A tailor made nonparametric density estimate

Daniel Carando ${ }^{1}$, Ricardo Fraiman ${ }^{2}$ and Pablo Groisman ${ }^{1}$
${ }^{1}$ Universidad de Buenos Aires
${ }^{2}$ Universidad de San Andrés

School and Workshop on Probability Theory and Applications ICTP/CNPq January 2007, Campos do Jordão, Brasil

The density estimation problem

- X a random variable on \mathbb{R}^{d} with density f.
- The density f is unknown.
- We have an i.i.d. sample X_{1}, \ldots, X_{n} drawn from f.

The density estimation problem

- X a random variable on \mathbb{R}^{d} with density f.
- The density f is unknown.
- We have an i.i.d. sample X_{1}, \ldots, X_{n} drawn from f.

We look for an estimate of f based in the sample. That is, a mapping $f_{n}: \mathbb{R}^{d} \times\left(\mathbb{R}^{d}\right)^{n} \rightarrow \mathbb{R}$

The density estimation problem

- X a random variable on \mathbb{R}^{d} with density f.
- The density f is unknown.
- We have an i.i.d. sample X_{1}, \ldots, X_{n} drawn from f.

We look for an estimate of f based in the sample. That is, a mapping $f_{n}: \mathbb{R}^{d} \times\left(\mathbb{R}^{d}\right)^{n} \rightarrow \mathbb{R}$

The density f is assumed to belong to a certain class \mathcal{F}.

Maximum likelihood estimates

For every density function g

$$
\mathbb{E}(\log g(X)) \leq \mathbb{E}(\log f(X))
$$

Maximum likelihood estimates

For every density function g

$$
\mathbb{E}(\log g(X)) \leq \mathbb{E}(\log f(X))
$$

The Maximum Likelihood Estimate (MLE) is defined as the maximizer of the empirical mean (log-likelihood function)

$$
\mathcal{L}_{n}(g):=\frac{1}{n} \sum_{i=1}^{n} \log g\left(X_{i}\right)=\log \left(\prod_{i=1}^{n} g\left(X_{i}\right)\right)^{1 / n}
$$

over the class \mathcal{F}

Maximum likelihood estimates

For every density function g

$$
\mathbb{E}(\log g(X)) \leq \mathbb{E}(\log f(X))
$$

The Maximum Likelihood Estimate (MLE) is defined as the maximizer of the empirical mean (log-likelihood function)

$$
\mathcal{L}_{n}(g):=\frac{1}{n} \sum_{i=1}^{n} \log g\left(X_{i}\right)=\log \left(\prod_{i=1}^{n} g\left(X_{i}\right)\right)^{1 / n}
$$

over the class \mathcal{F}
This problem is not always well posed (depending on the class \mathcal{F})

The parametric case

The class \mathcal{F} can be parameterized (by a finite number of parameters)

Example: $X \sim N\left(\mu, \sigma^{2}\right)$

$$
\begin{gathered}
\mathcal{F}=\left\{f_{\left(\mu, \sigma^{2}\right)}, \mu \in \mathbb{R}, \sigma^{2}>0\right\} \\
f_{\mu, \sigma^{2}}(x)=\frac{1}{\sqrt{2 \pi} \sigma} \mathrm{e}^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
\end{gathered}
$$

The maximizer f_{n} is the density of a gaussian random variable with parameters

$$
\mu_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}, \quad \sigma_{n}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu_{n}\right)^{2} .
$$

The parametric case

Under some (fairly weak) conditions, in the parametric case, the MLE are known to be

1. Strongly consistent, i.e. $f_{n} \rightarrow f$ a.s.
2. Asymptotically minimum variance unbiased estimators
3. Asymptotically gaussian.

The MLE make use of the knowledge we have on f since depends strongly on the class \mathcal{F} where we look for the maximizer

The nonparametric case

The class \mathcal{F} has infinite dimension
Example: $\mathcal{F}=\left\{g \in L^{1}\left(\mathbb{R}^{d}\right), g \geq 0,\|g\|_{L^{1}}=1\right\}$, the class of all densities.

