = {τ1, . . . , τN} The Delaunay Tesselation.

Cn =
N⋃

i=1

τi

For any i 6= j , τi ∩ τj is either a point, a (d − 1)−dimensional face,
or the empty set.
We consider now the class of piecewise linear functions on T

V = V(X1, . . . ,Xn) ={
g ∈ Lip(κ, Cn) : g |τi is linear,

∫
g = 1

}
,

Definition
The PLMLE f̃n is the argument that maximizes Ln over
V(X1, . . . ,Xn).
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Theorem
For every compact set K ⊂ S(f ) we have

‖f̃n − f ‖L∞(K) → 0 a.s.



Computing the estimator

V is a compact subset of the (finite dimensional) vector space

Ṽ = {g : Cn → R : g |τi is linear}

We need a (good) basis for Ṽ.

We borrow from FEM.

ϕi (Xj) = δij .

g ∈ Ṽ ⇒

g(x) =
∑

i

g(Xi )ϕi (x)
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Computing the estimator

∫
Rd

g(x) dx =

∫
Rd

(
n∑

i=1

g(Xi )ϕi (x)

)
dx = By ,

B =

(∫
ϕ1, . . . ,

∫
ϕn

)
y = (g(X1), . . . , g(Xn))

We compute B just once!

We also have
∇g |τk

=
∑

i

yi∇ϕi |τk
= Aky ,

Ak =
(
(∇ϕ1|τk

)t
∣∣∣ · · · ∣∣∣(∇ϕn|τk

)t
)
,
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Computing the estimator

The optimization problem reads us

maximize
n∏

i=1

yi ; subject to

‖Aky‖ ≤ κ, 1 ≤ k ≤ N, By = 1.

I If ‖ · ‖ = ‖ · ‖∞, all the restrictions are linear.

I The size of Ak grows linearly with d
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I The size of Ak grows linearly with d



The PLMLE for a “cone” density
Sample size: n=250



The PLMLE for a Uniform density
Sample size: n=200



The PLMLE for a bivariate sum of uniform variables
Sample size: n=400
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