The nonparametric case

The class \mathcal{F} has infinite dimension

Example: $\mathcal{F}=\left\{g \in L^{1}\left(\mathbb{R}^{d}\right), g \geq 0,\|g\|_{L^{1}}=1\right\}$, the class of all densities.

The MLE method fails since $\mathcal{L}_{n}(g)$ is unbounded

Approximations of the identity belong to \mathcal{F}

Alternatives

Kernel density estimates (Parzen and Rosenblatt, 1956)

$$
f_{n}(x)=\frac{1}{n h^{d}} \sum_{i=1}^{n} K\left(\frac{x-X_{i}}{h}\right)
$$

$$
K \geq 0, \int K=1, h>0
$$

Alternatives

Kernel density estimates (Parzen and Rosenblatt, 1956)

$$
f_{n}(x)=\frac{1}{n h^{d}} \sum_{i=1}^{n} K\left(\frac{x-X_{i}}{h}\right)
$$

$K \geq 0, \int K=1, h>0$
Very popular. Very flexible.

Alternatives

Kernel density estimates (Parzen and Rosenblatt, 1956)

$$
f_{n}(x)=\frac{1}{n h^{d}} \sum_{i=1}^{n} K\left(\frac{x-X_{i}}{h}\right)
$$

$K \geq 0, \int K=1, h>0$
Very popular. Very flexible.
The kernel K and the bandwidth h must be chosen

Alternatives

The kernel density estimate
The kernel density estimate for different choices of K and h

Alternatives

The kernel density estimate

The kernel density estimate is a "Universal" estimate. It works for all densities f. Does not make use of further knowledge on f.

Alternatives

Maximum penalized likelihood estimates, Good and Gaskins (1971)

Idea: Penalize the lack of smoothness
Instead of looking for a maximizer of $\mathcal{L}_{n}(g)$, we look for a maximizer of

$$
\frac{1}{n}\left(\sum_{i=1}^{n} \log g\left(X_{i}\right)-h \int g^{\prime \prime 2}\right)
$$

Alternatives

Tailor-designed Maximum Likelihood Estimates

If we have some knowledge on f then \mathcal{F} is not the class of all densities and, may be, we can apply MLE techniques

Tailor-designed Maximum Likelihood Estimates

Grenander's estimate

- Grenander (1956) considered \mathcal{F} to be the class of decreasing densities in \mathbb{R}_{+}

Tailor-designed Maximum Likelihood Estimates

Grenander's estimate

- Grenander (1956) considered \mathcal{F} to be the class of decreasing densities in \mathbb{R}_{+}
- In this case it turns out that the MLE is well defined and is the derivative of the least concave majorant of the empirical distribution function

Tailor-designed Maximum Likelihood Estimates

Grenander's estimate

- Grenander (1956) considered \mathcal{F} to be the class of decreasing densities in \mathbb{R}_{+}
- In this case it turns out that the MLE is well defined and is the derivative of the least concave majorant of the empirical distribution function
- It is consistent and minimax optimal in this class.

Tailor-designed Maximum Likelihood Estimates

Grenander's estimate

- Grenander (1956) considered \mathcal{F} to be the class of decreasing densities in \mathbb{R}_{+}
- In this case it turns out that the MLE is well defined and is the derivative of the least concave majorant of the empirical distribution function
- It is consistent and minimax optimal in this class.
- Robertson (1967), Wegman (1969, 1970), Sager (1982) and Polonik (1998) generalized Grenander's estimate to other kinds of "shape restrictions"

Tailor-designed Maximum Likelihood Estimates

Grenander's estimate

- Grenander (1956) considered \mathcal{F} to be the class of decreasing densities in \mathbb{R}_{+}
- In this case it turns out that the MLE is well defined and is the derivative of the least concave majorant of the empirical distribution function
- It is consistent and minimax optimal in this class.
- Robertson (1967), Wegman (1969, 1970), Sager (1982) and Polonik (1998) generalized Grenander's estimate to other kinds of "shape restrictions"

MLE for Lipschitz densities

We consider \mathcal{F} to be the class of densities g with compact support $S(g)$ that verify

$$
|g(x)-g(y)| \leq \kappa\|x-y\|, \quad x, y \in S(g)
$$

That is, \mathcal{F} is the class of Lipschitz densities with prescribed Lipschitz constant κ. We allow g to be discontinuous at the boundary of its support.

MLE for Lipschitz densities

We consider \mathcal{F} to be the class of densities g with compact support $S(g)$ that verify

$$
|g(x)-g(y)| \leq \kappa\|x-y\|, \quad x, y \in S(g)
$$

That is, \mathcal{F} is the class of Lipschitz densities with prescribed Lipschitz constant κ. We allow g to be discontinuous at the boundary of its support.

The support of the density f can be unknown (In this case we ask $S(f)$ to be convex)

Theorem

(i) There exists a unique maximizer f_{n} of $\mathcal{L}_{n}(g)$ in \mathcal{F}. Moreover, f_{n} is supported in \mathcal{C}_{n}, the convex hull of $\left\{X_{1}, \ldots, X_{n}\right\}$, and its value there is given by the maximum of n "cone functions", i.e.

$$
\begin{equation*}
f_{n}(x)=\max _{1 \leq i \leq n}\left(f_{n}\left(X_{i}\right)-\kappa\left\|x-X_{i}\right\|\right)^{+} . \tag{1}
\end{equation*}
$$

(ii) f_{n} is consistent in the following sense: for every compact set $K \subset S(f)^{\circ}$,

$$
\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{L^{\infty}(K)} \rightarrow 0 \quad \text { a.s. }
$$

(iii) Hence

$$
\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|_{L^{1}\left(\mathbb{R}^{d}\right)} \rightarrow 0 \quad \text { a.s. }
$$

The MLE in dimension $d=1$

The MLE in dimension $d=2$

Proof.

(i) Existence \rightarrow Picture. Uniqueness \rightarrow We are looking for a maximum of a concave function in a convex set.

Proof.

(i) Existence \rightarrow Picture. Uniqueness \rightarrow We are looking for a maximum of a concave function in a convex set.
(ii) Is a consequence of Huber's Theorem (1967).

Idea:
Use Huber's Theorem we need a sequence \hat{f}_{n} of (almost) maximizers of \mathcal{L}_{n} belonging to a (fixed) compact class. We construct them us follows

$$
\hat{f}_{n}:=A_{n} \max _{1 \leq i \leq n}\left(f_{n}\left(X_{i}\right)-\kappa\left\|x-X_{i}\right\|\right)^{+}, \quad \text { for all } x \in S(f)
$$

The constant A_{n} is chosen to guarantee $\int f_{n}=1$.

Proof.

(i) Existence \rightarrow Picture. Uniqueness \rightarrow We are looking for a maximum of a concave function in a convex set.
(ii) Is a consequence of Huber's Theorem (1967).

Idea:
Use Huber's Theorem we need a sequence \hat{f}_{n} of (almost) maximizers of \mathcal{L}_{n} belonging to a (fixed) compact class. We construct them us follows

$$
\hat{f}_{n}:=A_{n} \max _{1 \leq i \leq n}\left(f_{n}\left(X_{i}\right)-\kappa\left\|x-X_{i}\right\|\right)^{+}, \quad \text { for all } x \in S(f)
$$

The constant A_{n} is chosen to guarantee $\int f_{n}=1$.
And $\hat{f}_{n} \in \operatorname{Lip}(\kappa, S(f))$, which is compact

$$
\begin{equation*}
\left\|f_{n}-\hat{f}_{n}\right\|_{L^{\infty}(K)} \leq\left|A_{n}-1\right|\left\|f_{n}\right\|_{L^{\infty}(K)} \rightarrow 0 \tag{2}
\end{equation*}
$$

since $A_{n} \rightarrow 1$ and $\left(\left\|f_{n}\right\|_{L^{\infty}(K)}\right)_{n}$ is bounded a.s.
(iii) Since

- $\mathcal{C}_{n} \subset S(f)$
- $|S(f)|<\infty$
- $\left|f_{n}(x)\right| \leq \kappa \operatorname{diam}(S(f))+\frac{1}{\left|\mathcal{C}_{n}\right|}$
we can find $K \subset S(f)$ such that

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}}\left|f_{n}(x)-f(x)\right| d x \leq \\
& \quad \int_{K}\left|f_{n}(x)-f(x)\right| d x+\int_{S(f) \backslash K}\left|f_{n}(x)-f(x)\right| d x \rightarrow \varepsilon
\end{aligned}
$$

Computing the estimator

We have proved that the estimator lives in a certain finite-dimensional space and that is determined by its value at the sample points.
For $y \in \mathbb{R}^{n}$ we define

$$
g_{y}(x)=\max _{1 \leq i \leq n}\left(y_{i}-\left|x-X_{i}\right|\right)^{+}, \quad x \in \mathcal{C}_{n}
$$

Our problem read us
Find

$$
\begin{gathered}
\operatorname{argmax}_{y \in \mathcal{P}} \prod_{i=1}^{n} y_{i} \\
\mathcal{P}=\left\{y \in \mathbb{R}^{n}, y_{i}>0,\left|y_{i}-y_{j}\right| \leq \kappa\left|X_{i}-X_{j}\right|(i \neq j), \int g_{y}=1\right\}
\end{gathered}
$$

\mathcal{P} is convex and $\prod y_{i}$ is concave
To have an efficient method to solve this problem we need to decide (efficiently) if a point $y \in \mathcal{P}$
Easy in $d=1$. Not so easy if $d>1$

Computing the estimator

Dimension $d=1$

Let $\left(X^{(1)}, \ldots, X^{(n)}\right)$ the order statistics. The Lipschitz conditions reads us
$-\kappa\left(X^{(i+1)}-X^{(i)}\right) \leq y_{i+1}-y_{i} \leq \kappa\left(X^{(i+1)}-X^{(i)}\right), \quad i=1, \ldots, n-1$.
And $\int g_{y}(x) d x=$
$=\frac{1}{4} \sum_{i=1}^{n-1}\left(y_{i+1}-y_{i}\right)^{2}+2\left(y_{i+1}+y_{i}\right)\left(X^{(i+1)}-X^{(i)}\right)-\left(X^{(i+1)}-X^{(i)}\right)^{2}$.

Computing the estimator

Dimension $d=1$ - Sample size: $n=100$.

Computing the estimator

Dimension $d=1$ - Sample size: $n=100$.

Computing the estimator

Dimension $d>1$

- We can not order the sample points
- We have not an explicit formula for the integral $\int g_{y}(x) d x$

Some problems...

- Too many peaks

Some problems...

- Too many peaks
- An optimization nonlinear problem has to be solved.

An alternative ML type estimator

Dimension one - PLMLE

$$
\begin{gathered}
\mathcal{V}=\mathcal{V}\left(X_{1}, \ldots, X_{n}\right)= \\
\left\{g \in \operatorname{Lip}\left(\kappa,\left[X^{(1)}, X^{(n)}\right]\right):\left.g\right|_{\left[X^{(i)}, X^{(i+1)}\right]} \text { is linear } \int g=1\right\},
\end{gathered}
$$

An alternative ML type estimator

Dimension one - PLMLE

$$
\begin{gathered}
\mathcal{V}=\mathcal{V}\left(X_{1}, \ldots, X_{n}\right)= \\
\left\{g \in \operatorname{Lip}\left(\kappa,\left[X^{(1)}, X^{(n)}\right]\right):\left.g\right|_{\left[X^{(i)}, X^{(i+1)}\right]} \text { is linear } \int g=1\right\},
\end{gathered}
$$

Definition
The PLMLE is the maximizer \tilde{f}_{n} of \mathcal{L}_{n} over $\mathcal{V}\left(X_{1}, \ldots, X_{n}\right)$.

An alternative ML type estimator

Dimension one - PLMLE

$$
\begin{gathered}
\mathcal{V}=\mathcal{V}\left(X_{1}, \ldots, X_{n}\right)= \\
\left\{g \in \operatorname{Lip}\left(\kappa,\left[X^{(1)}, X^{(n)}\right]\right):\left.g\right|_{\left[X^{(i)}, X^{(i+1)}\right]} \text { is linear } \int g=1\right\},
\end{gathered}
$$

Definition

The PLMLE is the maximizer \tilde{f}_{n} of \mathcal{L}_{n} over $\mathcal{V}\left(X_{1}, \ldots, X_{n}\right)$.
Existence and uniqueness of this estimator is guaranteed since \mathcal{V} is a finite dimensional compact and convex subset of \mathcal{F}.

An alternative ML type estimator

Dimension one - PLMLE

$$
\begin{gathered}
\mathcal{V}=\mathcal{V}\left(X_{1}, \ldots, X_{n}\right)= \\
\left\{g \in \operatorname{Lip}\left(\kappa,\left[X^{(1)}, X^{(n)}\right]\right):\left.g\right|_{\left[X^{(i)}, X^{(i+1)}\right]} \text { is linear } \int g=1\right\},
\end{gathered}
$$

Definition

The PLMLE is the maximizer \tilde{f}_{n} of \mathcal{L}_{n} over $\mathcal{V}\left(X_{1}, \ldots, X_{n}\right)$.
Existence and uniqueness of this estimator is guaranteed since \mathcal{V} is a finite dimensional compact and convex subset of \mathcal{F}.

It has lower likelihood than f_{n} but is asymptotically the same

Computation of PLMLE

$$
\begin{aligned}
& \operatorname{maximize} \prod_{i=1}^{n} y_{i} \text {; subject to } \\
& \qquad-a \leq A y \leq a, \quad B y=1
\end{aligned}
$$

$A=\left(\begin{array}{cccccc}-1 & 1 & 0 & \cdots & & 0 \\ 0 & -1 & 1 & & & \\ \vdots & & \ddots & \ddots & & \vdots \\ & & & -1 & 1 & 0 \\ 0 & \cdots & & 0 & -1 & 1\end{array}\right), \quad a=\kappa\left(\begin{array}{c}x_{2}-x_{1} \\ \vdots \\ x_{i+1}-x_{i} \\ \vdots \\ x_{n}-x_{n-1}\end{array}\right)$,
$B=\frac{1}{2}\left(x_{2}-x_{1}, x_{3}-x_{1}, \ldots, x_{i+1}-x_{i-1}, \ldots, x_{n}-x_{n-2}, x_{n}-x_{n-1}\right)$
The equation $-a \leq A y \leq a$ guarantees the Lipschitz condition and $B y=1$ represents the restriction $\int \tilde{f}_{n}=1$.

PLMLE demonstration

PLMLE vs. Kernels. Sample size: $n=100$

PLMLE demonstration

PLMLE vs. Kernels. Sample size: $n=100$

Delaunay triangulations

Delaunay triangulations

Delaunay triangulations

Delaunay triangulations

Voronoi tessellations and Delaunay triangulations

Voronoi tessellations and Delaunay triangulations

Some facts on Delaunay Triangulations

- For sample points of absolutely continuous probabilities is well defined with probability one.

Some facts on Delaunay Triangulations

- For sample points of absolutely continuous probabilities is well defined with probability one.
- Maximizes the mimimum angle of the triangles among all possible triangulations of the points.

Some facts on Delaunay Triangulations

- For sample points of absolutely continuous probabilities is well defined with probability one.
- Maximizes the mimimum angle of the triangles among all possible triangulations of the points.
- Useful for the numerical treatment of Partial Differential Equations by the Finite Element Method.

Some facts on Delaunay Triangulations

- For sample points of absolutely continuous probabilities is well defined with probability one.
- Maximizes the mimimum angle of the triangles among all possible triangulations of the points.
- Useful for the numerical treatment of Partial Differential Equations by the Finite Element Method.
- Useful to compute the Euclidean Minimum Spanning Tree of a set of points (Is a subgraph of the Delaunay triangulation).

Some facts on Delaunay Triangulations

- For sample points of absolutely continuous probabilities is well defined with probability one.
- Maximizes the mimimum angle of the triangles among all possible triangulations of the points.
- Useful for the numerical treatment of Partial Differential Equations by the Finite Element Method.
- Useful to compute the Euclidean Minimum Spanning Tree of a set of points (Is a subgraph of the Delaunay triangulation).
- Very used in Computational Geometry.

$$
T=\left\{\tau_{1}, \ldots, \tau_{N}\right\} \quad \text { The Delaunay Tesselation. }
$$

$$
T=\left\{\tau_{1}, \ldots, \tau_{N}\right\} \quad \text { The Delaunay Tesselation. }
$$

$$
\mathcal{C}_{n}=\bigcup_{i=1}^{N} \tau_{i}
$$

$$
T=\left\{\tau_{1}, \ldots, \tau_{N}\right\} \quad \text { The Delaunay Tesselation. }
$$

$$
\mathcal{C}_{n}=\bigcup_{i=1}^{N} \tau_{i}
$$

For any $i \neq j, \tau_{i} \cap \tau_{j}$ is either a point, a $(d-1)$-dimensional face, or the empty set.
We consider now the class of piecewise linear functions on T

$$
T=\left\{\tau_{1}, \ldots, \tau_{N}\right\} \quad \text { The Delaunay Tesselation. }
$$

$$
\mathcal{C}_{n}=\bigcup_{i=1}^{N} \tau_{i}
$$

For any $i \neq j, \tau_{i} \cap \tau_{j}$ is either a point, a $(d-1)$-dimensional face, or the empty set.
We consider now the class of piecewise linear functions on T

$$
\begin{gathered}
\mathcal{V}=\mathcal{V}\left(X_{1}, \ldots, X_{n}\right)= \\
\left\{g \in \operatorname{Lip}\left(\kappa, \mathcal{C}_{n}\right):\left.g\right|_{\tau_{i}} \text { is linear, } \int g=1\right\}
\end{gathered}
$$

Definition

The PLMLE \tilde{f}_{n} is the argument that maximizes \mathcal{L}_{n} over $\mathcal{V}\left(X_{1}, \ldots, X_{n}\right)$.

Theorem
For every compact set $K \subset S(f)$ we have

$$
\left\|\tilde{f}_{n}-f\right\|_{L^{\infty}(K)} \rightarrow 0 \quad \text { a.s. }
$$

Computing the estimator

\mathcal{V} is a compact subset of the (finite dimensional) vector space

$$
\tilde{\mathcal{V}}=\left\{g: \mathcal{C}_{n} \rightarrow \mathbb{R}:\left.g\right|_{\tau_{i}} \text { is linear }\right\}
$$

We need a (good) basis for $\tilde{\mathcal{V}}$.

Computing the estimator

\mathcal{V} is a compact subset of the (finite dimensional) vector space

$$
\tilde{\mathcal{V}}=\left\{g: \mathcal{C}_{n} \rightarrow \mathbb{R}:\left.g\right|_{\tau_{i}} \text { is linear }\right\}
$$

We need a (good) basis for $\tilde{\mathcal{V}}$. We borrow from FEM.

$$
\begin{gathered}
g \in \tilde{\mathcal{V}} \Rightarrow \\
g(x)=\sum_{i} g\left(X_{i}\right) \varphi_{i}(x)
\end{gathered}
$$

$$
\varphi_{i}\left(X_{j}\right)=\delta_{i j}
$$

Computing the estimator

$$
\int_{\mathbb{R}^{d}} g(x) d x=\int_{\mathbb{R}^{d}}\left(\sum_{i=1}^{n} g\left(X_{i}\right) \varphi_{i}(x)\right) d x=B y,
$$

Computing the estimator

$$
\begin{gathered}
\int_{\mathbb{R}^{d}} g(x) d x=\int_{\mathbb{R}^{d}}\left(\sum_{i=1}^{n} g\left(X_{i}\right) \varphi_{i}(x)\right) d x=B y \\
B=\left(\int \varphi_{1}, \ldots, \int \varphi_{n}\right) \quad y=\left(g\left(X_{1}\right), \ldots, g\left(X_{n}\right)\right)
\end{gathered}
$$

Computing the estimator

$$
\begin{gathered}
\int_{\mathbb{R}^{d}} g(x) d x=\int_{\mathbb{R}^{d}}\left(\sum_{i=1}^{n} g\left(X_{i}\right) \varphi_{i}(x)\right) d x=B y, \\
B=\left(\int \varphi_{1}, \ldots, \int \varphi_{n}\right) \quad y=\left(g\left(X_{1}\right), \ldots, g\left(X_{n}\right)\right)
\end{gathered}
$$

We compute B just once!

Computing the estimator

$$
\begin{gathered}
\int_{\mathbb{R}^{d}} g(x) d x=\int_{\mathbb{R}^{d}}\left(\sum_{i=1}^{n} g\left(X_{i}\right) \varphi_{i}(x)\right) d x=B y, \\
B=\left(\int \varphi_{1}, \ldots, \int \varphi_{n}\right) \quad y=\left(g\left(X_{1}\right), \ldots, g\left(X_{n}\right)\right) \\
\text { We compute } B \text { just once! }
\end{gathered}
$$

We also have

$$
\begin{gathered}
\left.\nabla g\right|_{\tau_{k}}=\left.\sum_{i} y_{i} \nabla \varphi_{i}\right|_{\tau_{k}}=A_{k} y, \\
A_{k}=\left(\left(\left.\nabla \varphi_{1}\right|_{\tau_{k}}\right)^{t}|\cdots|\left(\left.\nabla \varphi_{n}\right|_{\tau_{k}}\right)^{t}\right),
\end{gathered}
$$

Computing the estimator

The optimization problem reads us
maximize $\prod_{i=1}^{n} y_{i}$; subject to

$$
\left\|A_{k} y\right\| \leq \kappa, \quad 1 \leq k \leq N, \quad B y=1
$$

Computing the estimator

The optimization problem reads us
maximize $\prod_{i=1}^{n} y_{i}$; subject to

$$
\left\|A_{k} y\right\| \leq \kappa, \quad 1 \leq k \leq N, \quad B y=1
$$

- If $\|\cdot\|=\|\cdot\|_{\infty}$, all the restrictions are linear.

Computing the estimator

The optimization problem reads us
maximize $\prod_{i=1}^{n} y_{i}$; subject to

$$
\left\|A_{k} y\right\| \leq \kappa, \quad 1 \leq k \leq N, \quad B y=1
$$

- If $\|\cdot\|=\|\cdot\|_{\infty}$, all the restrictions are linear.
- The size of A_{k} grows linearly with d

The PLMLE for a "cone" density

Sample size: $n=250$

The PLMLE for a Uniform density

Sample size: $n=200$

The PLMLE for a bivariate sum of uniform variables

Sample size: $n=400$

